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Abstract

Monads are becoming an increasingly important tool for functional program-
ming. Different monads can be used to model a wide range of programming lan-
guage features. However, real programs typically require a combination of different
features, so it is important to have techniques for combining several features in a
single monad. In practice, it is usually possible to construct a monad that supports
some specific combination of features. However, the techniques used are typically
ad-hoc and it is very difficult to find general techniques for combining arbitrary
monads.

This report gives three general constructions for the composition of monads,
each of which depends on the existence of an auxiliary function linking the monad
structures of the components. In each case, we establish a set of laws that the
auxiliary function must satisfy to ensure that the composition is itself a monad.

Using the notation of constructor classes, we describe some specific applications
of these constructions. These results are used in the development of a simple ex-
pression evaluator that combines exceptions, output and an environment of variable
bindings using a composition of three corresponding monads.

1 Introduction

In recent years, the concept of a monad – an idea that was originally motivated by
high-level abstract algebra – has become an important and practical tool for functional
programmers. The reason for this is that monads provide a uniform framework for de-
scribing a wide range of programming language features including, for example, state,
I/O, continuations, exceptions, parsing and non-determinism, without leaving the frame-
work of a purely functional language. Many of these techniques were already familiar to
functional programmers, but there are many new insights when they are reinterpreted
as specific instances of a more general concept.

∗A Gofer script containing executable versions of the programs described in this report is currently
available by anonymous ftp from nebula.cs.yale.edu in the file pub/yale-fp/reports/RR-1004.gs.
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Much of the initial interest in monads has been motivated by the work of Wadler [14, 15]
who, in turn, drew inspiration from the work of Moggi [9] and Spivey [12]. Monads
are already widely used in both small and large programs (for example, the Glasgow
Haskell compiler, the largest Haskell program known to us at the time of writing, makes
substantial use of monads [2]). New approaches to old problems have been proposed,
relying heavily on the use of monads. For example, the I/O monad proposed in [11]
is already widely used and may soon be included as part of the definition of Haskell.
Monads are even influencing the design of programming languages. For example, monads
provide an important motivating example for the system of constructor classes presented
in [5].

With the exception of [8], questions about how monads can be combined have, so far,
received surprisingly little attention. This is an important topic because many real
programs require a combination of features, for example, state, I/O and exceptions. In
practice, it is usually possible to construct a suitable monad that supports the desired
combination of features, but the methods used are typically ad-hoc and monolithic.

The goal of this report is to investigate some techniques for combining monads by a
process of composition and to illustrate how these constructions can be used in practice.
The conditions required to build a composite monad are quite complex, but we hope that
this work will provide a step towards a more modular approach to the use of monads.

One of the nicest features about monads is that, with a little practice (and perhaps, some
carefully chosen syntax), it is actually quite easy to write programs in a monadic style
without any knowledge of the abstract theoretical underpinnings. In the same spirit,
this report is directed at functional programmers with an interest in using monads as
part of a practical programming project, rather than the underlying category theory. To
this end, in a number of places, we have intentionally chosen to give definitions or results
without reference to the corresponding categorical concepts. Readers with an interest
in a more technical, category theoretic presentation of the ideas described in this report
are referred to [1].

We will assume some familiarity with the motivation for monads and their use in struc-
turing functional programs; Wadler [14, 15] provides an excellent introduction to these
topics. Programming examples will be written using the syntax of Gofer, a small, exper-
imental, purely functional language based closely on the definition of Haskell [3]. This
enables us to use constructor classes [5] to show how our results can be expressed in a
concrete programming language.

For completeness, we have included detailed proofs for many of our results. In keeping
with our aim to avoid unnecessary technical details, most of the proofs are constructed
from first principles using simple equational reasoning. Working in this manner has lead
to some surprising insights. For example, one of our results in Section 3 corresponds
closely to a result stated in [8], but a careful study of the laws that are actually used in
the proof has allowed us to weaken the hypotheses and state the result in a slightly more
general form. However, recognizing that some readers may prefer to omit such details,
most of the proofs are presented in boxed figures that are easily identified and skipped.
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The remainder of this report is organized as follows. Section 2 gives a definition of the
algebraic properties of a monad, and these are then used to describe the construction
of compositions of monads in Section 3 and their converses in Section 4. Moving on
to practical applications, Section 5 describes how these results about composition of
monads can be expressed using the notation of constructor classes, with several examples
in Section 6. A simple application, building on this framework, is included in Section 7.
Finally, Section 8 illustrates that there are other ways of combining certain monads,
setting a direction for future work.

