
High-level Views on Low-level Representations

Iavor S. Diatchki
OGI School of Sci. & Eng. at OHSU

diatchki@cse.ogi.edu

Mark P. Jones
OGI School of Sci. & Eng. at OHSU

mpj@cse.ogi.edu

Rebekah Leslie
Portland State University

rebekah@cs.pdx.edu

Abstract
This paper explains how the high-level treatment of datatypes in
functional languages—using features like constructor functions
and pattern matching—can be made to coexist withbitdata. We use
this term to describe the bit-level representations of data that are
required in the construction of many different applications, includ-
ing operating systems, device drivers, and assemblers. We explain
our approach as a combination of two language extensions, each
of which could potentially be adapted to any modern functional
language. The first adds simple and elegant constructs formanip-
ulating raw bitfield values, while the second provides a view-like
mechanism for defining distinct new bitdata types with fine-control
over the underlyingrepresentation. Our design leverages poly-
morphic type inference, as well as techniques for improvement of
qualified types, to track both the type and the width of bitdata struc-
tures. We have implemented our extensions in a small functional
language interpreter, and used it to show that our approach can
handle a wide range of practical bitdata types.

Categories and Subject Descriptors D.3.2 [Language Classifica-
tions]: Applicative (functional) languages; D.3.3 [Language Con-
structs and Features]: Data types and structures

General Terms Design, Languages

Keywords Data representation, bit manipulation, bitdata, bit-
fields, pattern matching, views, polymorphism, qualified types

1. Introduction
Algebraic datatypes promote a high-level view of data that hides
low-level implementation details. Storage for new data structures
is allocated automatically by applying constructor functions, while
pattern matching provides a way to inspect values without concern
for their machine-level representation. By abstracting from such
details, we can obtain code that is more succinct and easier to reuse.

Many applications, however, require the use of data that is
stored in bit fields and accessed as part of a single machine word.
Standard examples can be found in operating system APIs; in the
control register formats used by device drivers; and in programs
like assemblers that work with machine code instruction encodings.
We will refer to examples like this collectively asbitdata.

In this paper, we explain how a modern functional language
like ML or Haskell can be extended with mechanisms for spec-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

ICFP’05 September 26–28, 2005, Tallinn, Estonia.
Copyright c© 2005 ACM 1-59593-064-7/05/0009. . . $5.00.

ifying and using bitdata. Our design provides fine-control over
the choice of low-level representations while also supporting the
higher-level programming notations and constructs that are associ-
ated with strongly typed, algebraic datatypes. The original motiva-
tion for this work grew out of two ongoing projects using Haskell
for device driver and operating system implementation, respec-
tively. Although there are occasional differences in syntax and se-
mantics, the examples in this paper still follow the basic conven-
tions of Haskell. We have strived, however, for a general approach
that is broadly compatible with any modern functional language,
and also for a flexible approach that is useful in many different
application domains. Our goal in this paper is to treat fixed-width
bitdata types of the kind that can potentially be stored in a single
machine register. This emphasis distinguishes our work from ap-
proaches, some of which will be described in Section 5, that focus
instead on handling variable length streams of bitdata, as used in
applications like multimedia and compression codecs, and machine
language instruction stream encoders.

1.1 Examples of Bitdata

Much of the time, the specific bit patterns that are used in bitdata
encodings are determined by external specifications and standards
to which the application developer must conform. For example, an
operating system standard might fix the encoding for the set of flags
that are passed to a system call, while the datasheet for a hardware
device specifies the layout of the fields in each control register.
In the general case, bit-level encodings may usetag bits—that is,
specific patterns of 0s and 1s in certain positions—to distinguish
between different types of value, leaving the bits that remain to
store the actual data. For example, some bits in the encoding of a
machine code instruction might identify a particular opcode, while
others specify the operands.

We will now describe a small collection of examples to illustrate
some of the challenges of dealing with bitdata.

PCI Device Addresses PCI is a high performance bus standard
that is widely used on modern PCs for interconnecting chips, ex-
pansion boards, and processor/memory subsystems. Individual de-
vices in a given system are identified by a 16 bit address that con-
sists of three fields: an eight bitbus identifier, a five bitdevice
code, and a three bitfunction number. We can represent the lay-
out of these fields in a block diagram that specifies the name and
width (as a subscript) of each field, from which we can infer the
corresponding positions of each field.

bus(8) dev(5) fun (3)

We draw diagrams like this with the most significant bit on the
left and the least significant bit on the right. With this encoding,
function 3 of device 6 on bus 1 is represented by the 16 bit value
that is written0x0133 in hexadecimal or as00000001 00110 011
in binary, using spaces to show field boundaries.

Timeouts in the L4 Microkernel L4 was developed as a minimal,
flexible, and high performance operating system kernel [13]. The
most recent version of the L4 specification includes a detailed
ABI (application binary interface) that describes the format for
system call arguments and results [17]. For example, one of the
parameters in the interprocess communication (IPC) system call is
a timeout period, which specifies how long the sender of a message
should wait for a corresponding receive request in another process.
Simplifying the details a little, there are three forms of timeout
value, as shown in the following diagrams:

now 0 1 (5) 0 (10) = 0

period 0 e (5) m (10) = 2em µs

never 0 (16) = ∞

There are two special values here: A ‘now’ timeout specifies that
a send operation should abort immediately if no recipient is al-
ready waiting, while a timeout of ‘never’ specifies that the sender
should wait indefinitely. All other time periods are expressed using
a simple (unnormalized) floating point representation that can en-
code time periods, at different levels of granularity, from1µs up to
(210 − 1)231µs (a period slightly exceeding610 hours). There is
clearly some redundancy in this encoding; a period of2µs can be
represented withm = 2 and e = 0 or with m = 1 and e = 1.
Moreover, the representations for ‘now’ and ‘never’ overlap with
the representations for general time periods; for example, a sixteen
bit period withe = 0 andm = 0 must be interpreted as ‘never’ and
not as the0µs time that we might calculate from the formula2emµs.
While this detail of the encoding may seem counter-intuitive, it was
likely chosen because many programs use only ‘never’ timeouts,
and most machines can test for this special case—a zero word—
very quickly with a single machine instruction. One final point to
note is that the most significant bit in all of these encodings is zero.
In fact the L4 ABI also provides an interpretation for timeouts with
the most significant bit set, which it uses to indicate an absolute
rather than a relative time. Because there are places in the ABI
where only relative times are permitted, we prefer to treat these
as a separate type.

Instruction Set Encodings for the Z80 The Zilog Z80 is an 8
bit microprocessor with a 16 bit address bus that was first released
in 1976, and continues to find uses today as a low-cost microcon-
troller [19]. The Z80 has 252 root instructions, each of which is
represented by a single byte opcode. There are, of course, 256 pos-
sible byte values, and the four bytes that do not correspond to in-
structions are used instead as prefixes to access an additional 308
instructions. For example, the0xCB prefix byte signals that the next
byte in the instruction stream should be interpreted as a bit manip-
ulation instruction using one of four different formats:

0 0 s (3) r (3) SHIFT s, r

0 1 r (3) n (3) BIT r, n

1 0 r (3) n (3) RES r, n

1 1 r (3) n (3) SET r, n

n r s
000 B RLC
001 C RRC
010 D RL
011 E RR
100 H SLA
101 L SRA
110 (HL) —
111 A SRL

The most significant two bits in each case are tag bits that serve to
distinguish between shift, bit testing, bit setting, and bit resetting
instructions, respectively. The remaining portion of each byte is
split into two three-bit fields, each of which specifies either a bit

number n, a register/operandr, or a shift types as shown by
the table on the right. Note that there are three distinct types for
n, r, and s, all of which are encoded in just three bits, and that
the appropriate interpretation of the lower six bits in each byte is
determined by the value of the two tag bits.

1.2 The Perils of Bit Twiddling

From a high-level, it is clear that bitdata structures can have quite
a lot in common with the ‘sum-of-products’ algebraic datatypes
that are used in modern functional languages: where necessary,
each encoding uses some parts of the data to distinguish between
different kinds of value (the sum), each of which may use other bits
for zero or more data fields (the product).

In practice, however, programmers usually learn to manipu-
late bitdata using so-calledbit twiddling techniques that involve
combinations of shifts, bitwise logical operators, and carefully
chosen numeric constants. Some of the more common idioms
of this approach include clearing theith bit in a wordx using
x &= ~(1 << i), or extracting the most significant byte from a
32 bit wordw using(w >> 24) & 0xff. With experience, exam-
ples like these can become quite easy for programmers to recognize
and understand. However, in general, bit twiddling leads to code
that is hard to read, debug, and modify. One reason for this is that
bit twiddling code can overspecify and obfuscate the semantics of
the operation that it implements. Our two examples show how a
simple operation, such as clearing a single bit, can be obscured
behind a sequence of arguably more complex steps. As a result,
human readers must work harder to read and understand the effect
of this code. Compilers too must rely on sophisticated optimization
and instruction selection schemes to recover the intended semantics
and, where possible, substitute more direct implementations.

