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Abstract

The meaning of programs in a language with implicit over-
loading can be described by translating them into a second
language that makes the use of overloading explicit. A sin-
gle program may have many distinct translations and it is
important to show that any two translations are semanti-
cally equivalent to ensure that the meaning of the original
program is well-defined. This property is commonly known
as coherence.

This paper deals with an implicitly typed language that in-
cludes support for parametric polymorphism and overload-
ing based on a system of qualified types. Typical applications
include Haskell type classes, extensible records and subtyp-
ing. In the general case, it is possible to find examples for
which the coherence property does not hold. Extending the
development of a type inference algorithm for this language
to include the calculation of translations, we give a simple
syntactic condition on the principal type scheme of a term
that is sufficient to guarantee coherence for a large class of
programs.

One of the most interesting aspects of this work is the use of
terms in the target language to provide a semantic interpre-
tation for the ordering relation between types that is used
to establish the existence of principal types.

On a practical level, our results explain the importance of
unambiguous type schemes in Haskell.

Introduction

Consider the task of evaluating an expression of the form
x + y + z . Depending on the way that it is parsed, this
expression might be treated as either (x+y)+z or x+(y+z ).
Fortunately, it does not matter which of these we choose
since the fact that (+) is associative is both necessary and
sufficient to guarantee that they are actually equivalent. We
are therefore free to choose whichever is more convenient,
retaining the same well-defined semantics in either case.

This paper deals with a similar problem that occurs with
programs in OML, a simple implicitly typed language with

∗This paper summarizes work carried out while the author was
a member of the Programming Research Group, Oxford, supported
by a SERC studentship [8]. Current address: Yale University, De-
partment of Computer Science, P.O. Box 208285, New Haven, Con-
necticut 06520-8285, USA. Electronic mail jones-mark@cs.yale.edu.
Supported in part by a grant from DARPA, contract number N00014-
91-J-4043.

overloading. The meaning of such programs can be de-
scribed by translating them into OP, an extended language
which uses additional constructs to make the use of over-
loading explicit. However, different typing derivations for a
given OML program can lead to distinct translations and,
just as in the example above, it is important to show that
any two translations have the same meaning. In the termi-
nology of [2], we need to show that ‘the meaning of a term
does not depend on the way that it was type checked’, a
property that they refer to as coherence.

The type system of OML is an extended form of the ML
type system that includes support for qualified types [7].
The central idea is to allow the use of type expressions of
the form π ⇒ σ to represent all those instances of σ which
satisfy π, a predicate on types. Applications of qualified
types include Haskell type classes, extensible records and
subtyping.

In previous work, we have described how the standard type
inference algorithm for ML can be extended to calculate
principal type schemes for terms in OML. In this paper, we
extend these results to show how an arbitrary translation of
an OML term can be written in terms of a particular princi-
pal translation determined by the type inference algorithm.
Exploiting this relationship, we give conditions that can be
used to guarantee that all of the translations for a given
term are equivalent.

The remaining sections of this paper are as follows. Section 1
outlines the use of qualified types and defines the languages
OML and OP and the translation between them that is used
in this paper. A simple example in Section 2 shows that a
single term may have semantically distinct translations and
hence that we cannot hope to establish a general coherence
result for arbitrary terms. Instead, we must look for condi-
tions which can be used to ensure coherence for as wide a
class of programs as possible.

As a first step, we need to specify exactly what it means
for two translations to be equivalent. This is dealt with
in Section 3 using a syntactic definition of (typed) equality
between OP terms.

One of the most important tools in the development of a
type inference algorithm is the ordering relation (≤) be-
tween type schemes. Indeed, without a notion of ordering,
it would not even be possible to talk about principal or most
general type schemes! Motivated by this, Section 4 gives a
semantic interpretation for (≤) using OP terms which we
call conversions.

Sections 5 and 6 extend the development of type inference



for qualified types in [7] to include the calculation of trans-
lations. In particular, we show that any translation of an
OML term can be written in the form C (λw .E ′)v where C
is a conversion of a particular kind, E ′ is the principal trans-
lation and v , w are fixed collections of variables. Hence the
task of establishing the equivalence of two arbitrary trans-
lations reduces to showing the equivalence of two terms of
the form C1(λw .E ′)v and C2(λw .E ′)v where C1 and C2 are
conversions of a particular type. One obvious way to ap-
proach this problem is to show that that these conversions
are equivalent.

Exploring this possibility in Section 7, we obtain sufficient
conditions for the equivalence of a pair of conversions of
a particular type and hence for an arbitrary pair of trans-
lations. In particular, we show that the meaning of any
term with an unambiguous principal type scheme (a simple
syntactic condition) is well-defined, generalizing an earlier
result in [1] for the special case of a system of type classes.

Section 8 concludes with a description of related work and
some ideas for further research. Further details of the work
described in this paper together with full proofs for the re-
sults presented here may be found in [8].

1 Basic definitions

This section outlines the principal features of a system of
qualified types and of OML in particular. We refer the
reader to either [7] or [8] for further details.

1.1 Predicates and evidence

A language of predicates on types is an essential component
of any system of qualified types. For example, predicates of
the form Eq τ that hold precisely when there is an equality
operator defined for values of type τ are often used in work
with type classes. Predicates are used to identify particular
sets of types, so a term with type ∀t .π(t) ⇒ f (t) can be
treated as having any of the types in the set

{ f (τ) | τ is a type such that π(τ) holds }.
An object with a qualified type can only be used if we pro-
vide evidence that the predicates involved are satisfied. A
simple choice for a predicate of the form Eq τ might be an
equality function for values of type τ , but the exact form of
evidence used in any particular application does not affect
the work described here and we think of it purely as a seman-
tic interpretation of predicates. Evidence values are written
using a language of evidence expressions that includes a set
of evidence variables v . The set of evidence variables in an
expression e is denoted EV (e).