2 Monads for functional programming

Wadler [14] defines a monad as a unary type constructor M together with three functions
map, unit and join whose types are given by:

map :: (a → b) → (M a → M b)
unit :: a → M a
join :: M (M a) → M a

In addition, these functions are required to satisfy a collection of algebraic laws:

map id = id (1)
map f . map g = map (f . g) (2)

unit . f = map f . unit (3)

join . map (map f ) = map f . join (4)
join . unit = id (5)
join . map unit = id (6)
join . map join = join . join (7)

(We use the standard infix period notation for function composition, (f . g) x = f (g x ),
and the symbol id to represent the identity function id x = x . It is well known that
composition of functions is associative with id as both a left and right identity; in
symbols, f . (g . h) = (f . g) . h and f . id = f = id . f for all f , g and h of appropriate
types.)

For the purposes of this report, it will be convenient to break this down into stages; if
M is a unary type constructor, then we will say that:

• M is a functor if there is a function map :: (a → b) → (M a → M b) satisfying
laws (1) and (2) above.

• M is a premonad if it is a functor with a function unit :: a → M a satisfying law
(3) above.

• M is a monad if it is a premonad with a function join :: M (M a) → M a satisfying
laws (4), (5), (6) and (7) above.
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It should be mentioned that there are several other (equivalent) ways to define the
concept of a monad, each of which comes with its own collection of monad operators and
equational laws. For example, Wadler [15] describes how a monad can be characterized
using just the unit function together with an operator

bind :: M a → (a → M b) → M b

Both the map and join operators that we have described can be defined using bind and
unit . The bind operator is particularly useful in practical work with monads and as a
means of translating the notation of monad comprehensions [14, 15, 5]. Furthermore,
only three laws are needed to specify the properties of a monad in this case. Nevertheless,
we have chosen to work with the map, unit , join formulation of monads outlined above.
One reason for this decision is that, in our opinion, many of the proofs are easier to
express in this framework. In addition, we will see that the ability to distinguish between
monads and premonads will also be quite useful in the following work.

3 Conditions for composition

Suppose that M and N are functors. To avoid confusion, we will write mapM and mapN

for the corresponding map functions in each case. How is it possible to compose these
functors in some sensible way? Certainly, we can think of a composition of M and N as
a type constructor that takes any type a to the type M (N a), but we also need to be
able to give a definition for

map :: (a → b) → (M (N a) → M (N b))

satisfying the functor laws (1) and (2). Fortunately, this is quite easy! If f :: a → b,
then we can apply mapN to obtain mapN f :: N a → N b and then apply mapM to
obtain mapM (mapN f ) :: M (N a) → M (N b). This gives the definition

map = mapM . mapN

and we can use the proofs in Figure 1 to show that this does satisfy the necessary laws.

These proofs use standard techniques of equational reasoning, writing the justification
for each step in the right hand column. In many cases, this is just a reference to the
law that has been used, with the convention that, for example, (1M) is the version of
law (1) for the constructor M . Where a step follows directly from the definition of a
function (either by folding or unfolding the definition), we will simply write the name of
the function involved as justification.

Composition of premonads is similar. Most of the work (the definition of the composed
type constructor) has already been dealt with in the composition of functors. A suitable
unit function for the composition is:

unit :: a → M (N a)
unit = unitM . unitN
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map id = mapM (mapN id) map
= mapM id (1N)
= id (1M)

map f . map g = mapM (mapN f ) . mapM (mapN g) map, map
= mapM (mapN f . mapN g) (2M)
= mapM (mapN (f . g)) (2N)
= map (f . g) map

Figure 1: Composition of functors, laws (1)–(2)

(unitM and unitN being the unit functions for M and N respectively) and the proof in
Figure 2 demonstrates that this does indeed satisfy law (3).

unit . f = unitM . unitN . f unit
= unitM . mapN f . unitN (3N)
= mapM (mapN f ) . unitM . unitN (3M)
= map f . unit map, unit

Figure 2: Composition of premonads, law (3)

Unfortunately, our real goal, composition of monads, is rather more difficult. Recall
that, to define the composition of two monads M and N , we need to find a function:

join :: M (N (M (N a))) → M (N a)

that satisfies the monad laws (4)–(7). As a first guess, and following the pattern of the
previous examples, we might consider the function joinM . joinN where joinM and joinN

are the join functions in the component monads. But this is, in general, not even type
correct! If x :: N (N a) (for some a), then the result of joinN x will have type N a
while joinM expects an argument with a type of the form M (M b).