Bit twiddling idioms can also result in a loss of type informa-
tion, and hence reduce the benefits of strong typing in detecting
certain kinds of program error at compile-time. The bit pattern that
is used to program a device register may, for example, place con-
ceptually different types of value in different fields. Bit twiddling,
however, usually bypasses this structure, treating all data homo-
geneously as some kind of machine word, with few safeguards to
ensure that fields are accessed at the correct offset, with the correct
mask, and with appropriately typed contents.

Some of the most widely used systems programming languages,
notably C/C++ and Ada, do provide special syntax for describing
and accessing bit fields, and these go some way to addressing the
problems of raw bit twiddling. In C/C++, however, the primary pur-
pose of bit fields is to allow multiple data values to be packed into
a single machine word, and specific details of data layout, includ-
ing alignment and ordering, can vary from one implementation to
the next. As a result, different C/C++ compilers will, in general,
require different renderings of the same bitdata structure to achieve
the correct layout. Ada improves on this by allowing programmers
to provide explicit and more portable representation specifications
for user-defined datatypes. These languages, however, do not typ-
ically provide direct mechanisms for dealing with tag bits, or for
using them to support pattern-matching constructs that automate
the task of distinguishing between different forms of data.

In practice, programs that make significant use of bitdata often
define symbolic constants (representing field offsets and masks, for
example) and basic functions or macros that present a higher-level
(and possibly more strongly typed) interface to specific bit twid-
dling operations. This approach also isolates portability concerns in
a software layer that can be rewritten to target different compilers
or platforms. In effect, this amounts to defining a simple, domain-
specific language for each application—which can work quite well
in a single program, but involves duplication of effort in identify-
ing, implementing, and learning to use the set of abstractions that

are provided. These problems can be addressed by designing a sin-
gle domain-specific language that can be used across multiple ap-
plications. The PADS and SLED systems (described in Section 5)
follow this approach using separate programming and data descrip-
tion languages. One of the goals of the current paper is to investi-
gate a different point in the design space that treats data description
as an integral part of the programming language by providing gen-
eral and flexible programming constructs for working with bitdata.

1.3 Low-level Representations for Bitdata

In this section, we consider how issues of data representation
should influence our design of bitdata language extensions. Sup-
pose, for example, that we want to write programs that manipulate
PCI addresses, as described in Section 1.1. If the language had al-
ready been extended with an appropriate collection ofIntn types
representing integers of different bit widths, then it would be pos-
sible to represent PCI addresses with a standard Haskell data type:

data PCIAddr
= PCIAddr { bus :: Int8, dev :: Int5, fun :: Int3 }

Ideally, we might hope that a ‘smart enough’ compiler would gen-
erate code using 16 bit values to represent values of typePCIAddr
with exactly the same layout that was suggested by the earlier dia-
gram. For Haskell, at least, this is impossible because every type—
including PCIAddr as well as each of its component typesInt8,
Int5, andInt3—has an additional bottom element,⊥. It follows,
therefore, that the semantics ofPCIAddr has more values than can
be represented in 16 bits. This specific problem can (almost) be ad-
dressed by inserting strictness annotations in front of each of the
component types, as in the following variation:

data PCIAddr
= PCIAddr { bus :: !Int8, dev :: !Int5, fun :: !Int3 }

Given this definition, it is conceivable that a compiler might be able
to infer that it is safe to use our preferred sixteen bit representation
for PCI addresses. (Technically, this would require a lifted semantic
domain to account for the remaining bottom element in this modi-
fied PCIAddr type.) However, there is nothing in the semantics of
Haskell to guarantee this, and, to the best of our knowledge, no
existing Haskell (or ML) compiler even attempts it.

The representation that a compiler chooses for a given data type
is usually only important when values of that type must be commu-
nicated with the outside world. Using either of the previous repre-
sentations forPCIAddr, we could define functions like the follow-
ing to marshal back and forth between external and internal rep-
resentations of PCI addresses (we take some liberties with syntax
here, using>> and<< for the corresponding shift operators of C
and& and| for bitwiseand andor operators, respectively):

toPCIAddr :: Int16 -> PCIAddr
toPCIAddr addr = PCIAddr { bus = (addr >> 8) & 0xff,

dev = (addr >> 3) & 0x1f,
fun = addr & 7 }

fromPCIAddr :: PCIAddr -> Int16
fromPCIAddr pci = (pci.bus << 8) |

(pci.dev << 3) |
pci.fun

In effect, functions like these might be used to package bit twid-
dling code in a single place so that a higher-levelPCIAddr repre-
sentation can be used exclusively in the remaining portions of the
Haskell code. In theory, at least, if we follow this approach, then
the details of the representation that the Haskell compiler chooses
for PCIAddr would not be significant.

In practical terms, however, there are some serious conse-
quences. For example, it would be unfortunate if we ended up

using these functions to import PCI addresses into the functional
world, and then export them out again, without ever having made
any use of their structure. In that case, all the resources that are
spent in decoding, storing, and then re-encoding would be wasted.
This is one example of the overhead that we inevitably incur if we
try to maintain multiple representations of a single type.

Furthermore, while it is not difficult to write functions like
toPCIAddr andfromPCIAddr, it is tedious work, especially when
dealing with more complex examples. It is also error prone be-
cause there is nothing to ensure that the functions we define are
mutual inverses. Clearly, it would be better if we could arrange to
have the code for these functions generated automatically by a care-
fully designed tool that would guarantee the required behavior. The
deriving mechanism of Haskell cannot be used for this purpose
because standard datatype definitions do not provide information
about layout. It is possible to generate the necessary code from
specifications in a separate ‘interface definition language’ (IDL)
that provides these details. Instead of using an external IDL, we ex-
tend the programming language to enable programmers to describe
the layout of data directly. In this way the compiler can use the same
underlying representation for both the internal and external forms
of PCIAddr. The functionstoPCIAddr andfromPCIAddr could be
implemented as identity functions and their uses optimized away in
the back end of the compiler.

Our conclusion from this discussion is that we are likely to in-
cur significant overheads if the representation that is used inside
the functional language differs from the representation that is used
externally. Given that many bitdata formats are often determined
by third parties, we cannot expect to change them to match the
representations used by our compilers; instead, the only option is
to change our compilers so that they will use the external repre-
sentation directly. In this respect, we share the goal ofdata-level
interoperability that guided the design of PADS [4] and of Blume’s
foreign function interface for ML [3]. However, neither of these
systems deals with the construction and matching of bit-level struc-
tures that motivates our work. We also consider that it is beneficial
to maintain strong typing distinctions between different kinds of
bitdata values. In this way, we are able to catch more type errors at
compile-time while allowing compiler-generated analogues of the
from andto functions to be used where necessary as explicit type
conversions, without incurring runtime overhead.

1.4 Describing Bitdata Layout

We have concluded that our compilers will need to use the same
external representation for bitdata as everybody else. But how will
such a compiler determine what that external representation might
be? Looking again at the examples in Section 1.1, it is easy to
construct the following algebraic datatypes for the L4 time type
and for the Z80 encoding of bit twiddling instructions:

data Time = Now
| Period { e::Int5, m::Int10 }
| Never

data BitOp = Shift {shift::S, reg::R}
| BIT {reg::R, n::Int3}
| RES {reg::R, n::Int3}
| SET {reg::R, n::Int3}

data S = RLC | RRC | RL | RR | SLA | SRA | SRL
data R = A | B | C | D | E | H | L | MemHL

However, it is also easy to see that there is not enough information
in these definitions for a compiler, no matter how sophisticated it
might be, to infer the corresponding external representations. For
example, there are no indications in these definitions thatTime
values should be represented using 16 bits; thatNow and Never
should be coded as special cases ofPeriod; that the bit pattern

110 should not be used in the encoding ofS; or that the bit pattern
111, rather than000, should be used to representA.

While a compiler might be able to infer the appropriate layout
for PCIAddr, the general case requires a more expressive notation
for specifying bitdata representations. One possibility would be to
adopt a separate (and perhaps language-neutral) interface definition
language (IDL) for describing low-level encodings of data. In this
scenario, we would also need a compiler for compiling IDL de-
scriptions into stub code that could be used to import the bitdata
types and operations into the functional language as foreign types.

