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Abstract

It has often been suggested that functional languages provide an excellent basis for
programming parallel computer systems. This is largely a result of the lack of side
effects which makes it possible to evaluate the subexpressions of a given term without
any risk of interference.

On the other hand, the lack of side-effects has also been seen as a weakness of func-
tional languages since it rules out many features of traditional imperative languages
such as state, I/O and exceptions. These ideas can be simulated in a functional lan-
guage but the resulting programs are sometimes unnatural and inefficient. On the
bright side, recent work has shown how many of these features can be naturally incor-
porated into a functional language without compromising efficiency by expressing com-
putations in terms of monads or continuations. Unfortunately, the “single-threading”
implied by these techniques often destroys many opportunities for parallelism.

In this paper, we describe a simple extension to the Haskell I/O monad that allows
a form of explicit high-level concurrency. It is a simple matter to incorporate these
features in a sequential implementation, and genuine parallelism can be obtained on a
parallel machine. In addition, the inclusion of constructs for explicit concurrency en-
hances the use of Haskell as an executable specification language, since some programs
are most naturally described as a composition of parallel processes.

∗This research was supported by ARPA via a subcontract to Intermetrics, Inc.
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1 Introduction

It has long been suggested that functional languages, particularly those with non-strict
semantics, provide an excellent tool for parallel computation. The principal motivation for
such claims is that, because of the lack of side-effects, there will often be opportunities
to evaluate the subexpressions of a given term in parallel without any risk of interference.
Furthermore, since there is no explicit mapping of specific tasks to particular processing units,
a single functional program may be mapped onto a range of different parallel architectures.
This mapping can be performed at compile-time or dynamically at run-time to make best
use of the resources available without any need for reprogramming.

On the other hand, the lack of side-effects has also been viewed as one of the biggest
disadvantages of functional languages. In particular, many features of traditional imperative
languages – state, I/O, and exceptions, for example – are most naturally described in terms
of side-effects. While it is possible to simulate these techniques in a functional language, the
results may not always be satisfactory:

• Although it may be possible to code the same algorithm in a different way, the encoded
programs are sometimes more cumbersome since the implicit state, continuations, etc.
in an imperative language must be handled explicitly in the functional program.

• The resulting programs are not always as efficient as the corresponding imperative
language, and optimization strategies are often complex, hard to reason about, and
implementation dependent.

In recent years, there have been several proposals describing how these problems can be
avoided without compromising the use of functional languages. In particular, we mention the
use of monads [22, 23, 18] and mutable abstract datatypes (MADT’s) [8]. The most important
idea in each case is the use of an abstract datatype to control the way the imperative features
are used. This goes a long way toward solving both problems mentioned above: “hiding”
the imperative features in the ADT results in less cumbersome programs, and limiting the
kinds of operations on them can lead to guaranteed efficient performance. Unfortunately,
these efforts were aimed primarily at recovering the expressiveness and efficiency of sequential
imperative languages, and thus the level of control is somewhat more restrictive than hoped,
defeating many important opportunities for parallel execution.

In this paper, after a survey of the issues described above in Sections 2 and 3, we identify
a class of commutative monads for which parallel computation is still possible, as captured
by a new fork primitive in Haskell’s I/O monad (Section 4). The commutativity of these
monads is what guarantees determinacy in their parallel execution, even in the presence of
side-effects. As with sequential computation, however, being able to express non-determinate
computation is another degree of freedom and expressiveness, and yields even more oppor-
tunities for parallelism. As is well-known, this indeterminacy is often only at a local level,
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placing proof obligation of determinacy at a more global level on the programmer (for ex-
ample, parallel updates to an array is determinate if no one element is updated more than
once).

Motivated by this, Section 5 outlines an extension to the Haskell I/O monad to support
communicating processes in the style Hoare’s CSP [5] or occam1 [11, 12]. In particular, we
treat channels as first-class values and use them to interconnect processes (functions par-
ticipating in the I/O monad). Several examples are given of this explicit style of parallel
functional programming: pipelines (Section 6), parallel sieve of Eratosthenes (Section 7,
demonstrating the ability to generate new parallel process dynamically), and a sorting pro-
gram (Section 8).

We assume the reader to be familiar with Haskell or similar functional language; we
have in fact implemented the ideas in this paper in Gofer, an “extended subset” of Haskell.
Implementation issues are discussed in Section 9. Finally, Section 10 concludes with pointers
to areas for further work and investigation.

2 Parallel Execution of Functional Programs

Functional languages, particularly those with non-strict semantics and an absence of side-
effects, have often been suggested as powerful tools for programming parallel computer sys-
tems.

As a simple, almost trivial illustration of this, suppose that we wish to find the value
of an expression of the form e1 + e2 . This in turn requires that we evaluate both e1 and
e2 . In an imperative language, the evaluation of either of these subexpressions may cause
a side-effect which may affect the value of the other subexpression. As a result, if we want
a well-defined semantics for the language, then we must arrange for the two expressions to
be evaluated sequentially in some predefined order. On the other hand, a pure functional
language’s semantics guarantees that neither evaluation can interfere with the other so we
can evaluate the arguments in parallel and then, when both argument values are known,
calculate their sum.

2.1 Implicit Parallelism

The ability to write programs without worrying about how they will be mapped onto partic-
ular parallel architectures has obvious benefits. However, if this information is not included
explicitly as part of the program then we need to find a good automated strategy for deciding
when to start new parallel computations. Much work has been done in this area, both static
compile-time techniques and dynamic run-time techniques, and ranging in degree of paral-
lelism from conservative approaches in which parallel computations are started only when

1Occam is a trademark of the INMOS group of companies.
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it is certain that their results will be needed, to more liberal approaches where evaluations
are begun speculatively, before it is known for sure that the results will be needed. For lazy
languages, various forms of strictness analysis play a key role in uncovering useful forms of
parallelism. It is beyond the scope of this paper to discuss these issues in any detail, but in
this section we give a few programming examples in which the parallelism is implicit.

2.2 A Simple Form of the N-body Problem

Consider a simple form of the n-body problem, modeling the behaviour of a collection of
bodies subject, for example, to mutual gravitational or electrostatic forces. This example is
inspired by work on the parallel language Proteus [15].

To avoid going into details about any particular physical model, we assume only that we
have already been given functions:

between :: (Body ,Body) → Force
move :: Force → Body → Body

that can be used to calculate the force on one body as a result of a second, and the new
position of a particular body subject to a given force for some small, fixed unit of time δt .
(We assume that the Body type includes physical attributes of the body such as its mass,
velocity and position.)

The simulation of a collection of bodies can be modeled as a sequence of different con-
figurations, with the transition from one to the next defined as:

next :: [Body ] → [Body ]
next bs = [move (sum [ between (b, b ′) | b ′ ← bs ]) b | b ← bs ]

In other words, for each body we calculate the sum of the forces acting on it, and use that
to calculate its new position. This definition can be used exactly as it is written here in a
standard sequential implementation of Haskell. But with an appropriate parallel evaluation
strategy, the same program could be executed on a parallel architecture as well, the nested
list comprehensions being used to distribute the calculation of inter-body forces over an array
of processors.

2.3 Making Parallelism Explicit

While the treatment of parallelism in the example above seems rather attractive, it assumes a
parallel implementation good enough to exploit the inherent parallelism. Even if successful,
it may be difficult for the programmer to reason about the resulting behavior, since doing
so requires a good understanding of the particular implementation being used.
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One way to try and obtain more reliable performance on parallel architectures is to include
“annotations” in the program to indicate when parallel computation might be beneficial. For
example, we might choose to write par x y to indicate that the two values x and y are to be
evaluated in parallel, returning the evaluated pair (x , y) only when both components have
been evaluated. Semantically, the par function can be thought of as the projection:

par :: a → b → (a, b)
par x y = if x 6= ⊥ ∧ y 6= ⊥ then (x , y) else ⊥

The use of annotations such as these is the basis, for example, of para-functional program-
ming [7], in which both explicit mapping and explicit scheduling of expression evaluation is
permitted. In this paper we will explore this idea only to the extent implied above: a simple
way to provide a “hint” to the compiler that parallelism is intended.

