
The Essence of AspectJ

[Functional Pearl]

Mark P. Jones
Pacific Software Research Center

Oregon Graduate Institute of Science & Technology
20000 NW Walker Road, Beaverton, Oregon 97006, USA

mpj@cse.ogi.edu

ABSTRACT
In the construction of a large software system, it is inevitable
that some aspects of program behavior will cut across the
structure of the code. The changes that are needed to sup-
port a new feature, for example, may be spread across sev-
eral different points in the original program, making them
harder to maintain and harder to reuse. The designers
of “aspect-oriented” programming languages aim to tackle
these problems by introducing new language mechanisms to
capture cross-cutting concerns. Their hope is that this will
allow different aspects of a program to be captured as inde-
pendent entities that can be woven together automatically
to produce a complete program.

In this paper, we focus on AspectJ, an aspect-oriented exten-
sion of Java that has been designed and implemented by a
team at Xerox PARC to support an empirical assessment of
aspect-oriented programming. The development of AspectJ
has been driven largely by pragmatic concerns. Here, we
provide a complimentary perspective by using interpreters,
written in Haskell, to present a formal semantics for a sim-
ple aspect-oriented programming language, and so to distill
the essence of AspectJ.

This paper provides a firm semantic foundation for the de-
sign of aspect-oriented programming languages. It illus-
trates the flexibility that can be obtained by writing inter-
preters in a monadic style, but also challenges us to contem-
plate how the ideas of aspect-oriented programming might
be applied to the design of future functional languages.

1. INTRODUCTION
Our ability to build non-trivial software systems relies on
composition techniques that enable us to construct com-
plete programs from collections of smaller pieces. A combi-
nation of factors, most notably the application domain and
the choice of implementation language, will typically lead

developers to adopt a particular decomposition or program
structure as a means of managing the complexity of a large
system. Unfortunately, the same decomposition can also be-
come a significant obstacle as a program evolves to meet the
changing needs of its users. With luck, and by starting with
good analysis and design, many of the modifications and ex-
tensions that are required will fit neatly into the structure of
the original decomposition. But, inevitably, some will not,
and will instead require invasive changes that cut across this
structure. Thus, over a period of time, the code becomes a
complex and tangled web of interacting, often interfering,
and sometimes redundant parts. The end result is a fragile
and unreliable program that is hard to understand, harder
to modify, and impossible to maintain.

Many of these problems can be traced to the programming
languages that are used to create software systems, each of
which typically emphasizes a particular style of decomposi-
tion. For example, in a procedural or functional language,
programs are often structured as a collection of modules,
each of which contains a collection of type and function def-
initions. By contrast, collections of classes, each containing
field and method definitions, are used to describe programs
in typical object-oriented languages. Unfortunately, despite
our best efforts, each of these decomposition mechanisms
seems to support only certain kinds of program evolution,
while other changes are, at best, not helped or, at worst,
actively hindered. Thus, once the initial version of a pro-
gram has been written, its subsequent evolution suffers from
what Ossher and Tarr have aptly named “The Tyranny of
the Dominant Decomposition” [9].

Aspect-Oriented Programming (AOP) [4] has been proposed
as a way to address these problems by allowing program-
mers to abstract out different aspects of program behavior
as independent, and potentially reusable components. In
particular, the challenges in developing an aspect-oriented
programming language are (i) in finding linguistic constructs
that allow cross-cutting concerns to be captured in a mod-
ular fashion; and (ii) and in developing compilation tech-
niques that allow different aspects to be combined (by a
process that is sometimes referred to as weaving) to con-
struct a complete application.

AspectJ [3] is a practical, aspect-oriented extension of Java
[1] that has been developed by Gregor Kiczales and col-
leagues at Xerox PARC. The goals of the AspectJ project,

however, are much broader than the design and implemen-
tation of a new programming language: the hope is that
AspectJ will provide a platform for empirical assessment of
aspect-oriented programming. For example, it will be par-
ticularly interesting to see how programmers use the lan-
guage to solve real problems, and to see whether it helps
them to develop code that is more modular, more reusable,
and easier to maintain and evolve. As such, the AspectJ
team have focused on important pragmatic issues such as de-
veloping a robust and efficient compiler, adding support for
popular integrated development environments (IDEs), and
building and supporting a growing user community. With
its focus on pragmatic concerns, AspectJ is not intended as
a “pure” or “clean room” implementation of the concepts
of AOP, nor as an attempt to explore the design space for
AOP languages.

To date, the semantics of AspectJ have been described only
by means of examples or informal explanations. In this pa-
per, we take a more formal approach, using interpreters—
written using the functional programming language Haskell—
to provide a precise, executable semantics for aspect-oriented
programming languages in the style of AspectJ. The lan-
guage that our interpreters treat is a small, imperative lan-
guage that is much simpler than Java or AspectJ: it is rich
enough for us to describe the key ideas of AspectJ, while
also being small enough to avoid the inevitable distractions
of a larger set of language features. In this sense, and as the
title of this paper suggests, we believe that our interpreters
capture the essence of AspectJ.