The final component in a system of predicates is an entail-
ment relation `̀ which may vary from one application to
another. An expression of the form P `̀ e :π indicates that
we can obtain evidence e for the predicate π from the pred-
icate assignment P , a list of pairs of the form v : π′. For
example, v :Eq τ `̀ eqList v :Eq [τ ] might indicate that, if
v is bound to an equality test for values of type τ , then the
expression eqList v gives an equality test for lists of such
values.

Figure 1 lists the properties which the entailment relation is
expected to satisfy. These rules make use of some simple
abbreviations, blurring the distinction between sequences

(id) v :P `̀ v :P

(term) v :P `̀ ∅
(fst) v :P ,w :Q `̀ v :P

(snd) v :P ,w :Q `̀ w :Q

(univ)
v :P `̀ e :Q v :P `̀ e ′ :R

v :P `̀ e :Q , e ′ :R

(trans)
v :P `̀ e :Q v ′ :Q `̀ e ′ :R

v :P `̀ [e/v ′]e ′ :R

(close)
v :P `̀ e :Q

v :SP `̀ e :SQ

(evars)
v :P `̀ e :Q

EV (e) ⊆ v

Figure 1: Predicate entailment with evidence.

and individual objects. For example, if P = π1, . . . , πn is
a list of predicates and v = v1, . . . , vn is a list of evidence
variables then we write v : P for the predicate assignment
v1 :π1, . . . , vn :πn . The empty sequence is written ∅ and the
concatenation of two sequences P and Q is written P ,Q .
The letter S in rule (close) denotes an arbitrary substitu-
tion of types for type variables.

1.2 Terms and types

This paper deals with the relationship between two implic-
itly typed λ-calculi with support for qualified types. The
first of these is an extension of ML and will be referred to as
OML – an abbreviation of ‘Overloaded ML’. As in [4], the
terms of OML are those of simple untyped λ-calculus with
the addition of a let construct to enable the definition and
use of polymorphic, overloaded terms:

E ::= x variable
| EF application
| λx .E abstraction
| let x = E in F local definition

Following the distinction between types and type schemes
in ML, the types of terms in OML are given by:

τ ::= t type variables
| τ → τ function types

ρ ::= P ⇒ τ qualified types
σ ::= ∀T .ρ type schemes

where t denotes a type variable, P a finite sequence of pred-
icates and T a finite set of type variables. The → and ⇒
symbols are treated as right associative infix binary opera-
tors with → binding more tightly than ⇒. Additional type
constructors such as those for lists, pairs and record types
will be used as required. The set of type variables appearing
(free) in an expression X is denoted TV (X ) and is defined
in the obvious way. In particular, TV (∀T .ρ) = TV (ρ) \ T .

The second language will be referred to as OP – an abbre-
viation for ‘Overloaded Polymorphic λ-calculus’. The terms
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of OP are the same as those for OML with additional con-
structs for evidence abstraction and application:

E ::= . . .
| Ee evidence application
| λv .E evidence abstraction

As before, it is convenient to use some abbreviations for deal-
ing with sequences of evidence abstractions or applications.
For example, if v = v1, . . . , vn and e = e1, . . . , en , then we
write λv .E and Ee as abbreviations for λv1. . . . λvn .E and
(. . . (Ee1) . . .)en respectively.

The language of types in OP is given by the grammar:

σ ::= t type variables
| σ → σ function types
| ∀t .σ polymorphic types
| π ⇒ σ qualified types

An OML qualified type (π1, . . . , πn ) ⇒ τ can be identified
with the OP type π1 ⇒ . . . ⇒ πn ⇒ τ . OP types are con-
siderably more flexible than those of OML since there is no
distinction between simple types and type schemes. In par-
ticular, OP allows functions with polymorphic and/or over-
loaded values as their arguments. Strictly speaking, there is
no need to include the let construct in OP since we can code
a polymorphic local definition let x = E in F as (λx .F )E .
The most important benefit of including let is that it makes
it easier to treat OML as a (proper) sublanguage of OP.

1.3 Typing rules

Reasons of space prevent us from including the full typing
rules for OML and OP. Instead, we present both systems
using a hybrid with judgements P |A ` E ; E ′ : σ where
E is an OML term and E ′ is a corresponding OP term re-
ferred to as a translation of E . The first component P in
these judgements is a predicate assignment, while A is a
type assignment, i.e. a (finite) set of pairs of the form x :σ
in which no term variable x appears more than once. Type
assignments can be interpreted as finite functions mapping
term variables to types. We write A(x ) for the type assigned
to x by A, Ax for the assignment obtained by removing x
from the domain of A, and A, x :σ for the assignment which
is the same as A except that it also maps x to σ.

The typing rules are given in Figure 2. Note the use of the
symbols τ , ρ and σ to restrict the application of certain rules
to particular kinds of type expression, given by the gram-
mar for OML types above. With these restrictions in mind,
and ignoring the translation component of each judgement,
Figure 2 gives the typing rules for OML. On the other hand,
if we disregard the OML term in each judgement and ignore
the distinction between the three classes of type in OML, we
obtain the typing rules for OP. The significance of this hy-
brid formulation is that it enables us to deal simultaneously
with OML and OP terms whose typing derivations have the
same structure.

