
Using Types to Parse Natural
Language

Mark P. Jones
University of Nottingham

Nottingham, England

Paul Hudak
Sebastian Shaumyan

Yale University
New Haven, Connecticut, USA

Abstract

We describe a natural language parser that uses type information to
determine the grammatical structure of simple sentences and phrases.
This stands in contrast to studies of type inference where types and
grammatical structure play opposite roles, the former being determined
by the latter. Our parser is implemented in Haskell and is based on a
linguistic theory called applicative universal grammar (AUG). Our results
should be interesting to computer scientists in the way in which AUG
relates to types and combinatory calculus, and to linguists in the way in
which a very simple, brute force parsing strategy performs surprisingly
well in both performance and accuracy.

1 Introduction
The study of type inference for functional languages depends on the ability
to use the syntactic structure of a program term to determine the types of its
components. Such languages are specified by simple context free grammars that
provide strong hints about syntactic structure using explicit punctuation such
as the ‘λ’ and ‘.’ symbols in a λ-term, or parentheses to express grouping. As a
result, it is easy to parse a flat program text and to construct the corresponding
term.

Parsing natural language text is much more difficult. One reason is that
grammars for natural languages are often complex, ambiguous, and specified
by collections of examples rather than complete formal rules. Another difficulty
is that punctuation is used much more sparingly. For example, many sentences
in English consist of a sequence of words in which the only punctuation is the
terminating period.

In this paper, we describe a program, written in the functional language
Haskell, for parsing natural language phrases using type information to de-
termine the required grammatical structure. This stands in contrast to the
description of type inference above where these roles are reversed, structure
determining type.

Natural language processing is of course a very rich and diverse research
area, and space limitations preclude a summary of techniques. However, the
topic of natural language processing in a functional language has also been
discussed by Frost and Launchbury [5]. Their work differs from ours by its
foundation on a semantic theory that is based on principles proposed by Mon-
tague [12]. The Frost and Launchbury system includes a parser, implemented

1

using standard combinator parsing techniques [9], and, unlike the program de-
scribed in this paper, a simple, interactive query system. On the other hand,
their approach seems limited by the fact that the grammar for natural language
phrases is fixed as part of the parser, and tightly coupled to the underlying se-
mantic model.

1.1 Applicative Universal Grammar

Our work is based on the formalism of applicative universal grammar (AUG),
a linguistic theory that views the formation of phrases in a form that is anal-
ogous to function application in a programming language. The first complete
description of AUG was published in 1965 [13], unifying the categorial calculus
of Lesniewski [10] with the combinatory calculus of Curry and Feys [4]. The
semantic theory of AUG was presented in [14], and its use in the translation
of natural languages is given in [16]. A full description of the current state of
AUG is described in [15].

To understand the way that AUG works, it is useful to think of words
and phrases as atoms and expressions, respectively, in a typed language of
combinators. For our simplified version of AUG, there are just two primitive
types: T representing terms (for example, nouns such as ‘friend’ and noun
phrases such as ‘my friend’), and S representing complete sentences (such as
‘my friend runs’). The only non-primitive type is of the form Oxy, denoting
phrases that transform phrases of type x to modified phrases of type y; this is
the most important concept behind the AUG formalism.

For example, the word ‘my’ is treated as having type OTT since it is applied
to a term of type T to obtain a modified term, also of type T (every word is
pre-assigned one or more types in this way). Thus the construction of the noun
phrase ‘my friend’ can be described by an inference:

‘my’ :: OTT ‘friend’ :: T
‘my friend’ :: T

More generally, we can use the following rule to describe the application of one
phrase, p of type Oxy, to another, q of type x:

p :: Oxy q :: x

p q :: y

Clearly, types of the form Oxy correspond to function types, written as (x → y)
in more conventional notation, while the typing rule above is the standard
method for typing the application of a function p to an argument value q.
The O for function types is used in the descriptions of AUG cited above, and
for the most part we will continue to use the same notation here to avoid any
confusion with type expressions in Haskell; in our program, the types of natural
language phrases are represented by data values, not by Haskell types. Another
advantage of the prefix O notation is that it avoids the need for parentheses and
allows a more compact notation for types.