1.5 Our Approach

In this paper, we present a new approach to specifying and working
with bitdata that is structured as two language extensions. These ex-
tensions allow programmers to capture essential details of low-level
data formats directly within the functional language. This approach
is attractive because it enables tighter integration of bitdata with the
rest of the language than would be possible using an external IDL
alone, including stronger type checking, the possibility of check-
ing for non-exhaustive and/or overlapping pattern matches, and the
potential for more aggressive and effective optimization.

Our first extension supports basic bit-level manipulation with a
family of primitive Bit n types, a syntax for bit literals, and a#
operator that can be used both for concatenating bit values and, in
the context of pattern matching, splitting bit values. The following
examples give a brief flavor of the programs that we can write with
this language extension:

mkPCIAddr :: Bit 8 -> Bit 5 -> Bit 3 -> Bit 16
mkPCIAddr bus dev fun = bus # dev # fun

bitOpType :: Bit 8 -> Bit 2
bitOpType (tag # args) = tag

Programs like this can be parsed, type checked, and executed using
hobbit (a higher-order language withbit-level data), which is a
prototype interpreter that we have built to test and evaluate our bit-
data extensions. The following extract shows how themkPCIAddr
andbitOpType functions might be used in an interactive session
with hobbit (the> character is thehobbit prompt):

> show (mkPCIAddr 1 6 3)
"B0000000100110011"
> show (bitOpType 0x7f)
"B01"

The output from these examples also shows the syntax that is used
for bit literals; an initialB followed by a sequence of binary digits.

Our second extension adds a mechanism for defining new bit-
data types that are distinguished from their underlying representa-
tion. In special cases, layout can be inferred from the way that the
type is defined. For example, our system will infer the intended bit
representation of aPCIAddr from the following definition:

bitdata PCIAddr
= PCIAddr { bus::Bit 8, dev::Bit 5, fun::Bit 3 }

In general, it is necessary to specify layout explicitly by annotating
each constructor with an appropriateas clause. The following
definition shows howTime can be described in this notation.

bitdata Time
= Now as B0 # 1 # (0::Bit 10)
| Period {e::Bit 5, m::Bit 10} as B0 # e # m
| Never as 0

Note that the representation forNever is written simply as0; the
fact that a sixteen-bit zero is required here is inferred automatically
from the other twoas clauses.

The encoding of Z80 bit twiddling instructions can be described
in a similar way. In this case, we specify the appropriate bit patterns
for each of the constructors in the enumeration typesS andR.

bitdata BitOp
= Shift { shift::S, reg::R } as B00 # shift # reg
| BIT { reg::R, n::Bit 3 } as B01 # reg # n
| RES { reg::R, n::Bit 3 } as B10 # reg # n
| SET { reg::R, n::Bit 3 } as B11 # reg # n

bitdata S
= RLC as B000 | RRC as B001 | RL as B010 | RR as B011
| SLA as B100 | SRA as B101 | SRL as B111

bitdata R
= A as B111 | B as B000 | C as B001 | D as B010
| E as B011 | H as B100 | L as B101 | MemHL as B110

With these definitions, we can construct byte values for Z80 in-
structions using expressions likeShift{shift=RRC, reg=D} and
SET{n=6, reg=A}, but attempts to construct encodings using ar-
guments of the wrong type—as inSET{n=6, reg=B010}—are
treated as type errors, even where values might otherwise be con-
fused because their representations have the same number of bits.

Our system also includes generictoBits andfromBits opera-
tors that can be used to convert arbitrary bitdata to and from its un-
derlying bit-level representations. These are generalizations of the
toPCIAddr andfromPCIAddr operations described in Section 1.3.
The following example shows how the first of these function can be
used to inspect the bit pattern for one particular Z80 instruction:

> show (toBits (SET{n=6, reg=A}))
"B11111110"

The remaining sections of this paper present our approach in more
detail, beginning with an overview of the language design, includ-
ing its type system, in Section 2. An extended example, demonstrat-
ing some of the more advanced features of our design, is presented
in Section 3. Details of our current implementation are described in
Section 4, while Section 5 documents related work. We conclude
with ideas for future work in Section 6.

2. Language design
This section provides a more thorough description of our design,
covering features for bit manipulation in Section 2.1, and mecha-
nisms for defining new bitdata types in Section 2.2. New syntax
and typing rules are presented as we go along.

The core of our design is the small functional language de-
scribed in Figure 1. However, our extensions are largely indepen-
dent of the details of this language, and it should be quite easy to
integrate them with other functional languages. As usual, a program
consists of a number of (possibly recursive) declarations.

e = x variable
| e e application
| e :: τ type sig.
| . . .

κ = ∗ | κ → κ kind
σ = ∀ᾱ. π̄ ⇒ τ scheme
τ = τ τ | α | c type
π = . . . predicate

Figure 1. The core language

The type system is based on the Hindley-Milner system [14],
extended with qualified types [8]. We use kinds (κ) to classify
different types. Types that contain values are classified by∗, and
function kinds classify type constructors. The core language should
have at least the following type constants:

Bool : ∗ Boolean value
(→) : ∗ → ∗ → ∗ function space

We use schemes (σ) to type expressions that have multiple
simple types (τ). Such expressions are said to bepolymorphic.
When a polymorphic expression appears in a particular context, the
type variables (α) in the schema are instantiated to concrete types.
In certain situations, it is convenient to impose restrictions on how
type schemes may be instantiated. We do this by qualifying type
schemes withpredicates (π). An expression of a qualified type may
only appear in contexts where the type variables are replaced by
concrete types that satisfy the predicates. In the following sections,
we present a set of rules for solving predicates. The rules are of the
form Π � π, which states that, from the set of assumptionsΠ, we
can conclude that the predicateπ holds.

2.1 Bit Manipulation

We introduce a new type constant calledBit that we use to type bit
sequences.Bit is a type constructor that, given a natural number,
produces the type of bit sequences of the corresponding length. To
complete the definition ofBit we introduce a new kindN, that is
inhabited by the natural numbers.

Bit : N → ∗ bit sequence
0, 1, 2, . . . : N natural number

For example, bytes are 8-bit sequences and have typeBit 8.
In this paper we focus on manipulating bit sequences that will

fit in the registers of a CPU or a hardware device. It is therefore
desirable to restrict the lengths of bit sequences that can be used in a
program. An elegant way to achieve this, without compromising the
generality of the system, is to use qualified types. We introduce a
predicate, calledWidth, that can only be solved for natural numbers
that are valid bit sequence widths.

Width : N → Prop
n ≤ max

[Width]
Π � Width n

The kind Prop classifies predicates. In the ruleWidth, Π is a set
of assumptions andn is a natural number. The rule states that, to
solve the predicateWidth n, the numbern should be smaller than
max, which might be chosen as the size of the largest hardware
register. In this way, implementations that are optimized to work
on a particular machine will reject programs that attempt to create
bit sequences that are too large. An implementation may instead
allow the use of arbitrary (fixed-size) bit sequences by choosing to
solve arbitraryWidth predicates.

Now we can introduce standard operators onBit values:

(&) : ∀α. Width α ⇒ Bit α → Bit α → Bit α
(==) : ∀α. Width α ⇒ Bit α → Bit α → Bool

Other common operations on bit sequences include logical and
arithmetic operations (e.g., disjunction and addition), relational
operations (e.g., equality tests and comparisons), and sequence
manipulation (e.g., concatenation and splitting). Readers familiar
with the Haskell class system may think of these constants as the
methods of a class calledWidth. Furthermore, both signed and
unsigned versions ofInt, and the basic operations on these types,
are easy to define usingBit types.

2.1.1 Literals

One way to introduce a bit sequence in a program is to use a
binary literal. This notation is useful when a bit vector is used as
a name, for example, to identify a device, a vendor, or perhaps a
particular command that needs to be sent to a device. A binary
literal is written as aB followed by a number in base two. Ann
digit binary literal belongs to the typeBit n, as long asn is a valid
width. Leading zeros are important because they affect the type of
the literal. Here are some examples of binary literals:

> :t B11
Bit 2

> :t B011
Bit 3
> :t B000000000000000000000000000000000
FAIL
33 is not a valid width

This example uses the:t <expr> command inhobbit to show
the type of an expression. In our implementation, the largest al-
lowed width is 32, so the last example is not type correct.

Binary literals may be used in both expressions and patterns.
Indeed, we can think ofBit n as an algebraic data type that has
then-digit binary literals as constructors. The only exception is the
case whenn = 0, where the name of the constructor isNoBits. To
be consistent, we could have used the nameB for the inhabitant of
this type but we found that this can be confusing.