The relationship between OML terms and translations given
by the rules in Figure 2 is not functional – there is no unicity
of type, and different derivations of the same typing in OML
can result in distinct translations. On the other hand, we
can always recover the original OML term corresponding to

a given translation using the function:

Erase (x ) = x
Erase (EF ) = (Erase E ) (Erase F )

...
Erase (Ee) = Erase E
Erase (λv .E) = Erase E

1.4 Ordering type schemes

Each OML typing includes a predicate set that restricts its
use to environments in which the given predicates hold. As
such, it is convenient to work with a slightly more general
notion of type scheme which also contains constraints on the
environments in which it may be used.

Definition 1 A constrained type scheme is an expression
of the form (P |σ) where P is a set of predicates and σ is a
type scheme.

Any type scheme σ may be identified with a constrained
type scheme of the form (∅ |σ). Note that there is no need
to use constrained type schemes in OP since we can treat
(P |σ) as an abbreviation for the OP type P ⇒ σ

We will write (P ′ | σ′) ≤ (P | σ) to indicate that (P | σ) is
more general than (P ′ | σ′). A suitable ordering relation,
extending the ordering between type schemes in Damas and
Milner’s treatment of type inference for ML, was suggested
in [7] and can be characterized as follows:

Definition 2 Suppose that σ = ∀αi .Q ⇒ ν, σ′ = ∀βj .Q
′ ⇒

ν′ and that none of the variables βj appears free in σ, P or
P ′. Then (P ′ |σ′) ≤ (P |σ) if and only if there are types τi
such that ν′ = [τi/αi ]ν and P ′,Q ′ `̀ P , [τi/αi ]Q.

2 The coherence problem

To justify the use of translations as a semantics for OML,
we need to show that:

• For each OML term E there is an OP term E ′ that is
a translation of E .

• Any translation of a well-typed OML term is well-
typed in OP.

• The mapping from terms to translations must be well-
defined. In other words, we must show that any trans-
lations E1 and E2 of an OML term E given by deriva-
tions P |A ` E ; E1 : σ and P |A ` E ; E2 : σ are,
in some precise sense, equivalent.

The first two properties follow immediately from the typing
rules given above, but it is relatively simple to show that
the third property does not hold in general. For example,
Haskell [6] provides two standard functions:

read : ∀a.Text a ⇒ String → a
show : ∀a.Text a ⇒ a → String

for converting between values and their printable represen-
tations as strings. Now suppose that the type assumption A
containing these functions and that implementations have
been provided for both integers and booleans, in a predi-
cate assignment P = {u : Text Int , v : Text Bool}. Now
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(var)
(x : σ) ∈ A

P |A ` x ; x : σ

(→E)
P |A ` E ; E ′ : τ ′ → τ P |A ` F ; F ′ : τ ′

P |A ` EF ; E ′F ′ : τ

(→I )
P |Ax , x :τ ′ ` E ; E ′ : τ

P |A ` λx .E ; λx .E ′ : τ ′ → τ

(⇒E)
P |A ` E ; E ′ : π ⇒ ρ P `̀ e :π

P |A ` E ; E ′e : ρ

(⇒I )
P , v :π,P ′ |A ` E ; E ′ : ρ

P ,P ′ |A ` E ; λv .E ′ : π ⇒ ρ

(∀E)
P |A ` E ; E ′ : ∀t .σ

P |A ` E ; E ′ : [τ/t ]σ

(∀I )
P |A ` E ; E ′ : σ

P |A ` E ; E ′ : ∀t .σ t 6∈ TV (A) ∧ t 6∈ TV (P)

(let)
P |A ` E ; E ′ : σ Q |Ax , x :σ ` F ; F ′ : τ

P ,Q |A ` (let x = E in F ) ; (let x = E ′ in F ′) : τ

Figure 2: Hybrid typing rules for OML and OP

consider the composition of these two functions read . show
converting a string to some type of values, and then back
to a string. Instantiating the quantified type variable in the
type of read (and hence also that of show) determines the
type of intermediate values used and leads to the following
derivations with translations that are clearly not equivalent:

P |A ` (read . show) ; (read u . show u) : String → String
P |A ` (read . show) ; (read v . show v) : String → String

Clearly, we cannot hope to establish the general coherence
result in the third item above; i.e. that all translations of
an arbitrary OML term are semantically equivalent. In the
rest of this paper we work towards a more modest goal – to
identify a collection of OML terms for which the coherence
property can be established.

3 Equality of OP terms

Before we can establish sufficient conditions to guarantee
coherence, we need to specify formally what it means for
two terms (specifically, two translations) to be equivalent.
This section gives a syntactic characterization of (typed)
equality between OP terms using judgements of the form
P | A ` E = F : σ (with the implicit side-condition that
both P |A ` E : σ and P |A ` F : σ in OP).

3.1 Uniqueness of evidence

The use of predicate assignments in the definition of equality
enables us to capture the ‘uniqueness of evidence’; to be pre-
cise, we require that any evidence values e and f constructed
by entailments P `̀ e : Q and P `̀ f : Q are semantically

equivalent, in which case we write P ` e = f :Q . Since we
only intend such judgements to be meaningful when both
entailments hold, the definition of equality on evidence ex-
pressions can be described directly using:

P ` e = f :Q ⇔ P `̀ e :Q ∧ P `̀ f :Q .