The results of parsing a complete sentence can be described by a tree struc-
ture labelled with the types of the words and phrases that are used in its
construction. The following example is produced directly by the program de-
scribed later from the input string "my friend lives in Boston".

in Boston
[OTOOTSOTS] [T]

my friend lives ________/
[OTT] [T] [OTS] [OOTSOTS]
_____/ _____________/

[T] [OTS]
________________/

[S]

Notice that, to maintain the original word order, we have allowed both forward
and backward application of functions to arguments. The first of these was
described by the rule above, while the second is just:

q :: x p :: Oxy

q p :: y

For example, in the tree above, we have used this rule to apply the phrase
in Boston to the intransitive verb lives; the function acts as a modifier,
turning the action of ‘living’ into the more specific action of ‘living in Boston’.

It is sometimes useful to rearrange the trees produced by parsing a phrase
so that functions are always written to the left of the arguments to which they
are applied. This reveals the applicative structure of a particular phrase and
helps us to concentrate on underlying grammatical structure without being
distracted by concerns about word order — which vary considerably from one
language to another. Rewriting the parse tree above in this way we obtain:

in Boston
[OTOOTSOTS] [T]

________/ lives my friend
[OOTSOTS] [OTS] [OTT] [T]

__________/ _____/
[OTS] [T]

_____________/
[S]

In situations where the types of subphrases are not required, we can use a
flattened, curried form of these trees, such as in Boston lives (my friend),
to describe the result of parsing a phrase. The two different ways of arranging
a parse tree shown here correspond to the concepts of phenotype and genotype
grammar, respectively, in AUG, but will not be discussed in any further detail
here.

One of the most important tasks in an application of AUG is to assign
suitable types to each word in some given lexicon or dictionary. The type T is an
obvious choice for simple nouns like ‘friend’ and ‘Boston’ in the example above.
Possessive pronouns like ‘my’ can be treated in the same way as adjectives using
the type OTT. In a similar way, intransitive verbs, like ‘lives’, can be described
by the type OTS transforming a subject term of type T into a sentence phrase
of type S. The word ‘in’, with type OTOOTSOTS, in the example above deserves
special attention. Motivated by the diagram above, we can think of ‘in’ as
a function that combines a place of type T (where?), an action of type OTS
(what?), and a subject of type T (who?) to obtain a sentence phrase of type S.

One additional complication we will need to deal with is that, in the general
case, a single word may be used in several different ways, with a different type
for each. In this paper we adopt a simple solution to this problem by storing
a list of types for each word in the lexicon. We will see later how we can take
advantage of this, including the possibility of a word having several roles (and
types) simultaneously in the same sentence.

1.2 Functional Programming in Haskell

In contrast to the references above, most of which are aimed at those with
a background in linguistics, this paper is intended to be read by computer
scientists and, in particular, those with an interest in functional programming.
The programs in this paper are written using Haskell [7], a standard for non-
strict purely functional programming languages. Tutorial information on these
languages may be found elsewhere [1, 6]. Our use of Haskell is fitting since
the language is, in fact, named for the logician Haskell B. Curry whose work
on combinatory logic cited above provides much of the foundation for both
functional programming and AUG. Indeed, Curry himself was interested in the
study of natural language and grammatical structure [3].

The LaTEX source for this paper is also a literate script for the program
that it describes. In other words, the same file used to produce the document
that you are now reading also serves as the source code for the program that
it describes.1 Program lines are distinguished by a ‘>’ character in the first
column. The source file also contains some small sections of code that are used
to print ASCII versions of tree structures (as illustrated by the example above),
and to implement a dictionary assigning types to a small vocabulary of words.
These items are not shown in the typeset version of the paper, in an attempt
to avoid unnecessary distraction from our main subject. Full source code is
available from the authors.

2 Types, Trees and Sentences
Our first task in the implementation of the parser is to choose a representation
for types. Motivated by the description above, we define:

> data Type = T | S | O Type Type deriving Eq

The specification deriving Eq declares that the new datatype Type is a mem-
ber of Haskell’s pre-defined class Eq, and that the system should therefore derive
a definition of equality on values of type Type. This is needed so that we can
test that the argument type of a function is equal to the type of value that
it is applied to. We also include Type in the standard Haskell class Text so
that Type values can be displayed using the notation described earlier, without
parentheses or whitespace.