In fact, we can actually prove that, in a certain sense, there is no way to construct a
join function with the type above using only the operations of the two monads (see
the appendix for an outline of the proof). It follows that the only way that we might
hope to form a composition is if there are some additional constructions linking the
two components. In this report we will concentrate on four methods for constructing a
composite monad, described in the following sections.
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3.1 The trivial case, by definition

The composite of two premonads M and N is a monad if there is a polymorphic function:

join :: M (N (M (N a))) → M (N a)

satisfying the laws (4), (5), (6) and (7). This, of course, follows directly from the
definitions above.

3.2 The prod construction

The composition of a monad M with a premonad N is itself a monad if there is a
polymorphic function:

prod :: N (M (N a)) → M (N a)

with the join function defined by:

join = joinM . mapM prod

satisfying the following four laws:

prod . mapN (map f ) = map f . prod P(1)
prod . unitN = id P(2)
prod . mapN unit = unitM P(3)
prod . mapN join = join . prod P(4)

The proofs for this are given in Figure 3. One interesting point is that, when we started
this work, we had assumed that it would be necessary to require that both M and N
be monads. In fact, from the proofs, we see that we did not actually need any of the
monad laws for N at all! As a result, we can construct a ‘composition of monads’ under
somewhat weaker conditions than originally expected.

3.3 The dorp construction

The composition of a premonad M with a monad N is itself a monad if there is a
polymorphic function:

dorp :: M (N (M a)) → M (N a)

with the join function defined by:

join = mapM joinN . dorp

such that the following laws hold:

dorp . map (mapM f ) = map f . dorp D(1)
dorp . unit = mapM unitN D(2)
dorp . map unitM = id D(3)
dorp . join = join . map dorp D(4)

Full proofs for this are given in Figure 4. In this case, we use the fact that N is a monad,
although M can be an arbitrary premonad.
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join . map (map f )
= joinM . mapM prod . mapM (mapN (map f )) join, map
= joinM . mapM (prod . mapN (map f )) (2M)
= joinM . mapM (map f . prod) P(1)
= joinM . mapM (map f ) . mapM prod (2M)
= joinM . mapM (mapM (mapN f )) . mapM prod map
= mapM (mapN f ) . joinM . mapM prod (4M)
= map f . join map, join

join . unit
= joinM . mapM prod . unitM . unitN join, unit
= joinM . unitM . prod . unitN (3M)
= prod . unitN (5M)
= id P(2)

join . map unit
= joinM . mapM prod . mapM (mapN unit) join, map
= joinM . mapM (prod . mapM unit) (2M)
= joinM . mapM unitM P(3)
= id (6M)

join . map join
= joinM . mapM prod . mapM (mapN join) join, map
= joinM . mapM (prod . mapN join) (2M)
= joinM . mapM (join . prod) P(4)
= joinM . mapM (joinM . mapM prod . prod) join
= joinM . mapM joinM . mapM (mapM prod) . mapM prod (2M)
= joinM . joinM . mapM (mapM prod) . mapM prod (7M)
= joinM . mapM prod . joinM . mapM prod (4M)
= join . join join, join

Figure 3: Composition of monads, laws (4)–(7), with join = joinM . mapM prod
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join . map (map f )
= mapM joinN . dorp . map (mapM (mapN f )) join, map
= mapM joinN . map (mapN f ) . dorp D(1)
= mapM joinN . mapM (mapN (mapN f )) . dorp map
= mapM (joinN . mapN (mapN f )) . dorp (2M)
= mapM (mapN f . joinN ) . dorp (4N)
= mapM (mapN f ) . mapM joinN . dorp (2M)
= map f . join map, join

join . unit
= mapM joinN . dorp . unit join
= mapM joinN . mapM unitN D(2)
= mapM (joinN . unitN ) (2M)
= mapM id (5N)
= id (1M)

join . map unit
= mapM joinN . dorp . map (unitM . unitN ) join, unit
= mapM joinN . dorp . map unitM . map unitN (2)
= mapM joinN . map unitN D(3)
= mapM joinN . mapM (mapN unitN ) map
= mapM (joinN . mapN unitN ) (2M)
= mapM id (6N)
= id (1M)

join . map join
= mapM joinN . dorp . map (mapM joinN . dorp) join, join
= mapM joinN . dorp . map (mapM joinN ) . map dorp (2)
= mapM joinN . map joinN . dorp . map dorp D(1)
= mapM joinN . mapM (mapN joinN ) . dorp . map dorp map
= mapM (joinN . mapN joinN ) . dorp . map dorp (2M)
= mapM (joinN . joinN ) . dorp . map dorp (7N)
= mapM joinN . mapM joinN . dorp . map dorp (2M)
= mapM joinN . join . map dorp join
= mapM joinN . dorp . join D(4)
= join . join join