This condition is essential if any degree of coherence is to be
obtained. Without it, for example, it would be possible to
have semantically distinct versions of an overloaded operator
that cannot be distinguished either by name or by type.

3.2 Reduction of OP terms

We will base the definition of equality on OP terms on a
notion of (typed) reductions using judgements of the form
P | A ` E > F : σ with the implicit side condition that
P |A ` E : σ in OP. There is no need to include P |A ` F : σ
as a second side condition since this follows from the first by
the subject reduction theorem – ‘reduction preserves typing’.

We split the definition of reduction into three parts, the first
of which appears in Figure 3. This includes the familiar def-
initions of β-conversion for evidence and term abstractions
and let expressions and a rule of η-conversion for evidence
abstractions.

An unfortunate consequence of this approach is that the
axiom (β) is not sound in models of the λ-calculus with
call-by-value semantics and hence our results can only be
applied to languages with lazy or call-by-name semantics.
This limitation stems more from the difficulty of axiomatiz-
ing call-by-value equality than from anything implicit in our
particular application and will be discussed in Section 8.

A second collection of rules in Figure 4 is used to describe
the renaming of bound variables in λ-abstractions, evidence
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(β) P |A ` (λx .E)F > [F/x ]E : σ

(βe) P |A ` (λv .E)e > [e/v ]E : σ

(β-let) P |A ` (let x = E in F ) > [E/x ]F : σ

(ηe)
v 6∈ EV (E)

P |A ` (λv .Ev) > E : σ

Figure 3: Rules of computation

(α)
x 6∈ FV (λy .E)

P |A ` (λy .E) > (λx .[x/y ]E) : σ

(αe)
v 6∈ EV (λw .E)

P |A ` (λw .E) > (λv .[v/w ]E) : σ

(α-let)
x 6∈ FV (λy .E)

P |A ` (let y = E in F ) > (let x = E in [x/y ]F ) : σ

Figure 4: Rules for renaming bound variables

(x :σ) ∈ A

P |A ` x > x : σ

P |A ` E > E ′ : σ′ → σ P |A ` F > F ′ : σ′

P |A ` EF > E ′F ′ : σ

P |Ax , x :σ′ ` E > E ′ : σ

P |A ` λx .E > λx .E ′ : σ′ → σ

P |A ` E > E ′ : π ⇒ σ P ` e = e ′ :π

P |A ` Ee = E ′e ′ : σ

P , v :π,P ′ |A ` E > E ′ : σ

P ,P ′ |A ` λv .E > λv .E ′ : π ⇒ σ

P |A ` E > E ′ : ∀t .σ
P |A ` E > E ′ : [τ/t ]σ

P |A ` E > E ′ : σ t 6∈ TV (A) ∪ TV (P)

P |A ` E > E ′ : ∀t .σ
P |A ` E > E ′ : σ P |Ax , x :σ ` F > F ′ : τ

P |A ` (let x = E in F ) > (let x = E ′ in F ′) : τ

Figure 5: Structural laws for reductions between terms.
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abstractions and let expressions. Any such renaming is per-
mitted so long as we avoid clashes with free variables.

The final group of structural rules in Figure 5 is closely mod-
eled on the typing rules for OP and can be used to describe
the reduction of subterms within a given term.

3.3 Equalities between terms

The rules in Figure 6 define the equality relation for terms
in OP as the transitive, symmetric closure of the reduction
relation described above. The first two rules ensure that

P |A ` E = F : σ

P |A ` F = E : σ

P |A ` E = E ′ : σ P |A ` E ′ = E ′′ : σ

P |A ` E = E ′′ : σ

P |A ` E > F : σ

P |A ` E = F : σ

Figure 6: Definition of equality between terms.

equality is an equivalence relation. There is no need to in-
clude reflexivity here since this is a direct consequence of
the structural rules in Figure 5. The last rule shows how
reductions give rise to equalities.

In practice, many of the rules used in the definition of equal-
ity above will be used implicitly in the proof of equalities
between terms. The following example uses all three of the
rules in Figure 6 (as well as subject reduction to justify the
fact that the intermediate steps are well-typed):

P |A ` let x = E in [F/x ]F ′

= [E/x ]([F/x ]F ′) (β-let)
= [[E/x ]F/x ]F ′

= let x = [E/x ]F in F ′ : σ (β-let)

The context in which this equality is established (given by
P , A and σ) does not play a part in the calculation. Ex-
amples like this are quite common and we will often avoid
mentioning the context altogether in such situations, writ-
ing ` E = F to indicate that P | A ` E = F : σ for any
choice of P , A and σ for which the required side conditions
hold.

The above property of let expressions may seem unfamiliar,
and it is worth illustrating why it is useful in our work.
Suppose that ∅ `̀ e : Eq Int and that (==) denotes an
equality function of type ∀a.Eq a ⇒ a → a → Bool . Now
consider the OML term:

let f = (λx .λy .x == y) in f 2 3.

Since the function f is only ever applied to integer values,
it is sufficient to treat f as having type Int → Int → Bool ,
with translation:

let f = (λx .λy .(==) e x y) in f 2 3

However, the type inference algorithm calculates the type of
f as ∀a.Eq a ⇒ a → a → Bool and results in a translation
of the form:

let f = (λv .λx .λy .(==) v x y) in f e 2 3.