1This “literate programming style” was originally promoted by Donald Knuth.

The result of parsing a string will be a tree structure with each node anno-
tated with a list of types (each type corresponding to one possible parse).

> type TTree = (Tree,[Type])
> data Tree = Atom String | FAp TTree TTree | BAp TTree TTree

Applications of one tree structure to another are represented using the FAp
(forward application) and BAp (backward application) constructors.

We will also need methods for displaying typed tree structures. To display
the applicative structure of a tree value without the type annotations, we extend
the Text class with an instance definition for Tree values. We will also use a
function:

> drawTTree :: TTree -> String

to display a typed tree in the form shown in Section 1.1. We do not include
the code for these functions here since they are needed only to display output
results.

The first step in the parser is to convert an input string into a list of words,
each annotated with a list of types. For simplicity, we use the Atom constructor
so that input sentences can be treated directly as lists of typed trees:

> type Sentence = [TTree]

> sentence :: String -> Sentence
> sentence = map wordToTTree . words
> where wordToTTree w = (Atom w, wordTypes w)

The function wordTypes used here maps individual words to the corresponding
list of types. For example, wordTypes "friend" = [T]. This function can be
implemented in several different ways, for example, using an association list or,
for faster lookup, a binary search tree. For all of the examples in this paper, we
used a simple (unbalanced) binary search tree containing 62 words. However,
we will not concern ourselves with any further details of the implementation of
wordTypes here.

The following text strings will be used to illustrate the use of the parser in
following sections:

> myfriend = "my friend lives in Boston"
> oldfriend = "my old friend who comes from Moscow"
> long = "my old friend who comes from Moscow thinks that\
> \ the film which he saw today was very interesting"

For example, the first stage in parsing the myfriend string is to split it into
the following list of typed tree values:

? sentence myfriend
[(Atom "my",[OTT]),
(Atom "friend",[T]),
(Atom "lives",[OTS]),
(Atom "in",[OTOOTSOTS]),
(Atom "Boston",[T])]

3 From Sentences to Trees
We have already described how individual words, or more generally, phrases
can be combined by applying one to another. Now consider the task of parsing
a sentence consisting of a list of words [w1, ..., wn]. One way to proceed
would be to choose a pair of adjacent words, wi and wi+1, and replace them with
the single compound phrase formed by applying one to the other, assuming, of
course, that the types are compatible. Repeating this process a total of n− 1
times reduces the original list to a singleton containing a parse of the given
sentence.

The most important aspect of this process is not the order in which pairs of
phrases are combined, but rather the tree structure of the final parsed terms.
In this sense, the goal of the parser is to find all well-typed tree structures that
can be formed by combining adjacent phrases taken from a given list of words.

3.1 Enumerating Types/Trees

We wish to define the following function to enumerate all of the typed trees
that can be obtained from a given sentence:

> ttrees :: Sentence -> [TTree]

The simplest case is when the list has just one element, and hence there is just
one possible type:

> ttrees [t] = [t]

For the remaining case, suppose that we split the input list ts into two non-
empty lists ls, rs such that ts = ls ++ rs. Using recursion, we can find
all the trees l than can be obtained from ls and all the trees r that can be
obtained from rs. We then wish to consider all pairs of these that can be
combined properly to form a well-typed phrase. This yields the final line in the
definition of ttrees:

> ttrees ts = [t | (ls,rs) <- splits ts, l <- ttrees ls,
> r <- ttrees rs,
> t <- combine l r]

The function splits is used here to generate all pairs of non-empty lists
(ls,rs) such that ls ++ rs = ts. It can be defined using:

> splits :: [a] -> [([a],[a])]
> splits ts = zip (inits ts) (tails ts)

> inits, tails :: [a] -> [[a]]
> inits [x] = []
> inits (x:xs) = map (x:) ([]:inits xs)

> tails [x] = []
> tails (x:xs) = xs : tails xs

For example:

? inits "abcde"
["a", "ab", "abc", "abcd"]
? tails "abcdef"
["bcde", "cde", "de", "e"]
? splits "abcdef"
[("a","bcde"), ("ab","cde"), ("abc","de"), ("abcd","e")]

The function combine is used in ttrees to generate all possible typed trees,
if any, that can be obtained by combining two given typed trees. For the
framework used in this paper, the only way that we can combine these terms is
to apply one to the other.2 To allow for variations in word order, we consider
both the possibility that l is applied to r, and also that r is applied to l:

> combine :: TTree -> TTree -> [TTree]
> combine l r = app FAp l r ++ app BAp r l

The rule for application of one term to another is encoded as follows:

> app :: (TTree -> TTree -> Tree) -> TTree -> TTree -> [TTree]
> app op (a,ts) (b,ss)
> = [(op (a,[O x y]) (b,[x]), [y]) | (O x y)<-ts, z<-ss, x==z]

The expression (op (a,[O x y]) (b,[x]), [y]) here corresponds to the rule
that, if a has type O x y and b has type x, then the application of a to b has
type y. The use of singleton lists signals that the type of an application is
uniquely determined by the type of its arguments. Clearly, we could extend
the definition of combine to deal with other methods of combining terms in
extended AUG frameworks.

The fact that we allow two different ways of combining a pair of terms by
applying either one to the other, causes an exponential increase in the number of
possible parse trees that might, in theory, need to be considered. For example,
we can show that there are 8,448 different ways to construct a parse tree for a
sentence like oldfriend in Section 2 with only 7 words! Fortunately, the use
of types eliminates almost all of these. Using the Gofer interpreter, we obtain
just three parses for this sentence with no noticeable delay:

? (map show . ttrees . sentence) oldfriend
["(my (old (who friend (from Moscow comes))),[T])",
"(my (who (old friend) (from Moscow comes)),[T])",
"(who (my (old friend)) (from Moscow comes),[T])"]

(8302 reductions, 23220 cells)

We comment on these parses in more detail in Section 4.
Unfortunately, for larger sentences, the definition of ttrees is not efficient

enough. For example, evaluation of (map show . ttrees . sentence) long,
where long is the 19 word sentence defined in Section 2, takes 644,776,714

2This limitation is not as severe as it might sound, linguistically, since currying permits
application to several arguments. The parse described earlier in Section 1.1 involving the
word ‘in’, with type OTOOTSOTS, is an example of this, as are transitive and ditransitive verbs,
having types OTOTS and OTOTOTS, respectively.

reductions, 1,725,184,431 cells and runs for over 8 hours on a conventional
workstation. In total, the program produces 60 different parses, compared with
a theoretical maximum of 926,554,883,358,720. These figures are astronomical!
Given a search space this large, it is quite an achievement to have constructed
an algorithm that terminates within a few hours. However, with this kind of
performance, the ttrees function is clearly unsuitable for practical natural
language processing applications.

3.2 A More Sophisticated Algorithm

Fortunately, there is a way to make the definition of ttrees more efficient, but
first we need to take a closer look at how the function works when it is applied
to a typical sentence. For brevity, suppose that we have a sentence with only
five words which we can represent by the five character string ‘abcde’. The
following diagram illustrates the pattern of recursive calls to find the value of
ttrees for this string:

¡¡
a

¡¡
b

¡¡
c

¡¡
d e

@@ @@ @@ @@

¡¡
ab

¡¡
bc

¡¡
cd de

@@ @@ @@

¡¡
abc

¡¡
bcd cde

@@ @@

¡¡
abcd bcde

@@
abcde

The calculation of ttrees at any particular point in this diagram requires
recursive calls to ttrees for each of the points on the sloping lines below it. For
example, to calculate ttrees at the root node, we need to find the value of the
function for each of the values in the pairs (a,bcde), (ab,cde), (abc,de), (abcd,e);
these are just the values returned by splits. Notice that the recursive calls
for bcde and abcd will both require further recursive calls to find the value
of ttrees at bcd – so this particular computation will be duplicated. The
calculations for points further down the tree will be repeated even more times
than this, in the familiar pattern of Pascal’s triangle:

¡¡
1

¡¡
4

¡¡
6

¡¡
4 1

@@ @@ @@ @@

¡¡
1

¡¡
3

¡¡
3 1

@@ @@ @@

¡¡
1

¡¡
2 1

@@ @@

¡¡
1 1

@@
1

For an n word sentence, the total number of recursive calls to ttrees can be
calculated by summing all of the entries in the first n rows of Pascal’s triangle,
amounting to 2n − 1 calls (some of which will be more expensive than others).
But, in fact, only 1 + . . . + n = n(n + 1)/2 different values are required. For
the nineteen word sentence considered above, this means that there are a total
of 524,827 calls when only 190 different values are needed.

One way to avoid the repeated calculations here would be to use a language
in which ttrees was defined as a ‘memo-function’ [11, 8]. This would allow

the underlying implementation to avoid repeated calculation whenever possible
by reusing values from a cache of previously calculated (argument,result) pairs.
However, memo-functions are not supported in Haskell, so we will need to do
some extra work to construct and use an explicit cache. Our basic strategy will
be to implement a function that calculates, not just one list of typed trees, but
a whole table of them, represented by a list of lists:

abcde abcd abc ab a

bcde bcd bc b

cde cd c

de d

e

The diagram illustrates how cache tables are built up using recursion: If we
have already constructed the table for bcde, then we can construct the table for
abcde by adding an extra row. The elements of this row can be calculated from
right to left using previously calculated entries to the right and in the column
below instead of a recursive call. Once we have built the whole table, the
result that we want can be extracted from the top-left position. The following
definitions show how this is expressed in Haskell:

> fastTtrees = head . head . cache

> cache :: Sentence -> [[[TTree]]]
> cache [x] = [[[x]]]
> cache (x:xs) = [build x (transpose rs)] ++ rs
> where rs = cache xs

> build :: TTree -> [[[TTree]]] -> [[TTree]]
> build a [] = [[a]]
> build a (ts:tss) = g (reverse is) ts : is
> where is = build a tss
> g is ts = [r | (i,t) <- zip is ts,
> ti <- i,
> tt <- t,
> r <- combine ti tt]

Those familiar with program transformation will recognize the technique of
using a table of intermediate results as an example of tabulation. We refer the
reader to other work in this area for further details, particularly the recent
paper by Bird and de Moor [2] which includes a formal argument that can be
used to show that fastTtrees is equivalent to the original definition of ttrees.

Not surprisingly, the fastTtrees function offers a dramatic improvement
in performance over the definition of ttrees, particularly for long sentences.

For example, running the following program in the Gofer interpreter takes just
a second to determine that there are 60 different parses of the 19 word sentence
long:

? (length . fastTtrees . sentence) long
60
(22594 reductions, 52042 cells)

This should be compared with the 8 hours, and the mind-boggling counts of
reductions and cells for the same calculation using ttrees that was described
at the end of the previous section.

4 A Simple Example
For the purposes of simple experiments, we combine the components of the
parser described above by defining the function:

> explain :: String -> String
> explain = unlines . map drawTTree . fastTtrees . sentence

For example, consider the phrase ‘my old friend who comes from Moscow’. The
result of parsing this phrase using our program are shown in Figure 1. As the
figure shows, there are three different ways to parse this phrase, each of which
produces a term phrase of type T. Without any underlying formal semantics
for the language, it is difficult to justify any formal statement about these
three parses. However, from an informal standpoint, for example, by observing
the grouping of words, we can argue that all three of these parses are valid
interpretations of the original phrase, each with slightly different meaning and
emphasis:

• my (old (who friend (from Moscow comes))): The words ‘friend who
comes from Moscow’ are grouped together; of all my friends who come
from Moscow, this phrase refers to the one that is old.

• my (who (old friend) (from Moscow comes)): In this case, the em-
phasis is on the word ‘my’; perhaps you also have an old friend who
comes from Moscow, but in this phrase, I am referring specifically to my
old friend from Moscow.

• who (my (old friend)) (from Moscow comes): A reference to ‘my old
friend’ who comes from Moscow (but doesn’t necessarily live there now).