Figure 4: Composition of monads, laws (4)–(7), with join = mapM joinN . dorp
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3.4 The swap construction

We can also define the composition of two monads M and N in terms of a polymorphic
function:

swap :: N (M a) → M (N a)

with the join function defined by:

join = mapM joinN . joinM . mapM swap

satisfying a collection of laws given below. Note that this is equivalent to:

join = joinM . mapM (mapM joinN . swap)

since:
mapM joinN . joinM . mapM swap

= joinM . mapM (mapM joinN ) . mapM swap (4M)
= joinM . mapM (mapM joinN . swap). (2M)

In order to state the laws for swap, we define two (familiarly named) functions as ab-
breviations for expressions involving swap:

prod = mapM joinN . swap
dorp = joinM . mapM swap

We will justify the use of these names below, but first we state the laws that the swap
function must satisfy:

swap . mapN (mapM f ) = mapM (mapN f ) . swap S(1)
swap . unitN = mapM unitN S(2)
swap . mapN unitM = unitM S(3)
prod . mapN dorp = dorp . prod S(4)

It is possible to prove the existence of the composite monad using these definitions alone.
However, it is easier, and perhaps more instructive, to do this indirectly by exploring
the relationship between swap, prod and dorp.

First of all, note that the definition of join coincides with the join that would be obtained
using the prod construction (with the above definition of prod):

joinM . mapM prod = joinM . mapM (mapM joinN . swap) prod
= join join

Furthermore, the definition of join also coincides with the join function that we would
obtain using the dorp construction (with the above definition of dorp):

mapM joinN . dorp = mapM joinN . (joinM . mapM swap) dorp
= join join

Assuming that laws S(1)–S(4) are satisfied, the proofs in Figures 5 and 6 show that prod
and dorp satisfy laws P(1)–P(4) and D(1)–D(4), respectively. Note that, in each case,
both M and N must be monads if the composite is also to be a monad. For example, the
proof of P(1)–P(4) requires the monad laws for N , while the prod construction requires
that M should also be a monad.
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prod . mapN (map f )
= mapM joinN . swap . mapN (mapM (mapN f )) prod , map
= mapM joinN . mapM (mapN (mapN f )) . swap S(1)
= mapM (joinN . mapN (mapN f )) . swap (2M)
= mapM (mapN f . joinN ) . swap (4N)
= mapM (mapN f ) . mapM joinN . swap (2M)
= map f . prod map, prod

prod . unitN
= mapM joinN . swap . unitN prod
= mapM joinN . mapM unitN S(2)
= mapM (joinN . unitN ) (2M)
= mapM id (5N)
= id (1M)

prod . mapN unit
= mapM joinN . swap . mapN (unitM . unitN ) prod , unit
= mapM joinN . swap . mapN unitM . mapN unitN (2N)
= mapM joinN . unitM . mapN unitN S(3)
= unitM . joinN . mapN unitN (3M)
= unitM (6N)

prod . mapN join
= prod . mapN (mapM joinN . dorp) join
= mapM joinN . swap . mapN (mapM joinN ) . mapN dorp prod , (2N)
= mapM joinN . mapM (mapN joinN ) . swap . mapN dorp S(1)
= mapM (joinN . mapN joinN ) . swap . mapN dorp (2M)
= mapM (joinN . joinN ) . swap . mapN dorp (7N)
= mapM joinN . mapM joinN . swap . mapN dorp (2M)
= mapM joinN . prod . mapN dorp prod
= mapM joinN . dorp . prod S(4)
= join . prod join