One might argue that providing such a “hint” still does not solve the portability problem:
a particular implementation could simply ignore the hint! However, having the hints at least
provides a precise handle on which implementations can declare to either execute things in
parallel or not, and furthermore one could provide a formal parallel operational semantics
that a valid parallel implementation would be obliged to satisfy.

We also note that introducing the par function into a program may affect its semantics;
for example:

fst (1 , 3/0 ) = 1 6= ⊥ = fst (par 1 (3/0 )).

A sophisticated projection-based strictness analyzer may sometimes be able to determine
when the par projection can be inserted without changing the semantics of the program,
but this causes all the same problems with portability and ease-of-reasoning mentioned
earlier. Furthermore, as parallel programmers, we may wish to limit the places where such
annotations are inserted in the first place.

The par function is easily extended to other datatypes. For example, the following
definition might be used to describe the parallel evaluation of the elements of a list:

parl :: [a] → [a]
parl [ ] = [ ]
parl (x : xs) = (y : ys) where (y , ys) = par x (parl xs)

Of course, for the purposes of compiler optimizations, it might be best if functions like this
are included in the system as primitives, rather than user-defined functions whose properties
must be determined by static analysis. One way to exploit this may be to explore the appar-
ent connection between functions like par and parl and the use of strict data constructors ,
as provided in some implementations of Haskell [1]. Alternatively, these functions may be
defined directly using the lower-level annotations of para-functional programming.

To illustrate the use of these annotations, the only change to the next function described
in the treatment of the n-body problem in the previous section would be to insert a call to
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parl at the outermost level:

next :: [Body ] → [Body ]
next bs = parl [move (sum [ between (b, b ′) | b ′ ← bs ]) b | b ← bs ]

We might also want to consider adding another call to parl for each of the inner lists involved
in this expression. However, in a parallel implementation, it would be reasonable to expect
that the opportunity to evaluate the elements of these lists in parallel would already be
incorporated as part of the definition of sum. For example, the sum function might well
be defined using an equation of the form sum = sum ′ . parl for some suitable list-summing
function sum ′.

Of course, even with some annotations, it may still be possible to get better performance
on particular architectures by expressing the algorithm in a different form. Following again
the work in [15], to obtain good performance on a SIMD/vector machine the definition of
next above can be rewritten as:

next :: [Body ] → [Body ]
next bs = let qs = parl [ (b, b ′) | b ← bs , b ′ ← bs ]

fs = parl (mapbetweenqs)
vs = parl (segSum (lengthbs) fs)
bs ′ = parl (zipWith move vs bs)

in bs ′

Although this may appear a bit odd at first sight, the idea is that each line in the definition
corresponds to a single vector-level operation, as implied by the explicit parl annotations.
Of course, further refinement may be necessary in some cases, depending on the definitions
of between and move and on the underlying architecture. (zipWith is defined in the standard
prelude for Haskell. The segSum function is not included but is easily defined: segsum n fs
is evaluated by splitting the list fs into n segments of length n and calculating the sum of
the values in each segment.)

Defining and applying effective transformation rules targeted at particular kinds of pro-
cessor architecture is difficult. This is an important area of current research and will not be
addressed here, other than to point out that transformations such as employed in Proteus
[19], for example, are most easily carried out in a functional (as opposed to imperative)
framework.

3 Functional Programming and Side-Effects

In the previous sections, we have seen how the lack of side-effects in a functional language
leads to a simple treatment of parallel computation. At the same time, the lack of side-effects
is often cited as an inherent weakness of functional languages:
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• I/O, for example, seems to inherently involve side effects. Many useful forms of I/O
can actually be expressed in terms of lazy streams without using side-effects, and this
is in fact the basis of the I/O design for Haskell [9]. However, for some applications, it
has been suggested that programming in this style is cumbersome and unnatural.2

• Efficiency is another important issue. To illustrate this, consider a very simple treat-
ment of arrays in a functional language, using the functions:

mkArray :: Int → Array a
lookup :: Int → Array a → a
update :: Int → a → Array a → Array a

which describe array construction, indexing and updating, respectively. Although “nat-
ural” in a functional setting, this design unfortunately may be very inefficient, because
in general the update operation will require making a complete copy of its array argu-
ment before making the update, which is considerably more expensive than a simple
in-place update.

This is the well known “aggregate update problem” in functional languages. Many
solutions to the problem have been proposed, but space limitations preclude a detailed
discussion here. The solution that most interests us, however, is described in the next
section.

3.1 Mutable ADTS, Monads, and Continuations

In recent years, it has become clear that many of the problems described above can be
avoided without breaking any of the properties of purely functional programs. In short, we
can have our cake and eat it too!3

The essential idea is to use an abstract datatype (ADT) to control the way in which
imperative features are used. In particular, the state itself is “hidden” inside the ADT,
making it implicit in much the same way that state is implicit in an imperative language.
The operations on the ADT are then limited to two kinds: (1) operations that manipulate
(read, write, etc.) the state, and (2) combinators that compose the operations in (1). All of
these operations can be given purely functional semantics, but they are collectively designed
in such a way that the state is always “single-threaded,” thus permitting a safe and efficient
implementation using side-effects. We will refer to such an ADT as a mutable ADT, or
MADT for short.

The first example of an MADT was discovered by Wadler for an array ADT in his work
on monads [22, 23]. Hudak later generalized the approach by discovering both direct and

2it often seems that the term unnatural is used as a synonym for “not the same as in C’. In such cases,
it might well be fairer to describe functional I/O as being unfamiliar rather than unnatural.

3Or, as expressed in [8], “We can have our state and munge it to!” where “munge” is a highly technical
word meaning “to mutate.”
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continuation-passing versions of the array MADT [8]. Hudak was also able to identify a
large class of ADT’s for which MADT’s in monadic, direct, or continuation-passing style
could be derived automatically. Wadler and Peyton-Jones, in the meatime, continued with
the monadic style to develop a form of monadic I/O, which has now been adopted by both
the Yale and Glasgow Haskell Projects as the preferred mode of I/O [18]. In our work on
parallelism in this paper we will also express things in a monadic style.

The discovery of this general technique for incorporating imperative-like features in a
functional language has created somewhat of a new style of functional programming, referred
to by Wadler and Peyton-Jones as “imperative functional programming.” The idea has
received quite a bit of attention because it eliminates many of the criticisms often heard
about functional langauges, and opens up interesting new application areas as well.

3.2 Monad Basics

Any monad can be described by a (unary) type constructor m together with a collection
of operations. Using the notation of constructor classes [13], the class of monads can be
specified as:

class Monad m where
result :: a → m a
bind :: m a → (a → m b) → m b

The constructor class notation is convenient because it allows us to use the same names
for generic operations on monads. However, no detailed knowledge of constructor classes is
required to be able to understand this paper.

One way to understand the use of monads is to think of values of type m a as representing
computations which return values of type a. This distinction between computations and
values reflects the fact that the use of particular programming language features in a given
calculation is a property of the computation itself and not of the result that it produces.

As the definition above indicates, every monad has at least two operations, result and bind
– these are the “combinators” referred to earlier. They are an essential part of the monad,
but we will often say simply that a particular type constructor “is a monad” assuming that
suitable definitions of these two operations have been specified for that constructor. The
intuitive meaning for these operations is as follows:

• An expression of the form result e represents the trivial computation which produces
the result e with no further action.