The following calculation shows that these translations are
equal and hence that it is possible to eliminate the evidence
abstraction used in the second case. The second step is
justified by the result above.

` let f = (λv .λx .λy .(==) v x y) in f e 2 3
= let f = (λv .λx .λy .(==) v x y)

in [f e/f ](f 2 3)
= let f = [λv .λx .λy .(==) v x y/f ](f e) in f 2 3
= let f = (λv .λx .λy .(==) v x y) e in f 2 3
= let f = (λx .λy .(==) e x y) in f 2 3

As in the last step here, many equalities between terms can
be obtained by replacing one subterm with an equivalent
term. These steps are justified by the structural rules in
Figure 5 and are often used implicitly in proofs.

4 Conversions

One of the most important tools in the treatment of type
inference is the ordering relation ≤ used to describe when
one (constrained) type scheme is more general than another.
For example, assuming that ∅ `̀ e :Eq Int , the ordering:

(∀a.Eq a ⇒ a → a → Bool) ≥ (Int → Int → Bool)

might be used to justify replacing an integer equality func-
tion, say primEqInt :: Int→Int→Bool with a generic equal-
ity function with the more general type ∀a.Eq a⇒a→a→
Bool as in the previous section. This breaks down in OP due
to the presence of evidence abstraction and application: sim-
ply replacing primEqInt with (==) in primEqInt 2 3 does
not even give a well-typed expression! The correct approach
is to replace primEqInt by (==) e.

More generally, we will deal with examples like this using
OP terms as an interpretation of the ordering between type
schemes. For each σ ≥ σ′ we identify a particular collection
of terms that we call conversions from σ to σ′. Each such
conversion is a closed OP term C : σ → σ′ and hence any
term of type σ can be treated as having type σ′ by apply-
ing the conversion C to it. One possible conversion for the
example above is:

(λx .xe) : (∀a.Eq a ⇒a→a→Bool)→(Int→Int→Bool).

Note that the type of this conversion (as in the general case)
cannot be expressed as an OML type scheme since it uses
the richer structure of OP types.

For the purposes of type inference it would be sufficient to
take any term C of type σ → σ′ as a conversion for σ′ ≤ σ
but this is clearly inadequate if we are also concerned with
the semantics of the terms involved; we can only replace E
with CE if we can guarantee that these terms are equiv-
alent, except perhaps in their use of evidence abstraction
and application. More formally, we need to ensure that
` Erase (CE) = Erase E for all OP terms E (or at least,
all those occurring as translations of OML terms). Since
Erase (CE) = (Erase C ) (Erase E ), the obvious way to
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ensure that this condition holds is to require that Erase C
is equivalent to the identity term id = λx .x .

These ideas extend to conversions between arbitrary con-
strained type schemes. It is tempting to define the set of
conversions from (P ′ | σ′) to (P | σ) as the set of all closed
OP terms C : (P | σ) → (P ′ | σ′) for which Erase C is
equivalent to id . In practice it is more convenient to choose
a more conservative definition that gives more information
about the structure of conversions:

Definition 3 Suppose σ = (∀αi .Q ⇒ τ), σ′ = (∀βj .Q
′ ⇒

τ ′) and none of βj appear free in σ, P or P ′. A conversion
C from (P |σ) to (P ′ |σ′), written C : (P |σ) ≥ (P ′ |σ′), is a
closed OP term of type (P |σ) → (P ′ |σ′) such that:

• Erase C = id,

• v :P ′,w :Q ′ `̀ e :P , f : [τi/αi ]Q,

• τ ′ = [τi/αi ]τ ,

• and ` C = λx .λv .λw .xef

for some types τi , evidence variables v and evidence e.

It is straightforward to verify that the term λx .λv .λw .xef
mentioned in this definition is a conversion from (P | σ) to
(P ′ |σ′) and it follows that any equivalent OP term with the
same type will also be a conversion of the same kind. On
the other hand, we cannot assume that all such conversions
will be equivalent to this particular term since there may
be more than one choice for the types τi and hence for the
evidence expressions f in the definition above.

It is immediate from the definitions above that (P | σ) ≥
(P ′ | σ′) if and only if there is a conversion C : (P | σ) ≥
(P ′ | σ′) (this may require renaming the bound variables
of σ′ to apply the definition of conversions). As a result,
all of the properties of the (≤) ordering described in [7]
can be extended to analogous results for conversions. For
example, the following proposition shows that reflexivity of
(≤) corresponds to the identity conversion while transitivity
of (≤) corresponds to composition of conversions.

Proposition 1 For any (P | σ) there is a conversion id :
(P |σ) ≥ (P |σ). Furthermore, if C : (P |σ) ≥ (P ′ |σ′) and
C ′ : (P ′ | σ′) ≥ (P ′′ | σ′′), then (C ′ ◦ C ) : (P | σ) ≥ (P ′′ | σ′′)
where (C ′ ◦ C ) ≡ λx .C ′(Cx ).

From a categorical perspective, this proposition can be used
to show that there is a category whose objects are type
schemes and whose arrows are (equivalence classes of) con-
versions. The only additional properties needed to justify
this are that the composition of equivalence classes is well-
defined and associative, both of which are easily verified.