The interpreters in this paper are written in Haskell 98 [10],
henceforth referred to simply as just “Haskell”, and have
been tested using the Hugs interpreter [2] running in Haskell
98 mode. We do assume some degree of familiarity with
functional programming, but we have also made an effort
to explain some of the more intricate details of syntax and
semantics that might not be familiar to readers with only
limited experience of Haskell.

The remaining sections of this paper are as follows. In Sec-
tion 2, we give a short introduction to the AspectJ lan-
guage, focusing on the concepts of join points, pointcuts,
advice, and aspects that it offers as tools for aspect-oriented
programming. In Section 3, we give the syntax, and an
executable semantics via a simple interpreter, for a small
imperative language, Mini Pascal. This provides the start-
ing point for our more formal treatment of aspect-oriented
programming in later sections. A modified version of the
semantics is presented in Section 4 by recasting the original
interpreter in a monadic style. In Section 5, we describe how
the key concepts of AspectJ can be mapped on to the sim-
pler Mini Pascal setting to develop a simple aspect-oriented
language, Aspect Pascal. Closing thoughts are presented in
Section 6.

2. ASPECTJ
This section provides a brief overview of AspectJ, both to
explain the mechanisms that it provides to support aspect-
oriented programming, and to motivate the development
in subsequent sections. As we have already indicated in
the introduction, AspectJ is a practically-motivated, aspect-
oriented language that is based on Java. Many Java pro-

grams are also perfectly valid AspectJ programs, and for
much of the time, there is little to distinguish the experience
of programming in one language from the other. The area in
which the languages differ, of course, is in the facilities that
AspectJ provides to support aspect-oriented programming.
In the terminology of AspectJ, there are four important con-
cepts: Join points, Pointcuts, Advice, and Aspects.

Join points are points in the dynamic execution graph of
a program through which control flow passes. For exam-
ple, in the context of the following Java class, a joint point
might represent a particular call to the incr() method, or
a specific assignment to the n field of some Counter object:

class Counter {

private int n;

void reset() { n = 0; }

int get() { return n; }

void incr() { n = n+1; }

}

It is often useful, and perhaps even necessary, to distinguish
between the times at which we enter and leave any given
join point. For example, if a join point represents a call to
incr(), then we would expect the value in the state vari-
able n just before the function is invoked to be different from
the value in n just after the function has returned. Anyone
who has used a debugger will be familiar with the way that
concepts like these are used to specify breakpoints or watch
variables. Note, however, that there will not usually be a
one-one correspondence between join points and points in
the source code for a program. For example, there will not
be any join points for parts of the program that do are not
executed. At the same time, repeated execution of a partic-
ular section of the source program—in a loop or recursive
function, for example—will generate multiple join points.

Pointcuts represent sets of join points. In general, it is
hard to give meaningful names to individual join points,
or to enumerate some particular set of join point that are
of interest in a particular situation. And so, instead, As-
pectJ provides a simple algebra of pointcut expressions that
can be used to build up the specification for a particular
pointcut. Primitive pointcut expressions include things like
calls(void Counter.incr()), which represents the set of
all join points for calls to a Counter object’s incr() method,
or sets(int Counter.n), which represents the set of all
points at which the n field of a Counter object is assigned to.
More complicated pointcuts can be described using Boolean
operators. For example, the pointcut

sets(int Counter.n) || calls(void Counter.incr())

includes all the join points that correspond either to an as-
signment to an n field or to a call to the incr() method of
a Counter object. Note that each call to an incr() method
will result in two distinct join points in this particular point-
cut: one for the call to incr() itself, and one for the as-
signment to n in the body of that method. The syntax of
AspectJ allows pointcuts to be named:

pointcut setsOrIncs() :

sets(int Counter.n) ||

calls(void Counter.incr());

It is also possible for a pointcut to carry parameters, which
can be used to capture information about the execution con-
text in which a particular join point arose, such as the value
of a parameter or the receiving object in a method call. We
will not, however, consider these possibilities any further
here.

The most important thing about pointcuts is that they give
programmers a to refer to specific points in the execution of
a program without having to modify its source code.

Advice is used to specify how the behavior of a program
should be modified at the join points within a particular
pointcut. For example, the following advice might be used
to add a logging facility to Counter objects so that the time
at which any counter is reset will be recorded in some global
system log:

static before() : calls(void Counter.reset()) {

resetLog.writeCurrentTime();

}

This is an example of before advice, specifying actions that
are to be performed immediately before (i.e., on entry to)
any of the join points in the specified pointcut (which, in this
case, is just the set of join points corresponding to a Counter

object’s incr() method.) AspectJ supports a corresponding
notion of after advice, as well as several other forms of
advice that we will not discuss further here.

Aspects are modular, linguistic units that encapsulate cross-
cutting concerns. In the context of AspectJ, aspects declara-
tions look much like standard Java class declarations except
that they can also contain pointcut and advice declarations.
For example, a modification of our original Counter program
to support logging might be described by the following as-
pect declaration:

aspect Logging {

pointcut logPlaces() :

calls(void Counter.reset());

static before() : logPlaces() {

resetLog.writeCurrentTime();

}

// ... code to define an initialize

// the resetLog variable goes here ...