Figure 5: Proof of P(1)–P(4) from S(1)–S(4) with prod = mapM joinN . swap
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dorp . map (mapM f )
= joinM . mapM swap . mapM (mapN (mapM f )) dorp, map
= joinM . mapM (swap . mapN (mapM f )) (2M)
= joinM . mapM (mapM (mapN f ) . swap) S(1)
= joinM . mapM (mapM (mapN f )) . mapM swap (2M)
= mapM (mapN f ) . joinM . mapM swap (4M)
= map f . dorp map, dorp

dorp . unit
= joinM . mapM swap . unitM . unitN dorp, unit
= joinM . unitM . swap . unitN (3M)
= swap . unitN (5M)
= mapM unitN S(2)

dorp . map unitM
= joinM . mapM swap . mapM (mapN unitM ) dorp, map
= joinM . mapM (swap . mapN unitM ) (2M)
= joinM . mapM unitM S(3)
= id (6M)

dorp . join
= joinM . mapM swap . joinM . mapM prod dorp, join
= joinM . joinM . mapM (mapM swap) . mapM prod (4M)
= joinM . mapM joinM . mapM (mapM swap) . mapM prod (7M)
= joinM . mapM (joinM . mapM swap . prod) (2M)
= joinM . mapM (dorp . prod) dorp
= joinM . mapM (prod . mapN dorp) S(4)
= joinM . mapM prod . map dorp (2M), map
= join . map dorp join

Figure 6: Proof of D(1)–D(4) from S(1)–S(4) with dorp = joinM . mapM swap
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3.5 Summary

At first glance, the constructions in the previous sections may seem rather mysterious;
in each case, we gave a type for some polymorphic function, stated some laws that it
should satisfy . . . and ‘presto!’ we have another way of composing monads. In fact,
these constructions were discovered largely by experimentation, ‘guessing’ a definition of
join in some particular form, for example join = joinM . mapM prod , then attempting
to prove the monad laws, for example, to determine what properties prod should satisfy.
Types played an essential part in this process, helping to suggest ways to define join
and ensuring that the laws we used are well-typed.

The following diagram summarizes these results and the relationship between the differ-
ent constructions for compositions of monads:

prod :: N (M (N a)) → M (N a)

satisfying P(1)–P(4)

swap :: N (M a) → M (N a)

satisfying S(1)–S(4)

join :: M (N (M (N a))) → M (N a)

satisfying (4)–(7)

dorp :: M (N (M a)) → M (N a)

satisfying D(1)–D(4)

-
M , N

@
@RM ¡

¡µ
N

¡
¡µ

N
@

@R
M

In each case, the arrows between different constructions represent implications, with the
labels indicating which of the constructors M and N is required to be a monad.

4 Converse results

We now have a number of different ways of composing two monads, but we have not
made any attempt to see how general each approach might be. In particular, it is natural
to ask what kinds of monads can be obtained using the constructions described above.
Thinking of the diagram at the end of the previous section, we know by definition that
all compositions of M and N must have a join function as specified by the rightmost
box. The goal of this section is to establish what conditions are necessary to move back,
in the opposite direction of the arrows, to each of the other three constructions.

More formally, suppose that M and N are monads and that there is a composition of
M and N with operators map, unit and join satisfying the laws (1)–(7) and such that:

map = mapM . mapN

unit = unitM . unitN

The problem now is to determine which composite monads defined in this way can be
obtained using each of the prod , dorp and swap constructions.
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4.1 The prod construction

It is actually fairly easy to give a definition for a prod function (of the required type) in
terms of the various monad operators available:

prod = join . unitM

Showing that this definition of prod satisfies the laws P(1)–P(4) is also straightforward,
as detailed by the proofs in Figure 7. In fact, the only difficulty arises when we try to

map f . prod
= map f . join . unitM prod
= join . map (map f ) . unitM (4)
= join . mapM (mapN (map f )) . unitM map
= join . unitM . mapN (map f ) (3M)
= prod . mapN (map f ) prod

prod . unitN
= join . unitM . unitN prod
= join . unit unit
= id (5)

prod . mapN unit
= join . unitM . mapN unit prod
= join . mapM (mapN unit) . unitM (3M)
= join . map unit . unitM map
= unitM (6)

prod . mapN join
= join . unitM . mapN join prod
= join . mapM (mapN join) . unitM (3M)
= join . map join . unitM map
= join . join . unitM (7)
= join . prod prod

Figure 7: Proof of P(1)–P(4) from the existence of a composition

show that the join function we obtain from the prod construction is the same as the join
function that we started with. One way to do this is as follows:

joinM . mapM prod = joinM . mapM (join . unitM ) prod
= joinM . mapM join . mapM unitM (2M)
= join . joinM . mapM unitM J(1)
= join (6M)
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Note that this depends on an assumption about the way that join and joinM ‘commute’
with one another:

joinM . mapM join = join . joinM J(1)

This condition may seem a little arbitrary, but it turns out that every composite monad
obtained by the prod construction has this property:

joinM . mapM join = joinM . mapM (joinM . mapM prod) join
= joinM . mapM joinM . mapM (mapM prod) (2M)
= joinM . joinM . mapM (mapM prod) (7M)
= joinM . mapM prod . joinM (4M)
= join . joinM join

It follows that the set of composite monads that can be obtained using the prod con-
struction are precisely those satisfying J(1).