It is often convenient to think of bit sequences as numbers and
we introducenumeric literals to accommodate this. An interesting
challenge is to allow numeric literals for all types of the formBit
n, without introducing a baroque notation. We do this by overload-
ing the notation for octal, hexadecimal, and decimal literals, as in
the design of Haskell [11]. The trick is to introduce a new primitive
function fromLit : ∀α. Width α ⇒ Bit max → Bit α (correspond-
ing tofromInteger in Haskell). A numeric literaln in the text of
a program, can then be treated as syntactic sugar for the constant
fromLit applied to the valuen of type Bit max. Bit sequences
represent numbers using the standard two’s complement encoding.
Usually, the type of an overloaded literal can be inferred from the
context where it is used. If this is not the case, programmers can
use a type signature to indicate the number of bits they need. Nu-
meric literals may also be used in patterns and will match only if
the argument is a value that is the same as the literal. Here are some
examples that illustrate how literals work:

> :t 2
(Width a) => Bit a
> :t 2 & B11
Bit 2

Notice that, when used on its own, the number 2 has a polymorphic
type—the system is telling us that 2 has typeBit a for any a that
is a valid width. However, if used in a particular context, 2 will be
converted to the correct length using the functionfromLit.

2.1.2 Joining and Splitting Bit Sequences

Another common programming task is joining and splitting bit se-
quences. The usual way of doing this is to use shift and mask op-
erations to get bits into the correct positions. This is a complicated
way to achieve a conceptually simple task, and it is all too easy to
shift a bit too much, or to use the wrong bit mask. To make this task
simpler, we introduce the operator(#) to join sequences. One way
to type this operator is to use an addition operator at the type level,
and to use the type(#) : ∀αβ. Bit α → Bit β → Bit (α + β). At
first, this seems quite attractive because it captures our intuition of
what(#) does. However the situation is more complex than it ap-
pears, especially in a system that supports type inference. Having
the(+) operator at the type level makes it more difficult to decide
if two types are the same: checking for structural equivalence is not
sufficient. There are also situations in which it is not clear what type
should be inferred. Consider, for example, the following definition:

mask x y = (x # y) & B101

Thismask function may be applied to any two bit sequences whose
lengths add up to 3—but we cannot express this using an addition
operator at the type level. For this reason, we choose instead to
introduce an addition predicate:

(_ + _ = _) : N → N → N → Prop

n1 + n2 = n3 Π � Width ni i ∈ {1, 2, 3}
[Add]

Π � n1 + n2 = n3

The predicaten1 + n2 = n3 is a relation between natural numbers
that holds when the sum of the first two numbers is the same as
the third number. We also require that all the numbers are valid bit
sequence widths. This trick of representing functions with relations
should be very familiar to Prolog programmers and to users of
Haskell’s class system. Now we can give the join operator the
following type:

(#) : ∀αβγ. (α + β = γ) ⇒ Bit α → Bit β → Bit γ

Here are some examples that use this operator:

> :t mask
(a + b = 3) => Bit a -> Bit b -> Bit 3
> show (B100 # B111)
"B100111"

The first line shows the type that the system inferred formask. The
second line shows the result of joining together two sequences.

We use pattern matching to split bit sequences. The split pattern
has the formp1 # p2. This pattern matches bit vectors whose most
significant part matchesp1, and least significant part matchesp2.
For example, a function to get the upper 16 bits of a 32 bit quantity
could be written like this:

upper16 :: Bit 32 -> Bit 16
upper16 (x # _) = x

Note that(#) patterns do not specifyhow to split a value into
two parts, but simply what the two parts should match. How the
sequence will be split depends on the types of the sub-patternsp1
and p2. These types may be determined using type inference, or
explicit signatures in the patterns. For example, if we define another
function calledupper that is the same asupper16, but we omit the
type signature we get the following type:

> :t upper
(a + b = c) => Bit c -> Bit a

An interesting point about this type is that the order of the variables
in the predicatea + b = c is important. If we were to switcha and
b around we would get the type of the function that accesses the
lower bits of a bit sequence.

As an example of a situation where we need to use a signature
in a pattern, consider the function that extracts the bus component
of a PCI address:

pciBus :: Bit 16 -> Bit 5
pciBus ((dev :: Bit 8) # bus # fun) = bus

If we omit the annotation on thedev pattern, the system fails with
the following error:

FAIL Cannot solve goals: ?a + ?b = 16, ?c + 5 = ?a

The system needs to split a 16 bit quantity into two parts: one of
width a (dev # bus), and one of widthb (fun). It also has to split
thea component into two parts: one that isc bits wide (dev), and
one that is 5 bits wide (bus). There is not enough information in
the program to determine how this splitting should be done, which
is why we get the type error.

Signature patterns resemble the explicit types on functions in
the presentation of the lambda calculus à la Church. We do not cur-
rently allow type variables in signature patterns but this restriction
could be lifted using scoped type variables [12].

2.2 User-Defined Bitdata Types

In the context of systems programming, bit sequences are often
used as representations for values that have more structure. To
enable programmers to capture this extra structure we introduce
bitdata declarations to the language (Fig. 2). The grammar is
specified using extended BNF notation: non-terminals are in italics,
and terminals are in a bold font; constructs in brackets are optional,
while constructs in braces may be repeated zero or more times.

The syntax resemblesdata declarations in Haskell, because this
is a common way to specify structured data. However, while there
are many similarities betweendata and bitdata declarations,
there are also important differences. For example, the type defined
by abitdata declaration is not the free algebra of its constructors
(see Section 2.2.4). Instead, the type provides a kind of view [18]
on the underlying bit sequences. We use constructors to construct
and recognize bit sequences, while fields provide a means to access
or update contiguous sub-sequences.

bdecl = bitdata con = cdecl { | cdecl} type decl.
cdecl = con { [fdecls] } [as layout] [if expr] constr. decl.
fdecls = fdecl {, fdecl} field decl.
fdecl = label [= expr] :: τ
layout = layout # lfield | layout :: τ field layout
lfield = lit | _ | (layout)

Figure 2. The syntax of user defined data types

To illustrate howbitdata declarations work, we present some
definitions for a device driver for a NE2000 compatible network
card [15]. The details of how the hardware works are not important;
our goal is to illustrate the features ofbitdata declarations. As a
first example, consider a type that defines a number of commands:

bitdata RemoteOp
= Read as B01 | Write as B10 | SendPacket as B11

This is essentially an enumeration type. The definition introduces a
new type constantRemoteOp and three constructorsRead, Write,
andSendPacket. Theas clauses specify a bit pattern for each con-
structor, which will be used to construct values and to recognize
them in patterns. All of the constructors in a givenbitdata dec-
laration must have the same number of bits in their representation.
The following examples use these constructors:

> :t Read
RemoteOp
> show Read
"B01"
> Read & B00
FAIL Type mismatch: RemoteOp vs. Bit 2

The last example emphasizes the point that, even thoughRead
is represented with the bit sequence01, it is not of typeBit 2.
There is a close relation between the bit sequence typesBit n
andbitdata types likeRemoteOp, captured by the following con-
stants:

toBits : ∀αβ. BitRep α β ⇒ α → Bit β
fromBits : ∀αβ. BitRep α β ⇒ Bit β → α

The functiontoBits converts values into their bit vector represen-
tations, while the functionfromBits does the opposite, turning bit
sequences into values of a given type. We may think oftoBits as
a pretty-printer, andfromBits as a parser, that use bits instead
of characters. These functions are very useful when a program-
mer needs to interact with the outside world. The functiontoBits
is used when data is about to leave the system, and the function
fromBits is used when data enters the system.

Not all types in the language may be converted to bit sequences.
We use the predicateBitRep to restrict the contexts where the
functionstoBits andfromBits may appear:

BitRep : ∗ → N → Prop
Π � Width n

[Bit]
Π � BitRep (Bit n) n

The predicateBitRep τ n states that the typeτ is represented with
n bits. We can representBit n types in n bits, as long asn is
a valid width, as described in the ruleBit. We may also solve
BitRep predicates for types defined withbitdata declarations.
These declarations introduce new assumptions to the system that
enable us to solve the predicate directly by assumption. We can use
the:a command to list the assumptions that are in scope:

> :a
BitRep RemoteOp 2

So far, we have defined only one type, so there is only one as-
sumption. For readers familiar with Haskell we note that the au-
tomatic introduction of assumptions is like deriving an instance of
theBitRep class for each bitdata declaration.