When we started work on the program described in this paper, we were con-
cerned that the rules for constructing parses of sentences were too liberal and
that, even for small sentences, we would obtain many different parses, per-
haps including some that did not make any sense. From this perspective, it
is encouraging to see that there are only three possible parses of the example
sentence used here and that all of them have reasonable interpretations. Of
course, it is possible that there may be ways of interpreting this phrase that
are not included in the list above; these might be dealt with by adding new
types for some of the words involved to reflect different usage or meaning. An-
other possibility is that we might find a phrase with different interpretations

? explain "my old friend who comes from Moscow"

my (old (who friend (from Moscow comes))):

from Moscow
[OTOOTSOTS] [T]

friend who comes ________/
[T] [OTOOTST] [OTS] [OOTSOTS]
________/ _____________/

[OOTST] [OTS]
old __________________/
[OTT] [T]

my ____________________/
[OTT] [T]

________________/
[T]

my (who (old friend) (from Moscow comes)):

old friend from Moscow
[OTT] [T] [OTOOTSOTS] [T]

_____/ who comes ________/
[T] [OTOOTST] [OTS] [OOTSOTS]
___________/ _____________/

[OOTST] [OTS]
my ____________________/

[OTT] [T]
_________________________/

[T]

who (my (old friend)) (from Moscow comes):

old friend
[OTT] [T]

my _____/ from Moscow
[OTT] [T] [OTOOTSOTS] [T]

________/ who comes ________/
[T] [OTOOTST] [OTS] [OOTSOTS]
_______________/ _____________/

[OOTST] [OTS]
______________________/

[T]

Figure 1: Parsing the phrase ‘my old friend who comes from Moscow’.

that cannot be distinguished by their grammatical structure alone, in which
case some form of semantic analysis may be needed to resolve any ambiguities.

While it seems reasonable to allow three different parses for the sentence
above, we may be a little concerned about the 60 different parses mentioned
above for the 19 word sentence that was used as a test in the previous sections.
However, it turns out that half of these parse trees include one of the three dif-
ferent trees for ‘my old friend who comes from Moscow’ as a proper subphrase;
this immediately introduces a factor of three into the number of parses that
are generated. Similar multiplying factors of two and five can be observed in
other parts of the output. Once we have identified these common elements, the
results of the parser are much easier to understand.

Clearly, a useful goal for future work will be to modify the parser to detect
and localize the effect of such ambiguities. For example, it might be useful to
redefine TTree as ([Tree],[Type]) and store lists of subphrase parse trees at
each node, rather than generating whole parse trees for each different combi-
nation subphrase parse trees.

5 Areas for Further Investigation
The work described in this paper is a promising start, but much remains to be
done. From the perspective of natural language processing, we believe that the
following points will be useful directions for future work:

• Ambiguity: Clearly, some mechanisms are required to deal with ambi-
guity and multiple parses. In some cases, semantic analysis will be needed
to detect and eliminate some parses of a sentence.

• Type inference: It would be interesting to experiment with the possi-
bility of inferring types for words that are not already in the vocabulary.
For example, most English speakers will be able to understand the sen-
tence ‘my friend lives in Beeston’, even if they have never heard the word
‘Beeston’ before. From the context in which the word appears, it is fairly
easy to guess that it must refer to a place. Of course, it would not be
surprising to respond to this sentence by asking a question such as ‘Where
is Beeston?’.

In a similar way, even if the word ‘Beeston’ does not appear in vocabulary
that is recognized by our parser, it is clear that the sentence ‘my friend
lives in Beeston’ would make sense if we were to assume that ‘Beeston’::T,
and perhaps follow this assumption with a query to ask for confirmation,
and more information about this new word.

This apparently straightforward idea may prove rather challenging if we
also hope to deal with examples like ‘my friend is living in New Haven’
(where ‘New Haven’ should be treated as a single compound term, not
as if it were some newer version of a place called ‘Haven’) and also with
‘my friend is living in sin’ which has altogether different connotations. . .

• A more complete treatment of AUG: The full theory of AUG goes
beyond the extensions we have described here. We would also like to
investigate the analysis of lexical/morphological structure in more detail

and to study the treatment of punctuation, discontinuous constructions,
and metarules of priority in the context of our parser.