• The bind operator can be thought of as a way of sequencing two computations. It
is usually convenient to write bind as an infix operator (just as the semi-colon is the
infix sequencer in an imperative language), which can be accomplished in Haskell by
enclosing the operator name between backquotes. An expression of the form m ‘bind ‘ f
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denotes a computation which first carries out the computation described by m to obtain
a result r . Applying the function f to this result gives a new computation f r which
is executed to obtain a final result.

3.3 Algebraic Properties of Monads

Technically, to complete the definition of a monad, the bind and result functions are also
required to satisfy a small collection of algebraic laws. These laws are not important to
understanding the rest of the paper, but we include them for completeness. It is particularly
useful to be able to refer to laws like these during program development and proof.

The laws can be stated directly in terms of bind (as is done in [23]), but they are much
simpler if we first introduce an auxiliary function (called the Kleisli composition) defined by:

(@@) :: Monad m ⇒ (b → m c) → (a → m b) → (a → m c)
(f @@g) x = g x ‘bind ‘ f

The expression Monad m in the type of this function indicates that the (@@) operator can
be used for any monad m. The algebraic laws that the monad operators must satisfy can
now be stated very simply as:

f @@result = f result@@g = g (f @@g)@@h = f @@(g@@h)

for any f , g and h of suitable types. In other words, the Kleisli composition is associative,
with result as both a left and right identity.

3.4 Monads and Arrays

To make some of the descriptions in the previous sections a little more concrete, we will
briefly outline a monadic implementation of arrays with efficient array update and lookup.
The reader should refer to [22, 23, 8] for further insight and motivation.

We start with the definition of two abstract types, one for the arrays and one for the
monad which will be used to control the way that these arrays are used.

data RefArr a - - References to arrays of values of type a, indexed by integers
data A a - - The array monad

Elements of type RefArr a should be thought of as references, or pointers, to arrays of values
of type a rather than as the arrays themselves.

The three primitives described above for array creation, update and lookup will be rep-
resented in this framework by the following operations on the abstract datatype:

mkArray :: Int → A (RefArr a)
update :: RefArr a → Int → a → A ()
lookup :: RefArr a → Int → A a
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There are two interesting points to notice here. First, the return type of each of these
functions involves the type constructor A. This illustrates how the abstract datatype helps
to control the way that these values are used; the only operations that can be applied to
such values are those which are defined as part of the ADT. The second point is that the
return type of update is () rather than RefArr a. There is no need for update to return a
new array since the array update will be “hidden,” and performed in-place. (We adopt the
convention that functions which are used purely for their effect return a value of type ().)

By themselves, the operations above do not enable us to carry out any useful compu-
tations: they provide various ways of constructing values of type of A a, but there are no
operations that can be used to combine or manipulate such values! Recall, however, that
this is what the monad combinators are for. Thus we assume that A is a monad:

instance Monad A - - defines monad operations for A

In effect, this declaration indicates that we can use the standard monad operations:

result :: a → A a
bind :: A a → (a → A b) → A b

to combine values of type A a and return results.

The following definition shows how these monadic versions of array operations might be
used to implement the swap function described earlier:

swap :: RefArr a → Int → Int → A ()
swap a i j = lookup a i ‘bind ‘ \ ai →

lookup a j ‘bind ‘ \ aj →
update a i aj ‘bind ‘ \ () →
update a j ai ‘bind ‘ \ () →
result ()

Finally, we need a mechanism to create a “local imperative scope” where arrays may
be allocated, manipulated, and eventually discarded. We use the function beginArr of type
A a → a for this purpose. As an example, here is a simple program using all of the functions
presented so far, including a call to the function swap; the reader should verify that the
result is the value True:

beginArr
(mkArray 10 ‘bind ‘ \ a →
update a 1 True ‘bind ‘ \ () →
update a 2 False ‘bind ‘ \ () →
swap a 1 2 ‘bind ‘ \ () →
lookup a 2 ‘bind ‘ \ x →
result x )
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The implementations of these functions, together with the implementation of A, is hidden.
However, it may be helpful to think of an expression of type A a as evaluating to a command
that will produce a value of type a when they are executed. Commands are also sometimes
described as state transformers because they can be thought of as functions of type State →
(a, State) that map some initial state value to a final state, together with the result value.
The following (informal) definition gives an indication of how the semantics of the monad
operations might be described in this framework:

instance Monad A where
result x = \s → (x , s)
m ‘bind ‘ f = \s → let (x , s ′) = m s in f x s ′

In practice, since the operations on A a ensure that the state is single-threaded, we can
actually avoid passing the state around as a runtime parameter.

3.5 Monads and Sequential Computation

Two of the most fundamental constructs in an imperative language are the skip command
and the ability to sequence one command after another, often represented by a semicolon.
These can be defined in an arbitrary monad as follows:

skip :: Monad m ⇒ m ()
skip = result ()

bind :: Monad m ⇒ m a → m b → m b
p ‘bind ‘ q = p ‘bind ‘ \ → q

The underscore character used for the argument of the λ-expression in the definition of bind
is a “wildcard” and indicates that any value returned by the computation p will be ignored.
This, coupled with the fact that the semi-colon symbol is already used for other purposes in
Haskell, motivates our use of the name bind .

bind can be used to simplify somewhat the programs given earlier. It can also be used
to define a simple way to sequence a list of commands:

seq :: Monad m ⇒ [m a] → m ()
seq = foldr (bind ) skip

A typical application of this might be initializing the elements of an array to zero:

initArray :: RefArr Int → Int → A ()
initArray a n = seq [ update a i 0 | i ← [0..n] ]
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4 Parallel Execution in a Monad

Initializing the elements of an array as in the example above is an obvious place where
we might hope to use parallel evaluation. Since each update command changes a different
location in the array, there is no reason we should not update all of the entries in the array
at the same time. Unfortunately, the semantics of the monad require that all of the updates
are carried out in strict sequence.

The annotations for explicit parallelism discussed in Section 2.3 are not particularly useful
here either. For example, we might try to write the definition of initArray using parl as:

initArray :: RefArr Int → Int → A ()
initArray a n = seq (parl [ update a i 0 | i ← [0..n] ]).

All this accomplishes is the evaluation of the update commands in parallel; they will still be
executed sequentially. Removing the call to seq would not solve this problem; the initArray
function would just return a list of (unexecuted) commands.

To be able to do any useful form of parallel computation in a monad we need some way
of executing commands in parallel. The class of monads which support this kind of parallel
execution might be defined as:

class Monad m ⇒ ParMonad m where
fork :: m a → m b → m (a, b)

The basic idea here is that fork executes a command of type m a in parallel with a second
command of type m b. When the two processes have both terminated, the fork command
returns the result of each as a pair. The fork function is essentially a monadic version of
the par function defined in Section 2.3; for example, the types of the two functions are very
similar, the only difference being that the type for fork wraps each argument (and the result)
inside the monad constructor.

4.1 Commutative Monads

There are two simple ways that we might define a fork function for an arbitrary monad that
are, at the very least, type correct:

fork1 p q = p ‘bind ‘ \ x → q ‘bind ‘ \ y → result (x , y)
fork2 p q = q ‘bind ‘ \ y → p ‘bind ‘ \ x → result (x , y)

However, we may be concerned that these definitions do not give the correct operational
behaviour; fork1 appears to run the computation p first, followed by q , while fork2 adopts
the reverse order.

12



It is important to realize that, in the context of a non-strict language, these assumptions
about the order of evaluation need not be true. In the general case, there is no reason why the
monadic bind operator should induce a strict, left-to-right, sequential order of evaluation.
There are already a number of examples in the literature which illustrate this point; for
example:

• Launchbury [14] has investigated the use of a non-strict bind operator to give a seman-
tics for state-based computations that is analogous to lazy evaluation.