A critical design decision that shows up in the type offromBits
is that we do not include the possibility of failure:fromBits
will always produce a value of the target type, even if the input
sequence does not correspond to anything that may be created using
the constructors of that type. We call such valuesjunk, and they
will not match any constructor pattern in a function definition.
Programmers may, however, use variable or wildcard patterns to
match these values. Consider, for example, defining a function that
will present human readable versions of the values in theRemoteOp
type:

showOp Read = "Read"
showOp Write = "Write"
showOp SendPacket = "SendPacket"
showOp _ = "Unknown"

Now we can experiment with different expressions:

> showOp (fromBits B01)
"Read"
> showOp (fromBits B00)
"Unknown"
> show (toBits (fromBits B00 :: RemoteOp))
"B00"

The first example recognizes the bit-pattern forRead. The second
example does not match any of the constructors as none of them
are represented withB00. The last example illustrates that we can
convert a bit sequence into a value of typeRemoteOp and then back
into the original bit sequence without loss of information.

An alternative design decision would be to adopt a checked se-
mantics forfromBits in which an exception is signaled when an
unmatched bit pattern is passed in as an argument. We chose to
use the unchecked semantics because it is simple, has practically
no overhead (inhobbit, it is implemented as an identity function),
and does not rely on support for exceptions in the core language.
However, our design has all the machinery that would be needed to
generate checked versions offromBits or even to deriveisJunk
predicates that could be used to test for junk at runtime. Clearly,
programmers must allow for the possibility that data values ob-
tained from the "real-world" usingfromBits may not be valid.
The choice between the different designs that we have sketched
here is about finding the most appropriate and/or convenient way
to handle this. Forhobbit, we have chosen an approach that re-
quires programmers to deal with invalid data, where appropriate,
by including equations with wildcards in function definitions, as in
the code forshowOp.

We expect thatfromBits and toBits are inverses of each
other, in the sense that the equationtoBits (fromBits n) = n

holds. This is useful because it enables programmers to propagate
junk values to other parts of the system without changing them.
Saying thattoBits andfromBits are inverses suggests that the
equationfromBits (toBits n) = n also holds. But what do we
mean by equality in this case? We use operational equivalence—
we consider two expressions to be the same if we can replace the
one with the other in any piece of program. Because expressions of
bitdata types are represented with bit patterns then two expressions
are the same if they are represented with the same bit pattern:
x = y ≡ toBits x = toBits y. Using this definition for equality,
we can see that the second equation follows from the first.

The typeRemoteOp captures only a fragment of the DMA com-
mands available on NE2000 cards. The full set of DMA commands
is described in the following definition:

bitdata DMACmd = Remote { op :: RemoteOp } as B0 # op
| AbortDMA as B1 # _

This definition uses some more features ofbitdata declarations.
In general, constructors may have a number of fields that describe
sub-components of the value. For example, the constructorRemote
has one field calledop of typeRemoteOp. Only types for which the
BitRep predicate can be solved may be used in field declarations.
The reason for this is that the fields become a part of the represen-
tation of the value, and so we need to be able to come up with a bit
pattern for them. As we already saw,RemoteOp is a type defined
with abitdata declaration, and so the above declaration is valid.

To construct values with fields, programmers may use the no-
tation C{li = ei}, whereC is the name of a constructor,li are its
fields, andei are the values for the fields. The order of the fields
is not significant. There is also a corresponding patternC{li = pi}
that may be used to check if a value matches theC constructor
and the fields match the patternspi. The following definition is a
function that will change remote read commands into remote write
commands and leave all other DMA commands unchanged:

readToWrite (Remote { op=Read }) = Remote { op=Write }
readToWrite x = x

The fields of a constructor in abitdata declaration may con-
tain default values. The default value for a field is written after the
field name, and should be of the same type as the field. If a pro-
grammer does not initialize a field while creating a value with a
particular constructor, then the field will be initialized with the de-
fault value for the field. If the field does not have a default value,
then the program is invalid and the system will report a compile
time error.

2.2.1 The as Clause

The syntax ofas clauses is more general than what we have seen
so far. A layout specification may contain literals, field names, and
wildcards (_), separated by#. Field names must appear exactly
once, but can be in any order. Type signatures are also permitted
in theas clause. The representation for a constructor is obtained by
placing the elements in the layout specification sequentially, with
the left-most component in the most significant bits of the repre-
sentation. For example, the layout specification for the constructor
Remote says that we should place0 in the most significant bit and
that we should place the representation for the fieldop next to it:

> show (Remote { op = Read })
"B001"

The as clause is also used to derive tests that will recognize val-
ues corresponding to the constructor. The matching of a pattern
C{li = pi} proceeds in two phases: first, we see if the value is a
valid C-value, and then we check that the listed fields match their
corresponding patterns. The tests to recognizeC-values check if the

bits of a value corresponding to literals in theas clause match. For
example, to check if a value is aRemote-value we need to check
that the most significant bit is0.

Wild-cards in the layout specifications represent ‘don’t care’
bits. They do not play a role in pattern matching. For value con-
struction they have an unspecified value. The only constraint on a
concrete implementation is that the ‘don’t care’ bits for a partic-
ular constructor are always the same. This is necessary to make
toBits a proper function. For example, theAbortDMA constructor
only specifies that the most significant bit of the command should
be1 and the rest of the bits are not important.

Constructors that have noas clause are laid-out by placing their
fields sequentially, as listed in the declaration. This is quite con-
venient for types that do not contain any fancy layout. Following
this rule, the representation of constructors with no fields, and no
as clause, is simplyNoBits, the value of typeBit 0. Such exam-
ples are not common, but this behavior has some surprising conse-
quences. Consider, for example, the definition:

bitdata MyBool = MyFalse | MyTrue

This is legal, but it is probably not what the user intended: both
constructors end up being represented withNoBits and are thus
the same. Our implementation examinesbitdata declarations for
constructors with overlapping representations, and warns the pro-
grammer to alert them of potential bugs, likeMyBool above.

2.2.2 Records

So far, we have seen how to access the fields of constructors using
pattern matching. This approach is convenient in many situations
but also has a drawback: if many functions need to access the
fields of a value, each of them will have to pattern match to first
ensure that the value has the expected format. Instead, we would
like to have a mechanism that enables us to check that a value is
of a particular form once, and then we should be able to simply
access the fields without any additional overhead. To achieve this,
bitdata declarations introduce a type constant for constructors
that have fields. Consider, for example, a fragment of an encoding
for the Z80 bit twiddling instructions:

bitdata Instr
= LD { dst::Reg, src::Reg } as B01 # dst # src
| HALT as 0x76
...

This definition introduces not just the typeInstr, but also a type
calledInstr.LD. In general, the type of a constructor with fieldsC,
in abitdata declarationT, isT.C → T. For example,LD is of type
Instr.LD → Instr. Like other constructors, constructors with
fields may be used in both patterns and expressions. A pattern of
the formC p, will examine a value by using the tests derived from
theas clause ofC. If the tests succeed, the value will be promoted
to type T.C, and then matched against the patternp. Notice that
the values of typeT andT.C have the exact same representation,
but values of typeT.C are guaranteed to conform to the format
specified by the constructorC. This is guaranteed because pattern
matching is the only way to obtain a value of typeT.C. In particular,
there is no way to solve theBitRep predicate forT.C types, and so
we cannot use the functionfromBits to create aT.C value from
raw bits.

The typesT.C are record types that contain the fields of the
constructor. To capture this idea, we introduce another predicate:

(l :: _) ∈ _ : ∗ → ∗ → Prop

The predicate(l :: τ1) ∈ τ2 states thatτ2 is a record type that has
a field of typeτ1. This idea is not new and has been used in the
design of various record systems [7, 5]. The only way to solve such

predicates is by assumption. These assumptions are introduced by
bitdata declarations: one for each field of each constructor. For
example, if we use the:a command to list all assumptions that are
in scope for the types we defined so far, we get the following list:
(our implementation prints(l :: τ1) ∈ τ2 asτ2 has l :: τ1)

> :a
BitRep DMACmd 3
DMACmd.Remote has op :: RemoteOp
BitRep RemoteOp 2
BitRep MyBool 0
BitRep Instr 8
Instr.LD has dst :: Reg
Instr.LD has src :: Reg
BitRep Reg 3

This allows for the same field names to appear in different con-
structors, even if they belong to differentbitdata declarations.