}

This example gives a taste of the kind of enhanced modu-
larity that can be obtained using AspectJ:

• The original Counter program does not need to be
modified at all to support the additional functionality
of Logging.

• The Counter program can be compiled either with or
without the Logging aspect to obtain whichever func-
tionality is needed for a particular application; and

• All of the parts of the program related to logging are
collected together in one place, resulting in code that
is easier to maintain and evolve. For example, we can
add support for logging of calls to different functions
by changing the definition of the logPlaces pointcut,
and we can specify more sophisticated logging behavior
by modifying the before advice in the Logging aspect;
neither of these modifications would require changes in
other parts of the program.

On the other hand, it should also be quite clear that the
mechanisms we have seen here are very powerful, and could
easily be misused to construct programs that are much harder
to understand and maintain than equivalent programs writ-
ten in a conventional language. Of course, such problems are
not unique to AspectJ: any language that gives programmers
the flexibility to create interesting applications is also likely
to offer many opportunities for create incomprehensible, un-
maintainable code. The problems that motivate the develop-
ment of aspect-oriented languages such as AspectJ are real,
and they are not restricted to object-oriented languages—
as developers working on any large and evolving functional
program would probably confirm! In the following sections
of this paper, we describe the beginnings of a process that
we hope will lead to more formal semantic foundations for
languages like AspectJ. In turn, we hope that this will result
in a better understanding of the strengths and limitations
of such languages as well as a clearer picture of the wider
design space for aspect-oriented languages.

3. MINI PASCAL
In this section, we introduce a simple, imperative language
that will be referred to in the following as “Mini Pascal.”
The syntax and semantics of this language are, by design,
straightforward and, we hope, uncontroversial; this will al-
low us to avoid unnecessary distractions when we use the
language as a platform for the aspect-oriented extensions
that are described in later sections.

3.1 A Syntax for Mini Pascal
The abstract syntax of Mini Pascal is captured by the type
definitions in Figure 1. There are four syntactic categories,
represented by the types Id (identifiers), IExp (integer-valued
expressions), BExp (Boolean-valued expressions), and Stmt
(Statements). The language of integer-valued expressions
includes literals (represented by Lit), the four basic arith-
metic operators (represented by :+:, :-:, :*:, and :/:) and
variables (represented by Var). The language of Boolean-
valued expressions includes constants (T and F), the stan-
dard complement of Boolean operators (negation, conjunc-
tion, and disjunction, represented by Not , :&:, and :|:,
respectively), and two integer comparison operators (:=:
and :<:). For simplicity, Mini Pascal does not include any
Boolean-valued variables. Finally, the language of state-
ments includes the empty statement (Skip), assignments
(written using :=), blocks (Begin), conditionals (If), and
while loops (While).

type Id = String

data IExp = Lit Int
| IExp :+: IExp
| IExp :*: IExp
| IExp :-: IExp
| IExp :/: IExp
| Var Id

data BExp = T
| F
| Not BExp
| BExp :&: BExp
| BExp :|: BExp
| IExp :=: IExp
| IExp :<: IExp

data Stmt = Skip
| Id := IExp
| Begin [Stmt]
| If BExp Stmt Stmt
| While BExp Stmt

Figure 1: Abstract syntax for Mini Pascal

We have made significant use of infix operators here to in-
crease the readability of our abstract syntax. The leading
colon in many of the operator names is required by Haskell
to signal the use of an infix operator as a data construc-
tor, but it also helps to distinguish the operators from their
obvious counterparts in Haskell.

The following program illustrates one possible concrete syn-
tax for Mini Pascal in a program that calculates the sum of
the numbers from 1 to 10:

total := 0;

count := 0;

while count < 10 do

begin

count := count + 1;

total := total + count

end

Using the abstract syntax described here, the same program
can be represented by the following expression:

program =
Begin [

“total” := Lit 0,
“count” := Lit 0,
While (Var “count” :<: Lit 10)

(Begin [
“count” := (Var “count” :+: Lit 1),
“total” := (Var “total” :+: Var “count”)

])
]

We will use this particular program throughout the paper to
illustrate the effects of applying different aspect extensions.

Clearly, Mini Pascal omits many important features that we

would expect to find in a more realistic imperative language
like Pascal, and all of the object-oriented extensions that are
included in languages like Java and AspectJ. For example,
Mini Pascal has only two types of value, one type of variable,
and no support for functions or methods. Even so, we will
see that it is still rich enough to be useful in illustrating the
key ideas of AspectJ.

3.2 A Direct Semantics for Mini Pascal
The meaning of Mini Pascal programs is described by se-
mantic functions that interpret each of the syntactic cate-
gories of the language in an appropriate way. Of course,
the assignment statement and variable lookup expression of
Mini Pascal operate on an implicit store that must be made
explicit in our semantics. We will model these stores as
functions mapping identifiers to corresponding integers:

type Store = Id → Int

extend :: Store → Id → Int → Store
extend s i v = \j → if i == j then v else s j

The extend function defined here will be used to describe the
process of updating a store: extend s i v represents the store
that is obtained from s by binding the value v to the iden-
tifier i . (This example also shows the syntax that Haskell
uses for λ-expressions or anonymous functions: the expres-
sion \x → e denotes the function that maps an input pa-
rameter x to the corresponding value of expression e.) We
will assume that programs begin execution in a store where
all variables are initialized to zero. In Haskell, this can be
described succinctly by the expression (const 0); the const
function used here is the name that is used for the standard
K combinator in the Haskell prelude, and is defined by the
equation const x y = x .