• Wadler [23] describes the use of a form of state monad in which the state propagates
from right-to-left as the computation proceeds from left-to-right.

• Fasel [4] describes an array monad that permits parallel updates on contiguous, but
disjoint, portions of an array, as well as fork and wait primitives for spawning parallel
tasks; Fasel’s work is most similar to ours.

As an example of a monad in which the bind operator does not require any form of sequential
evaluation, consider the following specification for a Gensym monad, motivated in part by
the work reported in [21]:

data Gensym a - - the Gensym monad
instance Monad Gensym

data Name - - An abstract type of names with
instance Eq Name - - equality as the only operation

gensym :: Gensym Name - - A process to generate new names

The Gensym monad is useful in applications where it is necessary to be able to obtain “new
names” as a computation proceeds. Typical applications include renaming, converting a tree
to a DAG, and generating “fresh” type variables in a type checker. Names are represented by
the abstract datatype Name. Adapting an example presented in [13], and given a datatype
of trees defined by:

data Tree a = Leaf a | Tree a :ˆ: Tree a

the Gensym monad might be used to label each node of the tree with a distinct Name using
the function:

label :: Tree a → Gensym(Tree (a,Name))
label (Leaf x ) = gensym ‘bind ‘ \ n →

result (Leaf (x , n))
label (l :ˆ: r) = label l ‘bind ‘ \ l ′ →

label r ‘bind ‘ \ r ′ →
result (l ′ :ˆ: r ′)
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New names are obtained using gensym, and the only other operation on names is an equality
test. As a result, it is impossible to distinguish between the two functions fork1 and fork2

when using this monad, and thus fork1 = fork2 . So, using either of these as a definition for
fork , the last case in the definition of label can be rewritten as:

label (l :ˆ: r) = fork (label l) (label r) ‘bind ‘ \ (l ′, r ′) →
result (l ′ :ˆ: r ′)

The use of fork serves to highlight the fact that the left and right subtrees can be labeled in
parallel; a single name supply will still be required to implement this, but the interleaving
of names used by the two subprocesses may be chosen arbitrarily.

Monads in which the equation fork1 = fork2 holds are often described as commutative
monads . This property can be expressed more elegantly using the notation of monad com-
prehensions [22, 13]:

[ (x , y) | x ← xs , y ← ys ] = [ (x , y) | y ← ys , x ← xs ]

In addition, this formulation probably makes it a little easier to see why such monads might
be described as being commutative.

Clearly, computations in commutative monads are well-suited for parallel execution. Un-
fortunately, very few of the monads that are useful in functional programming are commuta-
tive. Of the nine or so different monads described in [22], for example, only two – the identity
and strictness monads4 – are commutative. The strictness monad is particularly interesting
for our purposes because it can be used to define the par and parl functions described in
Section 2.3:

par p q = [ (x , y) | x ← p, y ← q ]Str

parl [ ] = [ [ ] ]Str

parl (x : xs) = [ z : zs | z ← x , zs ← xs ]Str

4.2 Algebraic Properties of fork

With the discussion of the previous section in mind, we consider briefly the kinds of algebraic
properties that we would expect an implementation of fork to satisfy. Intuitively, we expect
the order of the two parallel processes not to be significant, but we have to be careful
to get the types correct: If p :: IO a and q :: IO b, then fork p q :: IO (a, b) while

4The result function for each of these monads is just the identity function. The bind operator for the
identity monad is just function application, (\x f → f x ). In the strictness monad, bind = \x f → strict f x
where strict is the (non λ-definable) function described by:

strict f x = if x = ⊥ then ⊥ else f x
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fork q p :: IO (b, a). So the closest we can come to a commutative law is that, for all p and
q of the appropriate types:

fork p q = fork q p ‘bind ‘ exch

where exch = \(x , y) → result (y , x ). In a similar way, we can express a kind of associativity
law for fork , as follows. For all p, q and r of the appropriate types:

fork (fork p q) r = fork p (fork q r) ‘bind ‘ \ ((x , y), z ) → result (x , (y , z ))
fork p (fork q r) = fork (fork p q) r ‘bind ‘ \ (x , (y , z )) → result ((x , y), z )

Once again, the monad comprehension notation provides a more concise and elegant way to
express both commutativity and associativity:

[ (x , y) | (x , y) ← fork p q ] = [ (x , y) | (y , x ) ← fork q p ]
[ (x , y , z ) | ((x , y), z ) ← fork (fork p q) r ] = [ (x , y , z ) | (x , (y , z )) ← fork p (fork q r) ]

4.3 Forks and Side-Effects

Now let us return to the array initialization problem discussed at the beginning of this
section. We cannot hope to be able to define a safe fork function for the array monad A. To
understand why, suppose that we wrote a program fragment of the form:

fork (update a i x ) (update a j y)

The basic idea here is to update the array locations i and j with values x and y in parallel.
But what does this command actually mean? If the values of i and j are distinct, then the
result is equivalent to both of the following expressions:

fork1 (update a i x ) (update a j y)
fork2 (update a i x ) (update a j y)

But what if the values of i and j coincide? In that case, there is no obvious way to define a
deterministic semantics for the original expression.

The problem here is as before: the array monad is simply not cummutative. Some side-
effecting monads are commutative, however. As an example, consider a “histogram” monad
in which all one can do is increment positions in an array – i.e. general update is disallowed.
It is easy to see that the increment operation is commutative (in the same way that addition
is commutative), even though the array is being updated destructively. For this monad high
degrees of parallelism are possible with a deterministic semantics.

The frustrating aspect of the array monad, however, is that, if used with caution, it may
in fact be commutative (for example if it’s never the case that i and j coincide in the above
example). However, in the general case, we cannot expect a compiler to detect this situation;
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instead we must rely on the programmer. Another possibility is to install dynamic run-time
checks, as is done in [4], but this is an added computational overhead.

We are faced with two conflicting alternatives. On the one hand, a purist would argue that
we should not include fork in any non-commutative monad since it would compromise safety.
In reply, a pragmatist might suggest that this loses valuable opportunities for parallelism.
For the remaining sections of this paper, we will take the second position, accepting that,
wherever a fork is used, there is a proof obligation on the programmer.

To simplify the development of the programs in the rest of this paper we will introduce
some additional utility functions. We will often be interested in processes that are executed
for their effect rather than for their final result. The (<‖>) operator defined below can be
used to run two such computations, discarding the final result from each:

(<‖>) :: ParMonad m ⇒ m a → m b → m ()
p <‖> q = fork p q ‘bind ‘ skip

It follows immediately from the algebraic properties of fork in the previous section that
(<‖>) is both associative and commutative.

Using the definition of seq in Section 3.5 as a guide, the parallel execution of a list of
commands can be described using the following function:

parCmds :: ParMonad m ⇒ [m a] → m ()
parCmds = foldr (<‖>) skip

Assuming now that a fork function has been defined for the array monad, we can write
a parallel version of the initArray function:

initArray :: RefArr Int → Int → A ()
initArray a n = parCmds [ update a i 0 | i ← [0..n] ]

It is easy to see that the use of parCmds (and hence indirectly of fork) is safe in this
example since the elements of [0 ..n] are distinct. With a change of notation, this definition
of initArray coincides with the array initialization operation described in [6].

5 Communicating Sequential Processes

In this and subsequent sections, we restrict our attention to a single monad that supports
parallel execution using fork together with interprocess communication channels. The design
has been strongly influenced by some of the ideas used in the programming language occam
and in Hoare’s study of communicating sequential processes, CSP.

We have constructed a prototype implementation (described in further detail in Section 9)
of these ideas using an extension of the I/O monad in the current version of Gofer (a pared
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down version of the ideas described in [18]). The type constructor part of this monad is
written IO and we will assume that suitable implementations of:

result :: a → IO a
bind :: IO a → (a → IO b) → IO b
fork :: IO a → IO b → IO (a, b)

have also been provided.