The ordering relation (≤) is preserved by substitutions and
the corresponding result for conversions is:

Proposition 2 If C : (P |σ) ≥ (P ′ |σ′) and S is a substitu-
tion of types for type variables, then C :S(P |σ) ≥ S(P ′ |σ′).
The ordering between type schemes extends to an ordering
between (constrained) type assignments, writing (P |A) ≥
(P ′ |A′) to indicate that (P |A(x )) ≥ (P ′ |A′(x )) for each
x ∈ dom A = dom A′. It is useful to extend the definition
of conversions to orderings between type assignments. For
the purposes of this work, it is sufficient to consider only the

case of orderings of the form A ≥ A′ and A ≥ (P |A′), the
first of which is just a special case of the second with P = ∅.
One simple approach would be to define a conversion for an
ordering A ≥ (P |A′) as a function that gives a conversion
from A(x ) to (P | A′(x )) for each x ∈ dom A. However,
whereas we might use a conversion C :σ ≥ (P |σ′) to treat a
term of type σ as having type σ′, we will typically use a con-
version between type assignments to simultaneously replace
each occurrence of a variables mentioned in the type assign-
ment with an appropriate new term. From this perspective
it seems more sensible to think of a conversion between type
assignments as a term substitution.

Furthermore, the translations of a term are calculated with
respect to a particular predicate assignment (the first com-
ponent in a derivation v : P | A ` E ; E ′ : σ) and may
involve the evidence variables in the domain of that assign-
ment. It is therefore necessary to specify these variables
explicitly as part of the type of the conversion.

Definition 4 A conversion C from a type assignment A to
a constrained type assignment (v : P | A′) with the same
domain, written C : A ≥ (v : P |A′), is a substitution such
that:

• dom C ⊆ dom A = dom A′. In particular, if x 6∈
dom A, then Cx ≡ x .

• (λx .λv .Cx ) :A(x ) ≥ (P |A′(x )) for each x ∈ dom A.

Note that the expression Cx in this definition denotes an
application of a (meta-language) substitution to a particular
variable; C is not an OP term.

Continuing with the previous example and assuming that
∅ `̀ e : Eq Int , one possible conversion for the type assign-
ment ordering

{(==) : Int → Int → Bool}
≤

{(==) : ∀a.Eq a ⇒ a → a → Bool}
would be the substitution that maps (==) to (==) e and
fixes every other variable. To see how this might be used,
consider an OP term in which the (==) has been treated
as having type Int → Int → Bool . If we replace this with a
generic equality function with the more general type, then
we need to include the evidence e for Eq Int with every use
of (==). This is precisely the effect obtained by applying
the conversion to the original term.

5 Syntax-directed translation

The next two sections follow the development of [7] to de-
scribe the relationship between an arbitrary translation of
an OML term and a particular translation determined by
the type inference algorithm. For reasons of space, we will
only sketch the details here and refer the reader to [8] for
further explanation and motivation.

The rules in Figure 2 are not well-suited to use in a type
inference algorithm since it is not always clear which (if any)
should be used to obtain an optimal (i.e. principal) typing
for a given term. Our solution is to work with the set of
typing rules in Figure 7 in which the structure of a derivation
P |A `s E ; E ′ : τ is uniquely determined by the syntactic
structure of the OML term E and to show that this syntax-
directed approach is equivalent to the original type system.
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(var)s
(x : (∀αi .Q ⇒ ν)) ∈ A P `̀ e : [τi/αi ]Q

P |A `s x ; xe : [τi/αi ]ν

(→E)s
P |A `s E ; E ′ : τ ′ → τ P |A `s F ; F ′ : τ ′

P |A `s EF ; E ′F ′ : τ

(→I )s
P |Ax , x :τ ′ `s E ; E ′ : τ

P |A `s λx .E ; λx .E ′ : τ ′ → τ

(let)s
v ′ :P ′ |A `s E ; E ′ : τ ′ P |Ax , x :σ′ `s F ; F ′ : τ σ′ = Gen(A,P ′ ⇒ τ ′)

P |A `s (let x = E in F ) ; (let x = λv ′.E ′ in F ′) : τ

Figure 7: Syntax-directed typing rules with translation

Note that the OP translation for a given OML term need not
be uniquely determined since there may be distinct choices
for the evidence values e introduced in (var)s . This, of
course, is the source of the incoherence in the translation
semantics of OML.

A simple proof by induction establishes the soundness of the
syntax-directed rules with respect to those in Figure 2.

Theorem 1 If P |A`s E ;E ′ :τ , then P |A`E ;E ′ :τ .

The reverse process, to establish a form of completeness
property by showing that every translation and typing ob-
tained using the general rules in Figure 2 can, in some sense,
be described by a syntax-directed derivation is less obvious.
For example, if P | A ` E ; F : σ, then it will not in
general be possible to derive the same typing in the syntax-
directed system because σ is a type scheme, not a simple
type. However, for any v ′ :P ′ |A `s E ; F ′ : τ , Theorem 1
shows that v ′ : P ′ |A ` E ; F ′ : τ , and the most general
typing that can be obtained from this using (⇒I ) and (∀I )
is ∅|A ` E ; λv ′.F ′ : Gen(A,P ′ ⇒ τ) where:

Gen(A, ρ) = ∀(TV (ρ) \ TV (A)).ρ.

The following theorem shows that it is always possible to
find a derivation in this way such that the inferred type
scheme Gen(A,P ′ ⇒ τ ′) is more general than the con-
strained type scheme (P | σ) in the original derivation and
that the translations are related by the corresponding con-
version.