Now we can complete the semantics for Mini Pascal, using a
semantic function iexp to interpret each integer-valued ex-
pression as a function from stores to integers; a semantic
function bexp to interpret each Boolean-valued expression
as a function from stores to Booleans; and a semantic func-
tion stmt to interpret each statement as a store transformer:

iexp :: IExp → (Store → Int)
bexp :: BExp → (Store → Bool)
stmt :: Stmt → (Store → Store)

The definitions for each of these functions are shown in Fig-
ure 2, and will not hold any surprises. In most cases, the
constructs of Mini Pascal are interpreted by the correspond-
ing constructs of Haskell. For example, the :+: operator is
interpreted by the addition operator (+) on values of type
Int , while the Boolean conjunction :&&: is interpreted by
the standard Haskell conjunction operator &&. The inter-
pretation of blocks in the definition for stmt uses the foldr
function, which may not be familiar to those with limited ex-
perience of Haskell. In this particular case, it is used simply
to give a concise definition of the semantics of a block—
which is just a sequence of statements, written using the
Block constructor—as the composition of the transforma-
tions for each statement in the block. (In Haskell, an infix
period (.) is used to denote function composition.) Infor-
mally, the semantics of blocks can be explained by the fol-

iexp :: IExp → (Store → Int)
iexp (Lit n) = const n
iexp (e1 :+: e2) = \s → iexp e1 s + iexp e2 s
iexp (e1 :*: e2) = \s → iexp e1 s ∗ iexp e2 s
iexp (e1 :-: e2) = \s → iexp e1 s − iexp e2 s
iexp (e1 :/: e2) = \s → iexp e1 s ‘div ‘ iexp e2 s
iexp (Var i) = \s → s i

bexp :: BExp → (Store → Bool)
bexp T = const True
bexp F = const False
bexp (Not b) = \s → not (bexp b s)
bexp (b1 :&: b2) = \s → bexp b1 s && bexp b2 s
bexp (b1 :|: b2) = \s → bexp b1 s || bexp b2 s
bexp (e1 :=: e2) = \s → iexp e1 s == iexp e2 s
bexp (e1 :<: e2) = \s → iexp e1 s < iexp e2 s

stmt :: Stmt → (Store → Store)
stmt Skip = \s → s
stmt (i := e) = \s → extend s i (iexp e s)
stmt (Begin ss) = foldr (\s ss → ss . stmt s) id ss
stmt (If b t e) = \s → if bexp b s

then stmt t s
else stmt e s

stmt (While b t) = loop
where loop s = if bexp b s

then loop (stmt t s)
else s

Figure 2: A direct-style interpreter for Mini Pascal

lowing equation:

stmt (Block [s1, . . . , sn]) = stmt sn stmt s1

Notice that neither iexp or bexp returns a modified store,
reflecting the fact that Mini Pascal expressions do not have
any side-effects: there is no way for the evaluation of an
expression to change the store.

We can use the functions described here to build a simple
test harness for executing Mini Pascal programs, producing
the final store as a result:

run :: Stmt → Store
run s = stmt s (const 0)

Combining this with a simple function demo that displays
the values of the variables “count”, “total”, and “other”
in the final store, we can see the result of executing the
example program from Section 3.11:

Hugs> demo (run program)

count = 10

total = 55

other = 0

Hugs>

1The text Hugs> in the output shown here is just the prompt
of the Hugs interpreter that was used to run the examples
in this paper.

The final values shown for “count” and “total” are exactly
what we would expect for this program. The value shown for
“other” is also correct; this particular variable is not used
in the sample program and so the final value is just zero,
which was the value assigned to the variable in the initial
store, const 0.

4. A MONADIC INTERPRETER
As a first step towards an aspect-oriented version of Mini
Pascal, we will recast the interpreter from Figure 2 in a
monadic style. Monads were originally studied quite ex-
tensively in abstract areas of mathematics such as cate-
gory theory and universal algebra. More recently, monads
have received attention for the role that they can played
in extending purely functional languages with support for
side-effecting features such as I/O [11] and state [5]. In
this paper, however, our focus is on the use of monads in
denotational semantics, as described by Moggi [7, 8], and
in structuring functional programs, as described by Wadler
[12]. In fact, as many readers will have already realized, the
title of the present paper is, in part, a homage to Wadler’s
“Essence of Functional Programming,” which showed how
monads could be used to present several variations of an
interpreter for the λ-calculus, and to which we refer any
reader who finds that the following introduction to monadic
programming is too brief!