There are two families of constants, indexed by label names,
that we use to manipulate records:

access l : ∀αβ. (l :: α) ∈ β ⇒ β → α
update l : ∀αβ. (l :: α) ∈ β ⇒ α → β → β

The constantaccess l is used to get the fieldl of a record. A
more concise notation for this operation ise.l, which is merely
a short-hand foraccess l e. The constantupdate l is used to re-
place the value of the fieldl in a record. We have syntactic sugar
for updates as well:{r | l1 = e1, l2 = e2} is an abbreviation for
update l2 e2 (update l1 e1 r). Notice that this differs from Haskell’s
notation for manipulating records. As an example of how to use
the record operations, consider defining a function that will set the
source of theLD instruction to a particular register, and will leave
other instructions unchanged:

setSrc (LD r) x = LD { r | src = x }
setSrc i _ = i

> :t setSrc
Instr -> Reg -> Instr
> show (LD { src = A, dst = B })
"B01000111"
> show (setSrc (LD { src = A, dst = B }) C)
"B01000001"

Another way to examine record values is to userecord patterns.
These patterns are of the form{p | li = pi}. A value matches a
record pattern if it matches the patternp, and its fieldsli match
the patternspi. For example, we may use a record pattern in com-
bination with a constructor pattern to match on a constructor and a
field, and at the same time to name the record of the constructor:

fromHL (LD { r | src = MemHL }) = r.dst
fromHL _ = MemHL

2.2.3 The if Clause

In some complex situations the pattern derived from the layout of a
value is not sufficient to recognize that the value was created with a
particular constructor. Occasionally it may be necessary to examine
the values in the fields as well. For example, theLD instruction
should never contain the registerMemHL as both its source and its
destination. In fact, the bit pattern corresponding to such a value is
instead used for theHALT instruction:

> show (LD { src = MemHL, dst = MemHL })
"B01110110"
> show HALT
"B01110110"

One way to deal with complex definitions is to include an ex-
plicit guard [11] in any definition that pattern matches onLD. This
approach works but it is error prone because it is easy to forget

the guard. To avoid such errors, a bitdata definition allows pro-
grammers to associate a guard with each constructor by using an
if clause with a Boolean expression over the names of that con-
structor’s fields. The expression is evaluated after the tests derived
from theas clause have succeeded and before any field patterns
are checked. If the expression evaluates toTrue, then the value is
recognized as matching the constructor, otherwise the pattern fails.
For example, this is how we could modify the definition ofInstr
to document the overlap betweenLD andHALT:

bitdata Instr
= LD { dst::Reg, src::Reg } as B01 # dst # src
if not (isMemHL src && isMemHL dst)

| HALT as 0x76
...

instrName (LD _) = "Load"
instrName HALT = "Halt"

We use the functioninstrName to experiment with this feature:

> instrName (LD { src = A, dst = MemHL })
"Load"
> instrName (LD { src = MemHL, dst = MemHL })
"Halt"
> instrName HALT
"Halt"

As the second example illustrates, theif clause is used only in pat-
tern matching and not when values are constructed. We made this
design choice because it is simple, and avoids the need for partiality
or exceptions, which arise when theif clause is used during value
construction. The cost of this choice is minimal because program-
mers may define ‘smart constructors’ to validate the fields before
constructing a bitdata record.

2.2.4 Junk and Confusion!

Standard algebraic datatypes enjoy two important properties that
are sometimes referred to as ‘no junk’ and ‘no confusion’ [6],
both of which are useful when reasoning about the behavior of
functional programs. The former asserts that every value in the
datatype can be written using only the constructor functions of
the type, while the latter asserts that distinct constructors construct
distinct values. In the language of algebraic semantics, which is
where these terms originated, the combination of ‘no junk’ and ‘no
confusion’ implies that the semantics of a datatype is isomorphic
to the initial algebra generated by its constructor functions. In more
concrete terms, ‘no junk’ states that every bit pattern corresponds
to some conceptual value, while ‘no confusion’ tells us that there is
no overlap between the bit patterns for different constructors.

For bitdata types, we can only hope to avoid junk and confusion
if the total number of representable values,N, is a power of two. In
any other case, if2n−1 < N < 2n, we need to use an encoding with
at leastn bits, and either accept some junk (i.e., some bit patterns
that do not correspond to any of theN possible values), or else some
theN values will be represented by more than one bit pattern.

In other cases, even when it is technically possible to avoid both
junk and confusion, a designer might still opt for a representation
that sacrifices one or both of these properties because it simplifies
the tasks of encoding and decoding. TheTime type in Section 1.5,
for example, includes both junk (because the most significant bit
can never be set) and confusion (because theNow andNever cases
overlap with thePeriod case).

We cannot avoid the potential for junk and confusion in bitdata,
but we can at least take steps to warn programmers about potential
errors and pitfalls that they can cause. We have implemented a
prototype static analysis forhobbit that captures the set of all
possible bit patterns in eachbitdata type using an ordered binary
decision diagram (OBDD). Testing for junk in this setting amounts

to testing the OBDD for the propositional constanttrue. Testing
for confusion is accomplished by comparing pairs of OBDDs for
individual constructors within abitdata definition. The results of
these tests are used to trigger appropriate warning diagnostics, and,
from our experience to date, this seems to work well in practice.

It may also be possible to infer orderings between the represen-
tations of different constructors, and to use these results to check
for non-exhaustive or overlapping pattern matches in arbitrary user-
defined functions. This remains as a topic for future work.

3. Extended Example: Flexpages in L4
In this section, we present an extended example from L4 [17] to
illustrate the use of our language on a real world problem.

Several operations in L4 manipulate regions of a process’ virtual
address space. The L4 specification introduces a type offlexpages
to describe these regions in an architecture-independent manner.

fpage(b, 2s) b/210
(22) s (6) 0 r w x

complete 0 (22) s = 1 (6) 0 r w x

nilpage 0 (32)

In general, a flexpage contains abase address for the region of
memory, asize equal tolog2(number of bytes in region), and a
set of permissions that specify what operations can be performed
on the region. The set of permissions contains three bits: read (r),
write (w), and execute (x). Complete and nilpage values are special
cases: ‘complete’ represents the entire virtual address space, and
’nilpage’ represents an empty region of memory.

The size of the region described by a flexpage is restricted to
whole numbers of physical pages on the target machine, and the
starting address must be2s-aligned. It is up to a particular imple-
mentation to enforce this condition. For the IA32, the size of the
flexpage must be greater than or equal to 12. We characterize flex-
pages using a type calledFpage and with permissions represented
by thePerms type.

bitdata Fpage
= Fpage { base::Bit 22, size::Bit 6, perms::Perms }

as base # size # B0 # perms
if (base ‘mod‘ (2 ^ size) == 0) && (size >= 12)

| Complete { perms = nullPerms :: Perms }
as 1 # B0 # perms

| Nilpage as 0
bitdata Perms = Perms { r::Bit 1, w::Bit 1, x::Bit 1 }
nullPerms = Perms { r = 0, w = 0, x = 0 }

The definitions ofComplete andNilpage follow directly from the
layout in the specification. The representation of regular flexpages
is more involved, because we capture the validity restrictions in the
type. We use anif clause to guarantee that a flexpage will only
match theFpage constructor if its base field is aligned and its size
is greater than or equal to 12.

Note there is junk in this type: anFpage with an invalid size
or incorrect alignment will not match any constructor. The L4
specification states that such a flexpage should be treated as a
Nilpage. We capture this, and eliminate junk from the type, by
reformulating the definition ofNilpage to catch invalid flexpages.

bitdata Fpage = ... | Nilpage { bits = 0 :: Bit 32 }

While there is no longer junk in the type, we have introduced
confusion: nowNilpage will match any flexpage, including a valid
or complete one. To obtain the desired behavior for flexpages,
we must take care when pattern matching onFpage values: the
Nilpage constructor should always come last. In addition, the

representation of aNilpage is no longer guaranteed to be zero.
This is acceptable in the context of L4, but it is a choice that might
not be right in all situations.

The discussion of theFpage datatype exemplifies the reasoning
behind some of our language design decisions, such as allowing
junk and confusion. Of course it is undesirable to use a specifi-
cation that includes invalid values and even worse to use an im-
plementation that constructs such values. Unfortunately, these sit-
uations cannot always be avoided. An implementation of L4 must
adhere to the specification, which contains datatypes, like flexpage,
that can describe meaningless values. Often flexpages come from
untrusted user-level programs, and there is no way to guarantee that
these applications only construct valid values.

A frequent operation on a flexpage is the computation of the
region’s ending address, thebase address plus thesize. The types
of base and size do not match, so the (+) operator, which has
type Bit n → Bit n → Bit n, is insufficient. Zero-extending
size to Bit 22 before applying (+) rectifies this problem, but it
is not an ideal solution. Adding quantities of different widths is
a common occurrence, and manually zero-extending the smaller
quantity is tedious and clutters the code. An alternative approach is
to create a more polymorphic addition operation that automatically
zero extends both arguments to the expected result type.

add :: (b+a = d, e+c = d) => Bit a -> Bit c -> Bit d
add x y = (0 # x) + (0 # y)

We can useadd without a type annotation whenever the width of
the result type is evident from the context in whichadd appears.
If the result type cannot be determined from the context, we must
attach a type annotation to the expression containingadd.