Theorem 2 If v : P | A ` E ; E ′ : σ, then there is a
predicate assignment v ′ : P ′, a type τ ′ and a term E ′′ such
that v ′ :P ′ |A `s E ; E ′′ : τ ′ and v :P |A ` C (λv ′.E ′′)v =
E ′ : σ for some conversion C :Gen(A,P ′ ⇒ τ ′) ≥ (P |σ).

The proof (by structural induction) is quite complicated and
makes use of several results which are of interest in their own
right. In particular, if we assume that v :P |A `s E ; E ′ : τ ,
then:

• SP |SA `s E ; E ′ : Sτ for any substitution S .

• If Q `̀ e :P , then Q |A `s E ; [e/v ]E ′ : τ .

• If C :A′ ≥ (v :P |A), then v :P |A′ `s E ; E ′′ : τ and
v :P |A′ ` CE ′ = E ′′ : τ .

Each of these extends earlier results described in [7].

6 Type inference and translation

Figure 8 gives the rules necessary to extend the type in-
ference algorithm from [7] to include the calculation of a
translation. These rules can be interpreted as an attribute
grammar in which the type assignment A and OML term
E in a judgement of the form P | TA `W E ; E ′ : τ are
inherited attributes, while the predicate assignment P , sub-
stitution T , OP translation E ′ and type τ are synthesized.

Any typing and translation that is obtained using the type
inference algorithm can be derived in the syntax-directed
system:

Theorem 3 If P |TA`W E ;E ′ :τ , then P |TA`s E ;E ′ :τ .

Combining this with Theorem 1 we obtain:

Corollary 1 If P |TA`W E ;E ′ :τ , then P |TA`E ;E ′ :τ .

This is important because it shows that the ‘translation’ E ′

of an OML term E produced by the algorithm above is a
valid translation of E and, in particular, that it is a well-
typed OP term. We will refer to the translations produced
by this algorithm as principal translations. The following
theorem provides strong motivation for this terminology,
showing that every translation obtained using the syntax-
directed system can be expressed in terms of a principal
translation.

Theorem 4 If v:P|SA`sE;E ′:τ , then w:Q|TA`WE ;E ′′ :ν
and there is a substitution R such that τ = Rν, v:P `̀ e:RQ,
v :P |SA ` E ′ = [e/w ]E ′′ : τ and S ≈ RT.

The notation S ≈ RT used here means that Sα = RTα for
all but a finite number of new type variables α.

Theorem 4 can now be used to describe the relationship be-
tween arbitrary translations of an OML term and a principal
translation:

Corollary 2 Ifv:P|SA`E ;E ′ :σ, thenw:Q|TA`W E ;E ′′ :
ν for some w :Q, T, E ′′ and σ and there is a substitution R
and a conversion C :RGen(TA,Q ⇒ ν) ≥ (P |σ) such that
S ≈ RT and v :P |SA ` C (λw .E ′′)v = E ′ : σ.
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(var)W
(x :∀αi .P ⇒ τ) ∈ A βi and v new

v : [βi/αi ]P |A `W x ; xv : [βi/αi ]τ

(→E)W
P |TA `W E ; E ′ : τ Q |T ′TA `W F ; F ′ : τ ′ T ′τ

U∼ τ ′ → α α new

U (T ′P ,Q) |UT ′TA `W EF ; E ′F ′ : Uα

(→I )W
P |T (Ax , x :α) `W E ; E ′ : τ α new

P |TA `W λx .E ; λx .E ′ : Tα → τ

(let)W
v :P |TA `W E ; E ′ : τ P ′ |T ′(TAx , x :σ) `W F ; F ′ : τ ′ σ = Gen(TA,P ⇒ τ)

P ′ |T ′TA `W (let x = E in F ) ; (let x = λv .E ′ in F ) : τ ′

Figure 8: Type inference algorithm with translation

7 Coherence results

Corollary 2 is important because it shows that any transla-
tion of an OML term E in a particular context can be writ-
ten in the form C (λw .E ′)v where E ′ is a principal trans-
lation and C is the corresponding conversion. Applied to
two arbitrary derivations v : P | A ` E ; E ′1 : σ and
v :P |A ` E ; E ′2 : σ, it follows that:

v :P |A ` E ′1 = C1(λw .E ′)v : σ and
v :P |A ` E ′2 = C2(λw .E ′)v : σ

where C1 and C2 are conversions from the principal type
scheme to (P | σ). One obvious way to ensure that these
translations are equal is to show that C1 = C2.

7.1 Equality of conversions

Taking a slightly more general view, suppose that C1, C2 are
conversions from σ to (P ′ |σ′). Without loss of generality, we
can assume that σ = (∀αi .Q ⇒ ν) and σ′ = (∀α′j .Q ′ ⇒ ν′)
where the variables α′j only appear in (Q ′ ⇒ ν′). Using the
definition of conversions, it follows that there are types τi
such that ν′ = [τi/αi ]ν, C1 = λx .λv ′.λw ′.xef and

v ′ :P ′,w ′ :Q ′ `̀ e :P , f : [τi/αi ]Q .

Similarly for C2 there are types τ ′i such that ν′ = [τ ′i/αi ]ν,
C2 = λx .λv ′.λw ′.xe ′f ′ and

v ′ :P ′,w ′ :Q ′ `̀ e ′ :P , f ′ : [τ ′i/αi ]Q .