From a programming perspective, we can think of a monad
as a particular kind of abstract datatype whose values are
used to model computations. In the context of Mini Pascal,
the computations that we are interested in are state trans-
formers: functions that map a store to a value of some result
type r , and also return a (possibly updated) store:

data M r = ST (Store → (r , Store))

Given this datatype, we can use the constructor function ST
to wrap up useful state transformers as values with types of
the form M r :

setVar :: Id → Int → M ()
setVar i v = ST (\s → ((), \j → if i == j then v

else s j))

getVar :: Id → M Int
getVar i = ST (\s → (s i , s))

A computation setVar i v describes the state transformer
that updates the initial store with a new value v for variable
i , and returns the unit value (). In this case, the result type r
is just the unit type, (), and so the type of the computation
setVar i v is just M (). A getVar i computation, on the
other hand, returns the integer value for the variable i in
the initial store, and does not modify the store component.
Hence the result type r in this case is Int , and the type of
the computation itself is M Int .

To complete the definition of a monad, we must define two
special operators called return and bind (written as an infix
operator, >>=). The following declaration signals that M
is indeed a monad by providing appropriate definitions for

these functions:

instance Monad M where
return x = ST (\s → (x , s))
c >>= g = ST (\s → let ST f = c

(x , s ′) = f s
ST f ′ = g x

in f ′ s ′)

From the definition of return, we can see that a computation
of the form return x is a state transformer that just returns
the value x without modifying the state. The bind operator
corresponds to a sequencing of computations. To execute a
computation of the form c >>= g , we run the computation
c on the initial state s to obtain a result x and a modified
state s ′. Then we apply g to x to obtain a new computation
that we can execute with initial state s ′ to produce the final
result.

In this paper, we will not use the >>= operator directly.
Instead, we will make use of Haskell’s do-notation, which
the compiler translates automatically into corresponding ex-
pressions involving >>=. For example, the following function
definition uses this syntax2:

liftM 2 :: (a → b → c)→ M a → M b → M c
liftM 2 op c d = do x ← c

y ← d
return (op x y)

This definition has a simple, and intuitive reading: run the
computation c to obtain a result x ; then run the compu-
tation d to obtain a result y ; finally, use the operator op
to combine the two values x and y and return this value as
the final result. However, a Haskell compiler will actually
implement the liftM 2 function by translating the previous
definition into the following code:

liftM 2 op c d
= c >>= (\x → d >>= (\y → return (op x y)))

Whichever definition of liftM 2 you might prefer, the impor-
tant thing to notice in each case is that there is no explicit
mention of the underlying store component; the monad op-
erators that we have defined take care of propagating the
store from one statement to the next so that the program-
mer doesn’t need to do this explicitly.

With these monadic preliminaries behind us, the monadic
version of our interpreter, which is shown in Figure 3, should
be reasonably straightforward. In this version of the inter-
preter, IExp values are mapped into computations that re-
turn integers (i.e., into values of type M Int); BExp value
are mapped into computations that return Booleans (i.e.,
into values of type M Bool); and statements, which are ex-
ecuted only for their effect on the store, are mapped into
computations that return values of unit type (i.e., into val-
ues of type M ()). Some readers will have noticed that this
approach is more general than is strictly necessary: as we
have already indicated, there is no way for an expression
to change the store, and hence it is not necessary for us to

2We have chosen the strangely named liftM 2 function as
our example here because it will play an important role in
giving the semantics to binary operators in our monadic
operator. In fact this operator is actually defined, using the
same name, in the standard Haskell library called Monad .

iexp :: IExp → M Int
iexp (Lit n) = return n
iexp (e1 :+: e2) = liftM 2 (+) (iexp e1) (iexp e2)
iexp (e1 :*: e2) = liftM 2 (∗) (iexp e1) (iexp e2)
iexp (e1 :-: e2) = liftM 2 (∗) (iexp e1) (iexp e2)
iexp (e1 :/: e2) = liftM 2 (∗) (iexp e1) (iexp e2)
iexp (Var i) = getVar i

bexp :: BExp → M Bool
bexp T = return True
bexp F = return False
bexp (Not b) = liftM not (bexp b)
bexp (b1 :&: b2) = liftM 2 (&&) (bexp b1) (bexp b2)
bexp (b1 :|: b2) = liftM 2 (||) (bexp b1) (bexp b2)
bexp (e1 :=: e2) = liftM 2 (==) (iexp e1) (iexp e2)
bexp (e1 :<: e2) = liftM 2 (<) (iexp e1) (iexp e2)

stmt :: Stmt → M ()
stmt Skip = return ()
stmt (i := e) = do x ← iexp e; setVar i x
stmt (Begin ss) = mapM stmt ss
stmt (If b t f) = do x ← bexp b

if x then stmt t
else stmt f

stmt (While b t) = loop
where loop = do x ← bexp b

if x then (stmt t >> loop)
else return ()

Figure 3: A monadic interpreter for Mini Pascal

interpret IExp or BExp values using the monad M . We will
see, however, that this extra flexibility is important when we
extend our interpreter again in the next section to support
aspects.