We should mention that the decision to implement these ideas as an extension of the
IO monad was motivated largely by the desire to speed up the process of developing the
prototype. It may well be sensible to reconsider this decision in the future to provide a more
coherent framework for programmers (for example, to reduce the overlap between channel
I/O and conventional operating system I/O).

5.1 Communication Channels

To allow otherwise independent parallel processes to interact with one another, we introduce
a simple form of channel for point-to-point communication. Channels carrying values of
type a will be represented by the type Chan a. Notice that all of the values transmitted
on a single channel are required to have the same type. The original definition of occam
[11] only allows single machine words to be transmitted on a channel. In contrast, we allow
arbitrary types of value to be passed down a channel, including lists, functions, arbitrary
data structures, IO processes, and even other channels! The sequential and variant protocols
of occam 2 [12] are easily dealt with in this framework by defining a suitable datatype of
values to be sent over the channel using product and sum types, respectively.

New channels are created using the newChan primitive function:

newChan :: IO (Chan a)

while the following primitives are used to deal with channel input and output:

input :: Chan a → IO a
output :: Chan a → a → IO ()

Obviously, the execution of an input command may require the input process to be suspended
until a value has been output on that channel. We will make the relationship between
input and output more symmetric by making a similar requirement for output commands.
Specifically, any output command will be suspended until another process is ready to receive
the output value. It is an error for two processes to make use of a single channel at the
same time unless one is using the channel for input and the other is using it for output. In
short, channels provide exclusive, synchronous, unbuffered communication between parallel
processes.
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The following two expressions illustrate the use of these primitives in a simple example:

prog1 = newChan ‘bind ‘ \ c →
fork (input c) (output c 42) ‘bind ‘ \ (v , ) →
result v

prog2 = newChan ‘bind ‘ \ c →
fork (output c 42) (input c) ‘bind ‘ \ ( , v) →
result v

Each of these programs generates a new channel and then runs two parallel processes, one
to output a value on that channel, and another to input it. It is a simple exercise using the
algebraic laws of Sections 3.1 and 4.2 to show that these two programs are equivalent.

A program which cannot make any progress because all of its subprocesses are waiting,
either for an input or an output, is said to be deadlocked . It is relatively easy to detect dead-
lock at run-time and to terminate the program with a suitable error message. Nevertheless,
it will often be preferable to try to prove in advance that a given program cannot become
deadlocked. A simple example of a program that is guaranteed to reach deadlock is:

newChan ‘bind ‘ \ c → output c “Is anybody there?′′

The newChan, input and output primitives all work at a fairly low level but can easily be
used to build higher level operators. For example, the following two functions can be used
to broadcast a copy of a particular message to a list of channels, or to send a list of messages
down a single channel:

broadcast :: a → [Chan a] → IO ()
broadcast m cs = parCmds [ output m c | c ← cs ]

outputs :: Chan a → [a] → IO ()
outputs c ms = seq [ output c m | m ← ms ]

Notice that the broadcast function outputs to each channel in parallel. On the other hand,
the individual output commands used in outputs must be executed sequentially because they
all use the same channel.

Two more useful commands – this time for allocating a number of new channels and
gathering the inputs from a collection of channels (a form of inverse to broadcast) – can be
defined as follows:

newChans :: Int → IO [Chan a]
newChans n = parList (copy n newChan)

gather :: [Chan a] → IO [a]
gather = parList . map input
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where copy n x = [ x | i ← [1 ..n] ]. Both of these functions return a list of values which
can be collected in parallel; this is reflected by the use of the parList function, defined by:

parList :: ParMonad m ⇒ [m a] → m [a]
parList = foldr parCons (result [ ])

where parCons p ps = fork p ps ‘bind ‘ \ (x , xs) →
result (x : xs)

This function is an analogue of the parl function in Section 2.3, in much the same way as
fork corresponds to par .

5.2 To Input, or to Output: That is the Question!

Note that, in addition to allowing arbitrary values to be transmitted along a channel, there
is no distinction between channels used for input and channels used for output. This is
particularly important for the purposes of the type system because it means that we are free
to connect an output channel from one process to an input channel of another without any
type incompatibility.

In fact, it is quite possible for two processes to communicate with one another using a
single process, so long as a suitable protocol is used to ensure that the two processes will not
simultaneously attempt to read or write from the same channel. For example, the following
code might be used to model two competing bidders at an auction, neither of whom is
prepared to let the other win. All of the bids between the two parties are transmitted in
both directions using the same channel:

auction = newChan ‘bind ‘ \ c →
let opener = output c 100 ‘bind ‘

bidder
bidder = input c ‘bind ‘ \ yourBid →

output c (yourBid + 1) ‘bind ‘
bidder

in opener <‖> bidder

The result, of course, is non-termination.5 While it is safe to use two way communication on
a single channel in this particular example, there are many other examples where it is not.
For example:

bad = newChan ‘bind ‘ \ c →
input c <‖> input c <‖> output c 0 <‖> output c 1

This program violates the condition that a single channel can only accept at most one output
request and one input request at any given time. In other words, the subprocesses involved

5Or, perhaps, bankruptcy for one of the participants.
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in this program may interfere with one another and, as described in Section 4.3, it is not
safe to run these programs in parallel.

One way for a programmer to avoid this problem is to adopt the convention that, within
a given logical process, each channel is always used either for input or output, but not for
both. If this rule is followed, no run-time error can ever occur as a result of two simultaneous
input or output requests on a single channel. The auction program above does not satisfy
this rule but it is very easy to rewrite it so that it does, using two one-way communication
channels rather than one two-way channel.

Ideally, we would hope that programs could be checked automatically at compile-time
to ensure that this condition is satisfied. However, since channels are first class values,
determining whether a program satisfies these conditions is not decidable. Once again, the
burden of proof lies with the programmer, as it does in CSP or occam.

(Another solution is to base the communication primitives on something other than a
CSP/occam paradigm. In particular, a paradigm which supported unbounded communica-
tion requests on individual channels could avoid these problems.)

5.3 Why Not Use Lazy Streams?

Most, if not all, of the examples of parallelism and channel I/O in this paper can be coded
safely in terms of lazy streams. For example, something resembling the auction program
might be written as follows using lazy streams:

let opener = 100 : beat bidder
bidder = beat opener
beat (yourBid : bids) = (yourBid + 1) : beat bids

in . . .

Indeed, there are some programs – a buffer with unbounded storage capacity, for example –
that can be expressed using lazy streams, but not using the form of channel I/O presented
here.

Why then should we be interested in the use of channel I/O? There are three reasons, all
of which have been mentioned before, but it is certainly worth summarizing them again here.
The first is the interaction with the use of monads. For the “toy” examples considered here,
the use of a monad is not essential. In realistic programming examples, it may be considerably
more important. The second is an issue of programming style; for some programmers or
applications, explicit parallelism and channel I/O may provide a more natural way to describe
an algorithm than stream processing. The third reason is that the use of explicit parallelism
can provide a compiler with valuable hints (or precise operational semantics in the case that
it has been defined for a particular language) about how a given program should be mapped
onto a particular parallel architecture.
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6 Pipelines

One of the most effective ways to map a program onto a parallel computer system is to split
it into a number of separate passes (each of which can be executed on a different processor),
with the output from each pass connected to the input of the next. The following diagram
illustrates two processes p and q with the output of p connected to the input of q to form a
pipeline:

- p - q -

Neglecting communication costs, the time taken to produce an output result from a given
input value will be the same for both parallel and sequential implementations. However,
given a steady stream of input values and assuming that p and q take approximately the
same time to map inputs to outputs, a two processor version of the pipeline can calculate
twice as many output values as a single processor version in any fixed time period.