We useadd to define a subset operation on flexpages. A flex-
pagefp1 is a subset of another flexpagefp2 if the region specified
by fp2 completely contains the region specified byfp1.

subset (Fpage fp1) (Fpage fp2)
= (fp1.base >= fp2.base) && (end fp1 <= end fp2)
where end fp = (add fp.base fp.size)::Bit 22

Only the case for normal, valid flexpages is shown. If the starting
and ending addresses of the first argument,fp1, are both within the
region of memory described by the second argument,fp2, thenfp1
is a subset offp2. We check iffp2 contains the starting address of
fp1 using a simple comparison of thebase fields. Next, we check
if the ending address forfp1 is less than or equal to the ending
address forfp2. We define a local functionend, which calculates
the ending address of a flexpage usingadd. In this case, the result
type of add cannot be determined from the context alone, so we
annotate the call toadd with the desired result type.

4. Implementation
The ideas described in this paper are implemented in a prototype
system written in Haskell. The system is about 3500 lines of code,
approximately 1000 of which are in the parser. The implementation
played an important part in the development of our ideas, as the
process of building the prototype revealed a number of details that
we had not noticed before. Having the prototype also enabled us to
experiment with concrete examples, which revealed both problems
with the design (that we then had to fix), and unexpected features,
that we had not realized would be possible at first.

The implementation consists of four phases: parsing and static
analysis in the front end, and a simplifier and interpreter in the back
end. The simplifier eliminates patterns (by turning them into se-
quences of case statements and tests) and produces translated pro-
grams that can be executed using a standard interpreter for lambda-
calculus with constants. We will therefore focus our attention in the

rest of this section on the treatment of the type system, which is the
most complex part of our implementation.

4.1 Type Inference

Type inference in our system is based on a modified version of
Milner’s algorithm W [14]. The modifications are to account for
qualified types, and are described elsewhere [8]. In the absence
of qualified types the two algorithms work in the same way. To
implement qualified types we need a way to solve predicates. To
do that we use the rules described in Section 2. We also add some
simplification rules [9], described in Figure 3. They do not make the
system any more expressive, in the sense that the same programs
may be typed with or without these rules. The rules are useful,
because they provide alternative ways to solveWidth predicates:
we can discharge aWidth predicate even if the argument type
is not a natural number. This makes it possible to infer simpler
types. For example, using the ruleWRep we can simplify the type
(∀αβ. (BitRep α β, Width β) ⇒ τ) to (∀αβ. BitRep α β ⇒ τ)

Π � τ1 + τ2 = τ3 i ∈ {1, 2, 3}
Π � Width τi

Π � BitRep τ1 τ2
[WRep]

Π � Width τ2

Figure 3. Simplification rules

Readers familiar with the Haskell class system may think of
these simplification rules as specifying thatWidth is a super-class
of theBitRep and(_ + _ = _) classes.

4.2 Evidence for Predicates

As we have already seen, in the presence of qualified types, the
system needs to solve predicates to make sure that type schemes
may be instantiated at the given concrete types. A common way to
implement such systems is to have a predicate solver that constructs
proof objects as evidence that a predicate is true. We can think
of a value that has a qualified typeπ ⇒ τ as a function that
takes the evidence that the predicateπ holds as an argument, and
then produces a result of typeτ . While the system performs type
inference, it automatically constructs evidence for predicates, and
applies values of qualified types to the evidence they need.

In our system, we have four different predicate forms. The evi-
dence for each of these depends on the concrete data representation
chosen in a particular implementation. The evidence we chose for
our system is described in Table 1. It is quite general and can ac-
commodate different data representations. We chose to implement
all bit values with 32 bit words. However there are other options: for
example, we could have implemented all values with up to 8 bits as
bytes, values with between 8 and 16 bits as words, and values with
between 16 and 32 bits as long words. There are also implemen-
tation choices that can use simpler evidence, based on particular
assumptions about how data is represented.

Predicate form Evidence
(x :: τ1) ∈ τ2 {offset :: Int, width :: Int}
Width τ {width :: Int }
BitRep τ1 τ2 {width :: Int }
τ1 + τ2 = τ3 {upper :: Int, lower :: Int}

Table 1. Evidence for predicates

The evidence for record manipulation tells us the offset and
number of bits that we need to access. The evidence forWidth
andBitRep tells us how many bits are necessary to represent some
value. Addition predicates are used when we split or join bit vectors
together. The evidence tells us the widths ofτ1 (the upper or most
significant bits) andτ2 (the lower or least significant bits).

4.3 Improvement

Improvement [9] is a technique for inferring types from predicates.
Given a set of predicates, we examine them and compute anim-
proving substitution. The substitution does not change the set of
predicates, but can replace some of the type variables with con-
crete types. This in turn may enable the system to solve some of
the predicates, which could not be solved before because the types
were unknown. A popular language feature based on improvement
is the addition offunctional dependencies[10] to the Haskell class
system. Figure 4 shows the functional dependencies that we used in
our type checker as well as some additional rules for improvements
that cannot be captured using functional dependencies.

α + β = γ | (α, β)� γ, (α, γ)� β,
(β, γ)� α

(l :: α) ∈ β | β � α
BitRep α β | α� β

impr{0 + τ1 = τ2} = mgu τ1 τ2

impr{τ1 + 0 = τ2} = mgu τ1 τ2

impr{τ1 + τ2 = 0} = mgu τ1 0 ◦ mgu τ2 0
impr{τ1 + τ2 = τ1} = mgu τ2 0
impr{τ1 + τ2 = τ2} = mgu τ1 0
impr{BitRep (Bit τ1) τ2} = mgu τ1 τ2

Figure 4. Functional Dependencies and Improvement Rules

To see how improvement works in practice, consider the ex-
pressiontoBits B00. The constantB00 is of typeBit 2, and the
constanttoBits is of type∀α. BitRep α β ⇒ α → Bit β. The
type inference algorithm will infer the typeBit β, provided that the
system can solve the predicateBitRep (Bit 2) β. Notice that we
cannot use any of the rules to solve this predicate because we do
not know what typeβ stands for. One possibility is to infer the type
∀β. BitRep (Bit 2) β ⇒ Bit β. This type is not wrong, but is unnec-
essarily complicated—we know that the typeBit 2 is represented
with 2 bits. To get a more intuitive type, we use the improvement
rules and determine thatβ is not a free type variable, but should be
replaced by the type2. Then we can use the ruleBit to discharge
the predicate, and infer the expected typeBit 2.

5. Related Work
Cryptol Our use of the(#) notation comes from Cryptol, and our
Bit types are a special case of Cryptol’s more general sequences:
for example,Bit 32 in our system corresponds to the[32] Bit
type in Cryptol. However, our approach differs from Cryptol be-
cause we have a different application domain in mind: we are inter-
ested in helping programmers develop systems software. The op-
erations that are common in that setting are not based on sequence
manipulation (which is one of Cryptol’s main strengths) but are
much more like operations on ordinary data types, which is what
our design introduces. The work on Cryptol is orthogonal to our
own—in principle, we could add more operators for sequence ma-
nipulation.

Bluespec Bluespec is a language for programming FPGAs [1].
There does not seem to be a freely available implementation that
we could experiment with, but the language specification describes
a number of ideas similar to ours. Bluespec supports bit vectors,
much like the ones we described, but there are no operations to join
or split bit vectors. Bluespec supports user defined data types and
records, which provides convenient ways to pattern match on data,
and to access fields in a record. However, because Bluespec’s main
goal is to program FPGAs, there is no need for the data types to
conform to a particular predefined ABI. Bluespec does not allow

programmers to specify explicit data layouts, and instead leaves
the compiler to derive bit representations for data automatically in
a predefined manner.

SLED The Specification Language for Encoding and Decoding
(SLED) is a domain specific language for working with streams of
machine language instructions [16]. Encoding and decoding ma-
chine instructions requires bit manipulation, so it is interesting to
compare SLED’s design to our own. An important difference is
that SLED processes streams of instructions, while our approach
deals only with fixed-width values. In our design, obtaining the data
from a buffer or a device is separate from decoding and processing
the data, while in SLED these two concepts are unified in a single
match construct. Another difference is that SLED is a specification
language that (at least in principle) is independent of the language
in which the application is written, while with bitdata the specifi-
cation and the application are written in the same language. The
benefit of the SLED approach is that it is not necessary to extend
the host language in which the application is written. The benefit
of our approach is that we can obtain stronger static checking, and
potentially gain some opportunities for optimization. The reason
for this is that a language independent preprocessor can only take
into consideration the SLED parts of a program, and the language
specific tools only get to process a translated specification. Using
a single language does not have these drawbacks and, in addition,
enables us to have more accurate types.