The ideas described here also suggest some topics for further investigation
in the field of programming language design:

• Parsing extensible languages: The techniques used here provide an
incremental approach to grammar specification. Instead of the monolithic
sets of productions that are normally used to formalize programming
language syntax, we can use localized rules to describe how individual
parts of a language associate with the other objects round them. This may
be a more appropriate model for the syntax of extensible languages, and
a companion to recent work on the construction of extensible interpreters
and denotational semantics

• Understanding abstract datatypes: The use of abstract datatypes in
a language like Haskell is controlled by typing rules, in much the same way
that types control the use of words in the parse trees shown in this paper.
It would be useful to study the grammars implied by the signatures of
particular abstract datatypes and to use these to establish formal prop-
erties about their use. For example, monads are widely used as a means
of embedding imperative effects in a functional languages; the ideas de-
scribed here might be used to justify optimizations, for example, that a
value is used in a single-threaded manner, or that it is safe to implement
a given primitive using an imperative effect.

Acknowledgements
The work described in this paper was originally motivated by a series of sem-
inars given by Sebastian Shaumyan and Paul Hudak at Yale University in the
fall of 1993, on the subject of natural language processing in Haskell. The
preparation of this paper was supported in part by a grant from ARPA, con-
tract number N00014-91-J-4043.

References
[1] R. Bird and P. Wadler. Introduction to functional programming. Prentice

Hall, 1988.

[2] R.S. Bird and O. de Moor. Relational program derivation and context-free
language recognition. In A.W. Roscoe, editor, A Classical Mind: Essays
in Honour of C.A.R. Hoare, chapter 2, pages 17–35. Prentice-Hall Inter-
national Series in Computer Science, 1994.

[3] Haskell B. Curry. Some logical aspects of grammatical structure. In Struc-
ture of language and its mathematical aspects, Providence, Rhode Island,
1961. American Mathematical Society.

[4] Haskell B. Curry and Robert Feys. Combinatory logic, volume Volume I.
North-Holland Publishing Company, Amsterdam, 1958.

[5] R. Frost and J. Launchbury. Constructing natural language interpreters in
a lazy functional language. The Computer Journal, 32(2):108–121, April
1989.

[6] P. Hudak and J. Fasel. A gentle introduction to Haskell. ACM SIG-
PLAN Notices, 27(5), May 1992. Also available as Research Report
YALEU/DCS/RR-901, Yale University, Department of Computer Science,
April 1992.

[7] P. Hudak, S. Peyton Jones, and P. Wadler (editors). Report on the Pro-
gramming Language Haskell, A Non-strict Purely Functional Language
(Version 1.2). ACM SIGPLAN Notices, 27(5), May 1992.

[8] John Hughes. Lazy memo-functions. In Jouannaud, editor, Proceedings of
the IFIP conference on Functional Programming Languages and Computer
Architecture, pages 129–146, New York, 1985. Springer-Verlag. Lecture
Notes in Computer Science, 201.

[9] Graham Hutton. Higher-order functions for parsing. Journal of Functional
Programming, 2(3), July 1992.

[10] Stanislaw Lesniewski. Grundzuge eines neuen Systems der Grundlagen der
Mathematik. Fundamenta Mathematicae, 14:1–81, 1929.

[11] D. Michie. ‘Memo’ functions and machine learning. Nature, April 1968.

[12] Richard Montague. Formal philosophy. In R.H. Thomason, editor, Selected
writings of Richard Montague. Yale University Press, New Haven, CT,
1974.

[13] Sebastian Shaumyan. Strukturnaja lingvistika. Nauka, Moskva, 1965.

[14] Sebastian Shaumyan. Applicative grammar as a semantic theory of natural
language. University of Chicago Press, 1977.

[15] Sebastian Shaumyan. A Semiotic Theory of Language. Indiana University
Press, 1987.

[16] Sebastian Shaumyan. Applicative universal grammar as a linguistic frame-
work of the translation model. In Proceedings of the Fifth International
Conference on Symbolic and Logical Computing, pages 287–320, Dakota
State University, Madison, Dakota, 1991.