To test our monadic interpreter, we will define a new version
of the run operator. This function uses the stmt function
to calculate the store transformer st corresponding to its
argument s. The effect of running s is just the store value
that is produced by applying st is applied to the initial store,
(const 0):

run :: Stmt → Store
run s = snd (st (const 0))

where ST st = stmt s

Although we have changed the definition of the interpreter
in quite significant ways, it still behaves in the same way as
the original version that we saw in Section 3.2:

Hugs> demo (run program)

count = 10

total = 55

other = 0

Hugs>

5. ASPECT PASCAL
In this section, we will show how our monadic interpreter
for Mini Pascal can be modified to obtain an interpreter (in

Section 5.4) for Aspect Pascal, a simple aspect-oriented lan-
guage in the style of AspectJ. In particular, we will describe
Aspect Pascal in terms of suitable notions of join points (Sec-
tion 5.1), pointcuts (Section 5.2) and advice (Section 5.3).

5.1 Join Points in Mini Pascal
Our first task is to decide what we mean by a joint point
in a Mini Pascal program. More specifically, we need to
identify the points at which the behavior of a program might
usefully be modified or extended by subsequent advice. For
the purposes of this paper, we will use just two types of
join point—corresponding to the places at which the value
of a variable is read or set—and we will use values of the
following datatype to describe each join point:

data JoinPointDesc = Get Id | Set Id

The intention here is that a value Get i will be used to de-
scribe a join point at which the variable i is read, while a
value Set i will be used to describe a join point at which
a value is assigned to the variable i . Note that values of
type JoinPointDesc represent descriptions of join points,
and many different join points may be mapped to the same
description value.

5.2 Pointcuts in Mini Pascal
As in AspectJ, we will use a language of pointcut expressions
to describe sets of join points. The abstract syntax that we
will use for pointcuts in Aspect Pascal is as follows:

data Pointcut = Setter
| Getter
| AtVar Id
| NotAt Pointcut
| Pointcut :||: Pointcut
| Pointcut :&&: Pointcut

Here, we have three primitive pointcut expressions:

• Setter represents the pointcut of all join points at
which the value of a variable is being set.

• Getter represents the pointcut of all join points at
which the value of a variable is being read.

• AtVar i represents the point cut of all join points at
which the value of a the variable i is being set or read.

There are three additional Pointcut constructors, correspond-
ing to Boolean negation (NotAt), disjunction ((:||:)), and
conjunction (:&&:), that can be used to build up more com-
plex pointcuts expressions. For example, the pointcut of
all join points at which the variable “x” is set can be de-
scribed by the expression (Setter :&&: AtVar “x”). More
formally, we can describe the semantics of pointcuts as sets
of join points (represented by characteristic functions of type

JoinPointDesc → Bool) by using the following function:

includes :: Pointcut
→ (JoinPointDesc

→ Bool)
includes Setter (Set i) = True
includes Getter (Get i) = True
includes (AtVar i) (Get j) = i == j
includes (AtVar i) (Set j) = i == j
includes (NotAt p) d = not (includes p d)
includes (p :||: q) d = includes p d ||

includes q d
includes (p :&&: q) d = includes p d &&

includes q d
includes = False

5.3 Advice in Mini Pascal
In Aspect Pascal, as in AspectJ, modifications to a program
are described using a notion of advice. Each piece of advice
includes a pointcut to specify the join points at which the
advice should be used, and an arbitrary statement, to specify
the action that should be performed. We will distinguish
between two kinds of advice here: Before advice, which will
be executed on entry to a join point, and After advice, which
will be executed on the exit from a join point:

data Advice = Before Pointcut Stmt
| After Pointcut Stmt

The following definitions provide several examples of ad-
vice that might be used in combination with the example
program from Section 3.1:

badCountSets
= After Setter

(“other” := (Var “other” :+: Lit 1))

countSets
= After (Setter :&&: (NotAt (AtVar “other”)))

(“other” := (Var “other” :+: Lit 1))

The badCountSets example here shows one attempt to main-
tain a count of the total number of assignments that are
performed during the execution of a program. It indicates
that the “other” variable should be incremented each time
we reach a Setter join point. With the semantics of Aspect
Pascal that will be presented in Section 5.4, this example
will not work properly. Our interpreter treats every part of
a program with the same advice, including those parts that
are themselves the result of advice. Hence the attempt to in-
crement “other” when a Setter join point is encountered will
result in another Setter join point, and a recursive invoca-
tion of the associated advice, resulting in a non-terminating
computation. The definition of countSets shows how this
can be remedied by using a narrower pointcut that excludes
join points for the “other” variable, but includes all other
Setter join points. Instead of leaving it to the programmer
to detect and deal with subtleties like this, it would also be
possible to change the language design. For example, we
could modify the semantics of Aspect Pascal to avoid re-
cursive application of advice altogether. Alternatively, we
might arrange for the statement component of an advice
value to be executed only at join points that are included in
the associated pointcut, and which do not involve any of the
variables used in the statement. These alternatives suggest

that there are a range of possible language design choices,
but we will not pursue them any further in this paper.