Pipelines with exactly one input channel and one output channel can be represented as
elements of type:

type Pipe a b = Chan a → Chan b → IO ()

This allows the type of values produced on the output channel to be different from those
received on the input channel.

The following program is a simple pipeline with only one component that outputs the
square of each integer value received on its input channel:

squarer :: Pipe Int Int
squarer ic oc = input ic ‘bind ‘ \ v →

output oc (v ∗ v) ‘bind ‘
squarer ic oc

To illustrate the close correspondence between our notation and that of occam, the same
program written in the syntax of [11] is:

PROC squarer (CHAN ic, CHAN oc) =

WHILE TRUE

VAR v :

SEQ

ic ? v

oc ! v * v :

Pipelines can be combined using the (À) operator defined by:

(À) :: Pipe a b → Pipe b c → Pipe a c
(p À q) ic oc = newChan ‘bind ‘ \mid →

p ic mid <‖> q mid oc
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(Of course, the type of values output by p must coincide with the type of input values
expected by q .) This is essentially the same notation as used in CSP in which the λ-
abstraction for mid corresponds to hiding in CSP.

One simple application of (À) is to implement a process for calculating the fourth power
of each input value using two squarer processes:

squarer À squarer

We can think of the components in a pipeline as functions mapping a sequence of input
values to a sequence of output values. Many useful pipelines correspond directly to standard
list processing idioms:

mapChan :: (a → b) → Pipe a b
mapChan f ic oc = input ic ‘bind ‘ \ x →

output oc (f x ) ‘bind ‘
mapChan f ic oc

filterChan :: (a → Bool) → Pipe a a
filterChan p ic oc = input ic ‘bind ‘ \ x →

if (p x ) then
output oc x ‘bind ‘
filterChan p ic oc

else
filterChan p ic oc

With these definitions, the squarer function defined above could have been defined as simply
mapChan (\x → x ∗ x ).

7 The sieve of Eratosthenes

The sieve of Eratosthenes is a standard algorithm for enumerating prime numbers. The basic
idea is to count through the list of integers, starting with 2 , the smallest prime, and filter
out any values which are multiples of previously discovered primes. Any number which is
not a multiple of a previous prime must itself be prime. Many parallel implementations of
this algorithm have been provided in the literature; we will provide yet another.

We will split the task of enumerating the list of primes into two separate parallel tasks.
The first just counts through the integers starting with 2 , outputting these values on a
channel ints . The second process inputs values from ints and filters out all but the prime
numbers which it outputs on a channel out :

sieve :: Chan Int → IO ()
sieve out = newChan ‘bind ‘ \ ints →

outputs ints [2..] <‖> pfilter ints out
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The next problem is to work out how to define the pfilter process. One way to do this is
to consider a slightly more general case. Consider a process of the form pfilter c out and
suppose that the values input on channel c are in ascending order with first element p and
such that none of the following values are multiples of any smaller prime. (It is easy to
verify that these conditions hold for the initial pfilter process.) Obviously, the first thing
that pfilter c out should do is to input the prime p from c and output this value on the out
channel. Any subsequent values received on c that are multiples of p can be discarded since
they are certainly not prime.

What should we do with the remaining values? The easiest thing is to pass them on to
a new pfilter process. This leads to the following definition for pfilter :

pfilter :: Pipe Int Int
pfilter c out = input c ‘bind ‘ \ p →

output out p ‘bind ‘
newChan ‘bind ‘ \ c ′ →

(filterChan (divis p) c c ′)
<‖>

(pfilter c ′ out)

divis :: Int → Int → Bool
divis n m = m ‘mod ‘ n 6= 0

Note the use of the filterChan function, introduced in the previous section, to describe the
task of filtering out the multiples of p from the input channel c.

We can picture the state of the sieve process immediately after the nth prime number
pn has been output using the following diagram:

[2 ..] - 2 - 3 - 5 - · · · - pn

The dashed box on the right represents the original pfilter process which has expanded into
a pipeline of n processes each filtering out all the multiples of a particular prime number
from the stream of integers produced by the process on the left.

This particular example has limited practical applications. But it demonstrates a very
powerful technique – the ability to generate new processes as a program executes – which
has many practical uses.
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8 Parallel Sorting

Sorting algorithms have many practical applications. This section, describes a simple sorting
algorithm expressed as a network of parallel processes and suitable for implementation on a
parallel computer system.

The sorting algorithm described here uses a network of simple processes called compara-
tors , each of which can be used to sort a pair of input values into the correct order. For
the purposes of this section, individual comparators will be illustrated using diagrams of the
form:

?

--
?

x

y

hi

lo

The comparator process reads the values supplied on its two input channels (labeled x and
y in the diagram above) and outputs the largest value on the output channel hi and the
smaller of the two values on the output channel lo. Formally, a comparator can be defined
as:

comparator x y lo hi = loop
where loop = fork (input x ) (input y) ‘bind ‘ \ (u, v) →

(output lo (min u v))
‘fork ‘
(output hi (max u v)) ‘bind ‘
loop

Notice that the inputs from the channels x and y are performed in parallel; we cannot
be certain in which order these inputs will be received so we must be prepared for either
possibility to avoid deadlock. A similar argument motivates the decision to output the result
values on channels lo and hi in parallel.

Comparators can be connected in various configurations to build larger components. For
example, the following diagram illustrates a way of inserting a value into a sorted list:

x -

?

-
?

y0

z0 ?

-
?

y1

z1 ?

-
?

y2

z2 ?z3

If the values input on channels y0 , y1 and y2 are already arranged in ascending order, then the
same values will be output on the z0 , z1 , z2 and z3 , together with the value input on channel
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x , inserted at the appropriate point to maintain the correct ordering. Obviously, different
numbers of comparators can be used to deal with different numbers of input channels.

Comparators can also be connected in columns as illustrated in the following diagram.
The overall effect in this case is to take input values (not necessarily in any particular order)
from the channels x0 , x1 , x2 and x3 , “bubbling” the smallest value out on the channel y0

with the remaining values output on channels z1 , z2 and z3 :

?
-

?

-

-

?

-

-

?

-

x0

x1

x2

x3

y0

z1

z2

z3

The second smallest value can be produced by passing the values output on channels z1 ,
z2 and z3 into a second column with one less comparator. Continuing in this manner, the
complete set of input values can be sorted into ascending order using a network of the form:

?
-

? ?
-

?

-

? ?
-

?

-

?

-

? ?

x0

x1

x2

x3

y0 y1 y2 y3

(Aside: We have chosen to break up the diagram above into columns. As such, the
network of comparators can be thought of as an implementation of the traditional “bubble
sort” algorithm. It is worth pointing out that the same diagram can be broken up in a
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different way as a sequence of rows, each of which implements a simple insertion operation
of the kind described above. As such, the network of comparators can also be thought of
as an implementation of the “insertion sort’. These two sorting methods have traditionally
be considered as distinct algorithms. In truth, the only difference between them is the
order in which certain comparisons are made. Expressed in a parallel language where data
dependencies alone determine the order of evaluation, we see that they are just different
views (i.e. sequentialized versions) of the same process.)

Each of the nested boxes, outlined by lines of dashes, in the diagram above contains a
network of comparators for sorting a particular number of input values. And each of these
boxes, except in the simplest case where there is only one input, can be broken down into
a column of comparators combined with a sorting network for one fewer input values. This
pattern suggests one way of describing the construction of a sorting network as a recursive
procedure (there are several different ways to do the same thing).

We will describe the construction of the sorting network by a function which takes a
list of input channels as its argument and returns both a process to implement the sorting
network and the list of channels that the output values are sent to. The most interesting
case, illustrated by the diagram below, is when there are several input channels:

?
-

?

-

-

?