Clearly, it is sufficient to show e = e ′ and f = f ′ to prove
that the these two conversions are equivalent. The first
equality is an immediate consequence of the uniqueness of
evidence; both e and e ′ are evidence for the predicates P
under the evidence assignment v ′ : P ′,w ′ : Q ′ and so must
be equal. The same argument cannot applied to the second
equality since the predicates [τi/αi ]Q may not be the same
as those in [τ ′i/αi ]Q due to differences between τi and τ ′i .
Nevertheless, [τi/αi ]ν = ν′ = [τ ′i/αi ]ν, and so τi = τ ′i for
all αi ∈ TV (ν). Hence if {αi} ∩ TV (Q) ⊆ TV (ν), then
the two predicate sets [τi/αi ]Q and [τ ′i/αi ]Q will be equal
and f = f ′ as required. We will give a special name to type
schemes with this property:

Definition 5 A type scheme σ = ∀αi .Q ⇒ ν is unambigu-
ous if {αi} ∩ TV (Q) ⊆ TV (ν).

The same concept of unambiguous type schemes is used in
Haskell, motivating our use of the term here. The discussion
above shows that all conversions from an unambiguous type
scheme are equivalent:

Proposition 3 If C1, C2 :σ ≥ (P ′ |σ′) are conversions and
σ is an unambiguous type scheme then C1 = C2.

7.2 Equality of translations

As an immediate corollary, it follows that, if the principal
type scheme for a term E is unambiguous, then any two
translations of E must be equivalent:

Theorem 5 If v : P | A ` E ; E ′1 : σ and v : P | A `
E ; E ′2 : σ and the principal type scheme of E in A is
unambiguous, then v :P |A ` E ′1 = E ′2 : σ.

This generalizes an earlier result by Blott [1] for the special
case of the type system in [13].

Theorem 5 is easy to work with in concrete implementations.
The first step in type-checking an OML program is to use
the type inference algorithm to calculate its principal type
and translation. If the program does not have a principal
type, then it cannot be well-typed and will be rejected. If
the principal type is not unambiguous, then we cannot guar-
antee a well-defined semantics and the program must again
be rejected. For example, the principal type scheme of the
term out (in x ) in the example in Section 2 is ∀a.C a ⇒ Int
which is ambiguous and hence the program will not be ac-
cepted.

Note that Theorem 5 gives a condition that is sufficient, but
not necessary, to guarantee coherence. For example, any
attempt to compare the empty list with itself in Haskell by
evaluating [] == [] leads to an error since this term has an
ambiguous principal type Eq [a] => Bool, even though it
should evaluate to True for any choice of the type variable
a. On the other hand, this cannot be established using the
definition of equality in Section 3 and we might conjecture
that the restriction to terms with unambiguous principal
types is both necessary and sufficient to guarantee coherence
with respect to that formulation of provable equality.
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8 Related work

A number of researchers have investigated the coherence
properties of particular type systems using a process of nor-
malization of typing derivations. Examples of this include
systems with explicit subtyping [2, 3], a form of implicit sub-
typing called scaling [12] and an earlier treatment of type
classes [1]. The basic idea in each case is to give a col-
lection of reduction rules and prove that they are confluent,
that they preserve meaning and that any reduction sequence
terminates (and hence, that the rules are strongly normaliz-
ing). The confluence property guarantees the existence of a
unique normal form and the fact that meaning is preserved
by reduction is then sufficient to guarantee coherence.

In the work described in this paper, the rules for reductions
between terms in Section 3.2 correspond to reductions be-
tween derivations and the formulation of the syntax-directed
system can be thought of as a means of identifying the ‘nor-
mal forms’ of a derivation. From this perspective, Theorem 2
can be interpreted as a proof that the reduction process ter-
minates and that it preserves meaning. However, having
shown that the coherence property does not hold in the gen-
eral case (Section 2) we do not guarantee the existence of
unique normal forms or confluence.

The most important and novel feature of our work is the use
of conversions to give a semantic interpretation to to order-
ing between constrained type schemes. In effect, a conver-
sion acts as a record of the way in which one derivation is
reduced to another. Some of this information is lost because
we do not distinguish between conversions that are provably
equal but, as we have seen, we retain sufficient detail to es-
tablish useful conditions that guarantee coherence.

Our use of conversions is closely related to Mitchell’s use
of retyping functions in [9] to give minimal typings for a
restricted set of terms in a version of the pure polymorphic
λ-calculus. The flexibility of the language of types in the
systems considered by Mitchell (essentially the same as those
in OP but without qualified types) is largely responsible for
the difficulty of extending this to a larger collection of terms.
These problems have been avoided here by working with
the OML type system which is based on a more restricted
collection of type schemes.

One of the biggest limitations of our work is caused by the
decision to include β-reduction in the definition of equality
(Section 3.2). As an immediate consequence, the results in
this paper cannot be applied to languages with call-by-value
semantics. The same problem occurs in other work, includ-
ing the coherence proof in [1]. One possibility would be to
rework these results using an axiomatization of equality for
call-by-value semantics such as that given by Riecke [11],
but it would clearly be preferable to find a single formula-
tion that can be used for both cases.

Another promising approach would be to use ideas from cat-
egory theory as in [10] for a language with intersection types
and subtyping, and in [5] for a system of type classes. One
of the main attractions of the categorical approach from the
theoretical standpoint is the increased generality resulting
from a higher level of abstraction. The main benefit for
practical work is likely to be the ‘variable-free’ approach
which avoids some of the messy technical details involving
free and bound variables. As mentioned in Section 4, our
treatment of conversions has a strong categorical flavour and
we would hope to be able to extend the techniques devel-

oped here to provide a more general treatment of coherence
for qualified types.
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