The following definition of countGets uses the same trick as
countSets to provide an aspect that will count the number
of variable reads during the execution of a program:

countGets
= After (Getter :&&: (NotAt (AtVar “other”)))

(“other” := (Var “other” :+: Lit 1))

Examples like this suggest that aspects could be useful as
a tool for certain forms of profiling. Our final example in
this section shows how advice might be used to modify the
behavior of an assignment to the variable “total” so that its
previous value is recorded in the variable “other”. In this
case, the use of Before advice, rather than After advice, is
essential to obtain the intended behavior:

saveLastTotal
= Before (Setter :&&: AtVar “total”)

(“other” := Var “total”)

In the terminology of AspectJ, any combination of advice
values can be considered as an aspect, and so we will use
lists of Advice values to represent aspects in Aspect Pascal:

type Aspects = [Advice]

For example, if we run our example program with the empty
list of aspects, [], then we would expect the same results
that we saw with the interpreters in Sections 3.2 and 4.
If, on the other hand, we used the combination of aspects
[countGets, countSets], we would expect to obtain a pro-
gram that reports the total number of reads and assignment
in the variable “other”.

5.4 A Semantics for Aspect Pascal
A complete Aspect Pascal program consists of two compo-
nents: a list of aspects and a single Mini Pascal statement
to which those aspects should be applied. We can reflect
this by extending the run function of previous interpreters
to take an extra argument of type Aspects:

run :: Aspects → Stmt → Store
run a s = snd (st a (const 0)) where ST st = stmt s

This, in turn, requires a change to our monad M to ensure
that the initial list of aspects is propagated to each part of
the program during execution; in other words, each of our
store transformers must now be modified parameterized by
a list of aspects. The modified definitions for M , and for the
monad operators return and >>=, are as follows:

data M a = ST (Aspects → Store → (a, Store))

instance Monad M where
return x = ST (\a s → (x , s))
c >>= g = ST (\a s → let ST f = c

(x , s ′) = f a s
ST f ′ = g x

in f ′ a s ′)

It is also quite easy to modify our previous definitions of
setVar and getVar to allow for the presence of the new

Aspects parameter:

setVar :: Id → Int → M ()
setVar i v = ST (\a s → ((), \j → if i == j then v

else s j))

getVar :: Id → M Int
getVar i = ST (\a s → (s i , s))

(As an aside, readers with experience using monads may
recognize that we what we are doing here just corresponds
to applying an environment or reader monad transformer,
and lifting the operations on Store values in an appropriate
way [6].) An additional monad operator is required to allow
access to the list of Aspects at any point during execution:

getAspects :: M Aspects
getAspects = ST (\a s → (a, s))

We will use the getAspect operator only once, but in a criti-
cal way, to define an operator withAdvice that makes the link
between program execution and aspects using join points.
More precisely, if c is a computation corresponding to some
join point with description d , then withAdvice d c wraps the
execution of c with the execution of the appropriate Before
and After advice, if any:

withAdvice :: JoinPointDesc → M a → M a
withAdvice d c = do aspects ← getAspects

mapM stmt (before d aspects)
x ← c
mapM stmt (after d aspects)
return x

This function has a natural reading: read the list of aspects
that are required for this execution of the program; execute
any before aspects corresponding to the join point described
by d ; execute the computation c to obtain a result x ; execute
any after aspects corresponding to the join point described
by d ; and, finally, return the value of x as the result of the
whole computation. The mapM stmt function used here
sequences the execution of a list of statements (the mapM
operator is defined in the standard Haskell prelude), while
before and after are simple utility functions that select the
before and after advice for a given join point description d
from a list of aspects as:

before, after :: JoinPointDesc → Aspects → [Stmt]
before d as = [s | Before c s ← as, includes c d]
after d as = [s | After c s ← as, includes c d]

To complete our description of the semantics of Aspect Pas-
cal, we need to modify the way that expressions and state-
ments are interpreted. In most cases, we can use exactly
the same definitions that were given in Figure 3. The only
places where changes are required, as shown in Figure 4, are
in the interpretation of variable expressions and assignment
statements, where the original calls to getVar and setVar
are wrapped by applications of withAdvice together with the
appropriate join point descriptions.

Now, at last, we can test our interpreter by running the
sample program from Section 3.1 with different combinations
of the advice values from Section 5.3:

Hugs> demo (run [] program)

iexp :: IExp → M Int
. . . = . . .

iexp (Var i) = withAdvice (Get i) (getVar i)

stmt :: Stmt → M ()
. . . = . . .

stmt (i := e) = do x ← iexp e
withAdvice (Set i) (setVar i x)

Figure 4: An interpreter for Aspect Pascal

count = 10

total = 55

other = 0

Hugs> demo (run [countSets] program)

count = 10

total = 55

other = 22

Hugs> demo (run [countGets] program)

count = 10

total = 55

other = 41

Hugs> demo (run [countGets, countGets] program)

count = 10

total = 55

other = 43

Hugs> demo (run [saveLastTotal] program)

count = 10

total = 55

other = 45

Hugs>

6. CONCLUSIONS
Work on aspect-oriented programming deals with the diffi-
cult and real problems that occur when we try to describe
modifications to a program that cut across the program’s
structure. AspectJ represents one point in the design space
for aspect-oriented programming languages, and provides, in
a Java compatible package, a solid, and well-worked out set
of AOP features. In this paper, we have used interpreters,
written in Haskell, to provided a formal, but also executable
semantics for a simple aspect-oriented language in the style
of AspectJ. Our hope is that this work will lead to a deeper
understanding of both AspectJ itself, and of the broader
design space.