-

-

?

-

y0 ?y1 ?y2 ?y3

x0

x1

x2

x3

e0

e1

e2

d1

d2

Given a list of input channels (x : xs) (with xs non-empty), the first step is to allocate
two lists of channels ds and es to be used as the output channels for the lo and hi outputs
respectively of the column of comparators on the left. One d channel and one e channel is
needed for each channel in cs . The smallest value input on channels cs will be output on
the last channel in ds , written last ds . The remaining values can be sorted by constructing
a sorting network (represented by the box on the right) using the channels es as input. This
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description corresponds directly to the following Haskell implementation:

sorter :: Ord a ⇒ [Chan a] → IO (IO (), [Chan a])
sorter [x ] = result (skip, [c])
sorter (x : xs) = dupChans xs ‘bind ‘ \ ds →

dupChans xs ‘bind ‘ \ es →
sorter es ‘bind ‘ \ (p, ys) →
result (parCmds (zipWith4 comparator xs (x : ds) ds es)

<‖> p,
last ds : ys)

The zipWith4 function is defined in the Haskell standard prelude [9]. It is used here to build
a list of comparators with the inputs and outputs taken from corresponding elements in each
of the four lists xs , (x : ds), ds and es .

The dupChans function allocates a new channel for each value in its argument list:

dupChans :: [a] → IO [Chan b]
dupChans cs = parList [ newChan | c ← cs ]

An alternative (less efficient) definition is dupChans cs = newChans (length cs).

9 Implementation

In this section we describe an implementation of the IO monad on a sequential machine that
includes the fork function and primitives for channel I/O. This implementation is almost
completely written in Haskell and has been used to experiment with the examples in the
previous sections. Given the observation that any implementation of fork for this monad
must be unsafe, at least to some degree, it follows that some parts of the implementation
cannot be written in a purely functional language and so must be supplied as primitives. We
have tried to keep this set of primitives to a bare minimum; only five primitives are involved.
Three of these are used to support reference cells (allocation, update and dereference). The
remaining two primitives are used to control process scheduling and have almost trivial
implementations in the underlying run-time system (written in C).

9.1 Implementation of the IO Monad

One of the most important requirements for a sequential implementation of a parallel lan-
guage is the ability to switch from one process to another with a minimum of overhead.
This is often referred to as context switching , and plays a significant role in the choice of a
suitable implementation for the IO monad.
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In their paper [18], Peyton Jones and Wadler concentrate on an implementation of IO
using state transformers. In concrete terms, their implementation is based on the monad:

type IO a = World → (a,World)

result x = \w → (x ,w)
m ‘bind ‘ f = \w → let (x ,w ′) = m w in f x w ′

The World datatype used here represents the complete state of the world at a particular
point in time. (These definitions are used to describe the semantics of the monad operations.
As we indicated in Section 3.4, there is no need to provide a concrete representation for the
World type in the actual implementation; it is sufficient to use a dummy token in its place
and to update the world in-place. The discipline of passing a dummy token simply ensures
that the updates are carried out in the correct order.)

Unfortunately, it is difficult to implement context switching with this “world-passing”
implementation of IO . Consider, for example, the execution of an input command in a
context of the form:

(. . . ((input c ‘bind ‘ f1 ) ‘bind ‘ f2 ) . . . ‘bind ‘ fn)

The context in this case is the sequence of pending calls to be executed once an input value
has been received. In a concrete implementation, this will typically correspond to a sequence
of stack frames which must be saved and later restored to implement a context switch.

What we really need is a simple way of capturing the remaining part of the computation
to be performed once the input value has been received. This is precisely the role of a
continuation! With this in mind, we adopt an implementation for IO which makes direct
use of continuations:

type IO a = (a → Ans) → Ans

bind :: IO a → (a → IO b) → IO b
m ‘bind ‘ n = \k → m (\a → n a k)

result :: a → IO a
result x = \k → k x

The answer type, Ans , is the type that we assign to a computation and will be discussed
in more detail in Section 9.4. Values of type a → Ans correspond to continuations. For
example, in this framework, a call to the input command on a channel c :: Chan Int takes
the form:

input c k

where k :: Int → Ans is a continuation that describes the computation to be performed
once the input value of type Int has been received. In other words, the context for this
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command is captured directly as one of the arguments of the input function. It is equally
straightforward to restore a captured context once the continuation argument is known. All
that we need to do is apply the continuation to its argument.

From a low-level perspective, the main difference between these two implementations of
IO is that the continuation-based version uses an explicit representation for the continuation
of a command as a heap allocated closure, while the world-passing version represents this
continuation implicitly as a sequence of stack frames. The continuation-based implementa-
tion of IO is discussed by Peyton Jones and Wadler in [18]. However, for their particular
implementation, and without the need for context switching, the world-passing version seems
preferable because it reduces the need for heap allocation.

9.2 Implementation of fork

Both the implementation of fork in this section and of the channel I/O primitives in the next
will be described in terms of some simple primitives for dealing with references. This requires
an abstract datatype Ref a, the type of references to values of type a, and operations for
allocation, update and dereferencing:

data Ref a

newvar :: IO (Ref a)
assign :: Ref a → a → IO ()
deref :: Ref a → IO a

References have many applications other than those described here and might well have
been included in the IO monad anyway as general purpose utilities (see [18, 16] for sample
applications).

To model parallelism in a sequential implementation, we will assume that the runtime
system maintains a set of values (each of type Ans) corresponding to suspended (but ready
to execute) computations in addition to the current process. We will refer to this as the task
set . Two further primitives are necessary to control switching between different tasks:

schedule :: Ans → Ans → Ans
resched :: () → Ans

The schedule function is used to add processes to the task set suspended computations. For
example, schedule p q might be implemented by adding p to the set and then executing q .
The resched primitive terminates the current process and removes and resumes a previously
suspended computation from the task set. A call to resched will fail if the task set is empty.
However, with the implementations presented below, this is only possible when a program
reaches deadlock. This makes it very easy to detect deadlock at run-time and to abort
the current program with an appropriate diagnostic message. Both of these functions have
simple implementations that can be described in just a few lines of C code.

29



The dummy parameter which makes resched a function with domain type () rather than
just a value of type Ans arose naturally from a need to use resched as a continuation. As
it happens, this extra parameter would have been needed anyway to guarantee the correct
sequencing to calls of resched .

In an attempt to provide a reasonable degree of fairness, it may be appropriate to imple-
ment the task set as a queue, or to use a random number generator in the implementation
of resched to decide which process should be executed next. We will not concern ourselves
further with such issues here.

At last! We are finally in a position to describe the implementation of fork . First, we
introduce a datatype whose values can be used to record the status of an executing process
of the form fork p q :

data Fork a b = Running | LDone a | RDone b.

Running represents the situation where neither branch of the fork command has terminated.
A value of the form LDone x indicates that the left process, p, has terminated with result
x . In a similar way, a value of the form RDone y is used to indicate that the right process
q has terminated with result y . There is no need to provide a representation for the case
where both component processes have terminated because, as soon as this happens, the fork
process will also terminate.

The first step in the execution of a fork command is to allocate a new reference cell,
initialized to Running . The two subprocesses are then scheduled for execution using special
continuations lDone k v and rDone k v that capture both the reference cell and the original
continuation for the fork command:

fork :: IO a → IO b → IO (a, b)
fork p q k = newvar (\ v →

assign v Running (\() →
schedule (p (lDone k v))

(q (rDone k v))))

The continuations involving lDone and rDone are invoked when the left and right processes
(respectively) terminate but it is not possible to predict which of these will be called first.
Suppose, for the sake of argument, that the left process terminates first with result x . In this
case, the continuation simply updates the status reference cell from Running to LDone x
and then uses resched to continue with the execution of another process. Sometime later,
the right process terminates with value y and the rDone continuation is invoked. Checking
the value in the status reference cell reveals that the left process has already terminated and
hence execution continues by passing the pair (x , y) to the original continuation for the fork
process.