From a language perspective, there are interesting differences
between the mechanisms that SLED provides for specifying bit-
level representations, and those that are provided by our bitdata
definitions. In SLED, the position of a field within a bitdata struc-
ture is specified by giving a range of bit positions, and a language
of patterns—including simple range/equality constraints on indi-
vidual fields as well as constructs for conjunction, disjunction, and
sequencing of patterns—is used to describe binary representations.
This is strictly more expressive than our approach, although we
have found that the layout specifications (“as” clauses) in our bit-
data definitions provide a convenient and flexible way to accom-
plish the same thing in many practical examples. SLED also allows
the use of equations that relate constructor values with bit fields
using a small language that includes linear arithmetic as well as a
few specialized operators such as sign extension. There is no corre-
sponding feature in our system, but we have certainly encountered
situations where this would be useful as a way to allow the data that
is seen through bitdata views to becomputed rather than simplyex-
tracted directly from the underlying bitstream.

PADS PADS is a declarative data description language [4] for
processing large streams of data from ad hoc sources, such as
web server logs. This is a separate problem from our goal of
providing tools that enable easy manipulation of fixed size machine
registers, but there are still some similarities with our work. In both
cases, for example, the programmer describes data in a high level
language, rather than directly writing parsers and pretty printers
by hand. A PADS specification describes the physical layout and
semantic properties of a data source, so it is analogous to a bitdata
declaration, but on a different scale. Like ours and many other
designs, a PADS specification can contain unions (sums), structs
(products), types, and constraints.

DataScript DataScript is a language that uses types to describe
the physical layout of binary file formats [2]. DataScript provides
primitive types, set types, variants (sums), records (products), and
arrays. Set types include bitmask types, which enable programmers
to describe enumerations with specific bit representations in a fash-
ion similar to bitdata. An alternative in a sum type is chosen based
on constraints written in a specification. DataScript specifications
are language independent, so processing a specification with dif-

ferent language bindings can produce code for different languages.
In this respect it resembles the input to parser generator tools like
Yacc. The exact representation of the parsed files depends on the
particular language binding. For example, in one of the Java bind-
ings [2] arrays are represented as lists. Unlike bitdata, DataScript
does not provide mechanisms for defining functions by pattern
matching; DataScript’s design is based on the Java language, which
does not support this feature.

Views Views [18] provide the ability to pattern match on an ab-
stract type as if it were an algebraic datatype. This is accomplished
by defining a “view” type, which specifies a set of functions for
converting values of the abstract type into the view type. Values
of the view type are used in pattern matching, but the programmer
cannot construct them outside of a view type declaration (in fact,
the proposed compilation scheme advocates that these values are
never constructed at all).

One can regard bitdata declarations as defining views on a spe-
cific class of types, namelyBit n types. Limiting the scope in this
way allows us to provide considerably more powerful functionality.
In Wadler’s work, view types are phantom types which can only be
used in pattern matching. In contrast, a bitdata declaration creates a
new type that may appear in type signatures and whose values may
appear on both the left and right hand sides of an equation. In ad-
dition, our compiler automatically generates the marshaling func-
tions. The application of these functions imposes no performance
penalty because they are the identity, where as view transformation
functions may perform arbitrary computation.

6. Future Work
Beyond registers In this paper we focused on data whose rep-
resentation fits in the registers of a machine. This is sufficient for
many systems level programming tasks, but not all. For example,
when implementing a network protocol stack, programmers often
think of a sequence of bytes as having some particular structure.
It seems plausible that our ideas may be extended to handle such
larger data items. However there are important details that need to
be worked out, mostly to do with representing data in memory. For
example, we need to be careful about the order in which bytes are
stored in memory. Other important details include working with
references, and interactions with automatic garbage collection.

Optimizations As we already discussed, we have a working im-
plementation of all the ideas in the paper. A component that is miss-
ing from the implementation is a good optimizer to get efficient
bit-twiddling code. Using the higher-level constructs we described
should make it easier for a compiler to spot opportunities for opti-
mization. It would also be useful to consider optimizations to our
implementation of pattern matching: we would like to examine the
patterns occurring in the equations of a function, and combine them
into an efficient test on values. One promising approach is to use
binary decision diagrams (BDDs) to calculate minimal representa-
tions for groups of patterns.

More static checking As we discussed in Section 2.2.4, program-
mers may define types with both junk and confusion. In some cir-
cumstances this is inevitable because a program has to conform to
a predefined ABI, but an implementation may still warn program-
mers about such anomalies. To achieve this, it would be useful to
develop algorithms that can detect overlapping or potentially re-
dundant pattern matches in function definitions. It seems that this
problem is related to pattern matching compilation, and we expect
that the two problems may have similar solutions.

Generalizing data types Several features ofbitdata declara-
tions are orthogonal to bit manipulation, and hence may have more

general interest. Allowing record declarations to contain default
values makes sense in any language that supports records. Simi-
larly, if clauses are not specific tobitdata and might also be use-
ful in data declarations. A final observation idea is thatas clauses
are also not specific to bitdata. Instead of specifying that a value
should be represented with a particular bit pattern,as clauses could
specify a value of a different type to represent the constructor.

Acknowledgments
This work was supported, in part, by the National Science Foun-
dation award number 0205737, “ITR: Advanced Programming
Languages for Embedded Systems.” We would especially like to
thank Norman Ramsey, Andrew Tolmach, Thomas Hallgren, and
the anonymous reviewers for their comments and suggestions.

References
[1] Lennart Augustsson, Jacob Schwartz, and Rishiyur S. Nikhil.

Bluespec Language definition. Sandburst Corporation, 2002.
[2] Godmar Back. Datascript - a specification and scripting language for

binary data. InProceedings of the ACM Conference on Generative
Programming and Component Engineering Proceedings (GPCE
2002), pages 66–77, October 2002.

[3] Matthias Blume. No-Longer-Foreign: Teaching an ML compiler to
speak C “natively”. InBABEL’01: First workshop on multi-language
infrastructure and interoperability, September 2001.

[4] Kathleen Fisher and Robert Gruber. PADS: a domain-specific
language for processing ad hoc data. InPLDI ’05: Proceedings
of the 2005 ACM SIGPLAN conference on Programming language
design and implementation, pages 295–304, 2005.

[5] Benedict R. Gaster and Mark P. Jones. A polymorphic type system
for extensible records and variants. Technical report, University of
Nottingham, 1996.

[6] J.A. Goguen, J.W. Thatcher, E.G. Wagner, and J.B. Wright. Initial
algebra semantics and continuous algebras.JACM, 24(1):68–95,
1997.

[7] Robert W. Harper and Benjamin C. Pierce. Extensible records
without subsumption. Technical Report CMU-CS-90-102, School
of Computer Science, Carnegie Mellon University, Feburary 1990.

[8] Mark P. Jones.Qualified Types Theory and Practice. Cambridge
University Press, 1994.

[9] Mark P. Jones. Simplifying and improving qualified types. Tech-
nical Report YALEU/DCS/RR-1040, Yale University, New Haven,
Connecticut, USA, June 1994.

[10] Mark P. Jones. Type classes with functional dependencies. InESOP
2000: European Symposium on Programming, March 2000.

[11] Simon Peyton Jones, editor.Haskell 98 Language and Libraries, The
Revised Report. Cambridge University Press, 2003.

[12] Simon Peyton Jones and Mark Shields. Lexically scoped type
variables. March 2004.

[13] Jochen Liedtke. Onµ-kernel construction. In15th ACM Symposium
on Operating System Principles, December 1995.

[14] Robin Milner. A theory of type polymorphism in programming.
Journal of Computer and System Sciences, 17(3):348–375, December
1978.

[15] National Semiconductor.DP8390D/NS32490 NIC Network Interface
Controller, July 1995.

[16] Norman Ramsey and Mary F. Fernandez. Specifying representations
of machine instructions. ACM Transactions on Programming
Languages and Systems, 19(3):492–524, 1997.

[17] L4ka Team. L4 eXperimental Kernel Reference Manual, January
2005. Available online fromhttp://l4ka.org/.

[18] Philip Wadler. Views: a way for pattern matching to cohabit with data
abstraction. In14’th ACM Symposium on Principles of Programming
Languages.

[19] Zilog, Inc. Z80-CPU, Z80A-CPU Technical Manual, 1977. Informa-
tion about the Z80 is also available fromwww.z80.info.