It is clear that there are many possible ways to generalize
our interpreter to deal with other kinds of join point. For
example, we could modify the definition of join point de-
scriptions to include extra cases, such as:

data JoinPointDesc = . . .
| GetVal Int
| SetVal Int Int
| FDiv

Here, GetVal n might describe a join point at which a value

n is being read from a variable; SetVal new old could de-
scribe a join point at which an old value is being replaced
by a new value in a variable; and FDiv might be used to de-
scribe join points at which a division operation is performed.
(The latter might be useful, for example, on a computer
where the corrective action might sometimes be needed to
work around bugs in a particular CPU’s implementation of
division!) Occurrences of corresponding join points during
program execution can easily be flagged by wrapping the
appropriate lines in the definition of our interpreter with
suitable calls to the withAdvice function.

It is also possible to generalize our language of pointcuts to
include new forms of expression such as:

data Pointcut = . . .
| WithVal (Int → Bool)
| AtVarMatch (Id → Bool)
| InStore (Store → Bool)

Each of the additions shown here provides a predicate that
might be used to capture arbitrary conditions on the value
that is being read from a variable (using WithVal), or on the
name of the variable that is being accessed (using AtVarMatch),
or on the store in which the join point occurs (using InStore).
These examples illustrate the potential for generalization
and extensions; of course, implementing some of these fea-
tures would carry a significant overhead.

In fact, the current AspectJ implementation is not based on
an interpreter, but instead uses a program transformation
called weaving. In the context of this paper, we might try
to describe this implementation strategy by a function:

weave :: Aspects → Stmt → Stmt

In fact, it is not clear whether the abstract syntax for Mini
Pascal is rich enough for us to define such a function, but
it could certainly be extended to allow experimentation and
formalization of this approach.

As a final comment, in the sequence of interpreters that we
have shown here, we have actually demonstrated exactly the
kinds of problems that motivate the need for aspect-oriented
programming. Neither the change from our original inter-
preter to the monadic version, nor the subsequent evolution
of that program to an interpreter for Aspect Pascal were
neatly encapsulated as reusable, modular units of change!
Some readers may suggest that this is the result of a poor
design in the original program. I hope, however, that many
readers will consider this as a clear indication of the poten-
tial for an aspect-oriented functional language!

7. ACKNOWLEDGMENTS
The original versions of the interpreters described in this
paper were written after an informative and insightful tuto-
rial on AspectJ that was presented by Gregor Kiczales at a
meeting for the DARPA project on “Program Composition
for Embedded Systems.” The work has also benefited con-
siderably from feedback provided by members of the Pacific
Software Research Center (PacSoft) at OGI, and particu-
larly from stimulating and ongoing discussions with Andrew
Black on the subject of aspect-oriented programming and
related topics.

8. REFERENCES
[1] J. Gosling, B. Joy, G. Steele, and G. Bracha. The Java

Language Specification Second Edition. Addison
Wesley, 2000.

[2] M. P. Jones and J. C. Peterson. Hugs 98 User Manual,
May 1999. Available from
http://www.haskell.org/hugs/.

[3] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten,
J. Palm, and W. G. Griswold. An overview of
AspectJ. Draft white paper, submitted for
publication. Available from http://www.aspectj.org.

[4] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda,
C. V. Lopes, J.-M. Loingtier, and J. Irwin.
Aspect-oriented programming. In Proceedings of the
European Conference on Object-Oriented
Programming (ECOOP), Finland, June 1997.
Springer-Verlag LNCS 1241.

[5] J. Launchbury and S. L. Peyton Jones. Lazy
functional state threads. In Conference on
Programming Language Design and Implementation,
Orlando, FL, June 1994.

[6] S. Liang, P. Hudak, and M. Jones. Monad
transformers and modular interpreters. In Conference
record of POPL ’95: 22nd ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages,
San Francisco, California, January 1995.

[7] E. Moggi. Computational lambda-calculus and
monads. In IEEE Symposium on Logic in Computer
Science, Asilomar, California, 1989.

[8] E. Moggi. An abstract view of programming
languages. Technical Report ECS-LFCS-90-113,
Laboratory for Foundations of Computer Science,
University of Edinburgh, Edinburgh, Scotland, 1990.

[9] H. Ossher and P. Tarr. Multi-dimensional separation
of concerns using hyperspaces. Research Report 21452,
IBM, April 1999.

[10] S. Peyton Jones and J. Hughes, editors. Report on the
Programming Language Haskell 98, A Non-strict
Purely Functional Language, February 1999. Available
from http://www.haskell.org/definition/.

[11] S. Peyton Jones and P. Wadler. Imperative functional
programming. In Proceedings 20th Symposium on
Principles of Programming Languages. ACM, January
1993.

[12] P. Wadler. The essence of functional programming
(invited talk). In Conference record of the Nineteenth
annual ACM SIGPLAN-SIGACT symposium on
Principles of Programming Languages, pages 1–14,
Jan 1992.