Taking the other possibility – that the right process may sometimes terminate before the

30



left – into account, we obtain the following definitions for lDone and rDone:

lDone :: ((a, b) → Ans) → Ref (Fork a b) → a → Ans
lDone k v a = deref v (\f →

case f of
Running → assign v (LDone a) resched
RDone b → k (a, b))

rDone :: ((a, b) → Ans) → Ref (Fork a b) → b → Ans
rDone k v b = deref v (\f →

case f of
Running → assign v (RDone b) resched
LDone a → k (a, b))

9.3 Implementation of Channels

One simple way to implement channel input would be for the input process to check the
status of a channel and loop until an output value has been sent. Obviously, the input
routine would need to be suspended each time before looping so that other processes have
an opportunity to make some progress before the channel is examined again. This approach
has the disadvantage that we may have to poll the input channel many times before a value
arrives. It will also be necessary to keep track of which processes in the task set are suspended
waiting for I/O so that we can detect deadlock and not enter an infinite loop.

A much better approach is to store the suspended input process (or rather, the continu-
ation for the input process) in the channel itself. Sometime later, when an output command
has been executed, we can move the input process (formed by applying the input continua-
tion to the output value) into the task set, ready for further execution. This avoids the need
for repeated polling of the input channel and does not clutter up the task set with processes
waiting for input, making it easier to detect deadlock.

It is also possible for an output command to be executed before the corresponding input
command. We can use the same basic approach to deal with this situation except that this
time we have both an output value and an output continuation to be saved in the channel.

It follows that there are three possible states for a channel: inactive, waiting for an
output process or waiting for an input process. The channel status may change between
these three alternatives as the program executes. These observations lead us to the following
implementation of channels, described using reference cells:

type Chan a = Ref (ChanStatus a)
data ChanStatus a = Inactive

| InReady (a → Ans)
| OutReady a (() → Ans)
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With this representation, constructing a new channel simply requires allocating a new
reference cell and setting the initial channel status to Inactive:

newChan :: IO (Chan a)
newChan = newvar ‘bind ‘ \ c →

assign c Inactive ‘bind ‘
result c

The implementation of input is also straightforward. First we examine the current status of
the channel. If the channel is inactive then we store the request for input in the channel and
use resched to switch to a different parallel task. If the channel already contains an output
value then we reschedule the execution of both the input and output processes using the
appropriate arguments for each continuation and set the channel status back to Inactive.
Finally, if the channel already contains another input request, then a run-time error occurs.

input :: Chan a → IO a
input c k = deref c (\cs →

case cs of
Inactive → assign c (InReady k) resched
OutReady v k ′ → schedule (k ′ ())

(schedule (k v)
(assign c Inactive resched))

InReady k ′ → error “simultaneous inputs ′′)

The definition of output is very similar:

output :: Chan a → a → IO ()
output c e k = deref c (\cs →

case cs of
Inactive → assign c (OutReady e k) resched
InReady k ′ → schedule (k ′ e)

(schedule (k ())
(assign c Inactive resched))

OutReady v k ′ → error “simultaneous outputs ′′)

9.4 The Answer Type, Ans

The answer type Ans was used in the definition of the IO monad in Section 9.1 and we have
informally described values of this type as representing executable processes. It is actually
rather surprising that we have not had to go in to more detail than this to produce the
implementation described in the previous sections!

In the interests of completeness, we will end with a description of one possible imple-
mentation for the Ans type and for the primitives schedule and resched . The first step is to
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think of an answer as a function of type:

type Ans = World → World .

Starting in a world w , the execution of program a :: Ans results in a new world a w . If
the program a has side-effects then the new world will not be the same as the old world.
However, because of the sequencing of side-effecting operations enforced by the use of the
monad ADT, these side-effects can be implemented directly by updating the world in-place.

What then does the World type represent? In theory, it may have many different compo-
nents including, for example, a mapping from reference cells to values and a representation
of the task set. However, as has already been observed, in practice, these individual compo-
nents can be implemented within the runtime system and it suffices to use a single token as
a representation of the World .

To describe the implementation of schedule and resched we will instead use a representa-
tion of the world that suppresses all of these different components except the task set. For
simplicity, we will represent this using a list:

data World = World [Ans ]

Given this definition, a process p :: IO a can be executed by evaluating the expression:

p (\a w → w) (World [ ]).

In other words, the process is executed with a continuation, (\a w → w) that ignores the
result obtained by the program p and leaves the world unchanged, and starting with an
empty task set.

The definitions for schedule and resched follow directly from the informal descriptions
given in Section 9.2:

resched :: () → Ans
resched () (World [ ]) = error “deadlock !′′

resched () (World (q : qs)) = q (World qs)

schedule :: Ans → Ans → Ans
schedule p q (World ps) = q (World (ps++[p]))

10 Conclusions and Future Work

Many of the ideas presented here are still in a preliminary stage and we anticipate that some
refinements will be suggested by further work. The main contributions of this report are as
follows:
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• First, motivated by the observation that programs written using monads or similar
techniques often destroy important opportunities for parallel execution, we have pro-
posed the use of a class of monads in which parallelism can be captured explicitly using
the fork function.

• Second, we have investigated the use of unsafe implementations of fork in monads
that also support side effects. This places an unavoidable burden of proof on the
programmer. On the other hand, it allows parallel algorithms to be expressed more
directly and may be useful in the implementation of compilers for parallel machines,
guiding the mapping from source programs to particular parallel architectures.

The conflict between safety and parallel execution is very unfortunate. One of the greatest
advantages of “pure” functional languages is the ability to reason about programs using
simple algebraic laws. If these laws are invalidated by the introduction of unsafe primitives,
we may need to reassess our motivations for using such “pure” languages in the first place.
On a more positive note, there are still many opportunities for different approaches that
may, for example, help to limit the impact of unsafe primitives or even to eliminate them
altogether without sacrificing the use of parallelism.

There are a number of areas that would be interesting topics for investigation in further
work:

• Non-determinism: The reason that fork is unsafe in a monad with side-effects is
that it introduces an element of non-determinism into the language. For example, we
can come fairly close to defining a (monadic) version of McCarthy’s amb function:

amb :: IO a → IO a → IO a
a ‘amb‘ b = newvar ‘bind ‘ \ v →

fork (assign v a) (assign v b) ‘bind ‘
deref v

Examples like this are well-known sources of difficulty in pure functional languages.
Further studies of the use of non-determinism in such languages (such as the work
described in [10]) may help us to deal with some of the most significant problems
described in this report.

• Local parallel computation: With the primitives described in this paper, there is
no way for a computation, described in terms of the IO monad to be encapsulated as
part of a purely functional subprogram. This kind of problem is dealt with in [18] by
introducing an unsafe primitive function:

delayIO :: IO a → a.

The pure construct in [16] is closely related to this but again, it is not clear whether
pure can be implemented safely without imposing significant restrictions on its use
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(based perhaps on the type system described in [3]). Riecke [20] addresses the same
issues using the concept of an effects delimiter . Finding a satisfactory way to deal with
these problems in practical work may be possible, but it is unlikely to be easy – the
task of determining whether the use of one of these constructs in a particular situation
is safe is not decidable.

• Formal semantics: Despite a fairly precise presentation of the implementation of
fork , we have often relied rather heavily on our intuitions about parallelism and less
so on any formal semantics. Such a semantics would be useful in giving a proper
description of the proof obligations needed to justify the use of unsafe primitives. It
would also be useful to validate some of the algebraic laws for the monad operators,
as described in a number of places in this report. Related work in this area includes
[2, 17].
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