4.2 The dorp construction

As in the previous case, it is easy to find a suitably typed definition of the dorp function
using the operations of the composite monad and its components:

dorp = join . map (mapM unitN )

The proofs in Figure 8 show that this definition satisfies the laws D(1)–D(4) as we would
hope. Once again, the most difficult task is to show that the join function obtained
from this dorp function using the earlier construction is equal to the join operator in
the composite monad. One way to prove this is as follows:

mapM joinN . dorp
= mapM joinN . join . map (mapM unitN ) dorp
= join . map (mapM joinN ) . map (mapM unitN ) J(2)
= join . map (mapM (joinN . unitN )) (2), (2M)
= join . map (mapM id) (5N)
= join (1M), (1)

This also depends on an assumed law, this time linking the behaviour of join and joinN :

join . map (mapM joinN ) = mapM joinN . join J(2)

In fact, law J(2) holds for all composite monads obtained using the dorp construction,
as demonstrated by the following:

join . map (mapM joinN )
= mapM joinN . dorp . map (mapM joinN ) join
= mapM joinN . map joinN . dorp D(1)
= mapM (joinN . mapN joinN ) . dorp map, (2M)
= mapM (joinN . joinN ) . dorp (7N)
= mapM joinN . mapM joinN . dorp (2M)
= mapM joinN . join join
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dorp . map (mapM f )
= join . map (mapM unitN ) . map (mapM f ) dorp
= join . map (mapM (unitN . f )) (2), (2M)
= join . map (mapM (mapN f . unitN )) (3N)
= join . map (map f ) . map (mapM unitN ) (2), (2M), map
= map f . join . map (mapM unitN ) (4)
= map f . dorp dorp

dorp . unit
= join . map (mapM unitN ) . unit dorp
= join . unit . mapM unitN (3)
= mapM unitN (5)

dorp . map unitM
= join . map (mapM unitN ) . map unitM dorp
= join . map (mapM unitN . unitM ) (2)
= join . map (unitM . unitN ) (3M)
= join . map unit unit
= id (6)

dorp . join
= join . map (mapM unitN ) . join dorp
= join . join . map (map (mapM unitN )) (4)
= join . map join . map (map (mapM unitN )) (7)
= join . map (join . map (mapM unitN )) (2)
= join . map dorp dorp

Figure 8: Proof of D(1)–D(4) from the existence of a composition
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4.3 The swap construction

Our goal in this section is to determine the class of composite monads that can be
constructed using the swap construction presented in Section 3.4. From the results
given there, any composite obtained using swap can also be obtained from a prod or
a dorp construction, so it follows (from the results in the last two sections) that any
monad obtained from swap must satisfy at least J(1) and J(2). In fact, we will now
show that these two properties are not only necessary, but also sufficient.

Following the pattern in the previous cases, we start with a definition for the swap
function in terms of the join of the composite monad:

swap = join . unitM . mapN (mapM unitN )

or, equivalently:

swap = join . map (mapM unitN ) . unitM

since:
join . unitM . mapN (mapM unitN )

= join . mapM (mapN (mapM unitN )) . unitM (3M)
= join . map (mapM unitN ) . unitM . map

Note that these definitions of swap can also be expressed in terms of the prod and dorp
functions used in the previous two sections:

swap = join . unitM . mapN (mapM unitN ) swap
= prod . mapN (mapM unitN ) prod

swap = join . map (mapM unitN ) . unitM swap
= dorp . unitM dorp

Assuming J(2), we can show that the definition of prod in terms of swap given in Sec-
tion 3.4 coincides with the prod function specified in terms of join in Section 4.1:

mapM joinN . swap
= mapM joinN . join . unitM . mapN (mapM unitN ) swap
= join . map (mapM joinN ) . unitM . mapN (mapM unitN ) J(2)
= join . unitM . mapN (mapM joinN ) . mapN (mapM unitN ) map, (3M)
= join . unitM . mapN (mapM (joinN . unitN )) (2N), (2M)
= join . unitM (5N), (1M), (1N)

In a similar way, assuming J(1), we can show that the definition of dorp from swap in
Section 3.4 gives the same function as the definition of dorp in Section 4.2:

joinM . mapM swap
= joinM . mapM (join . map (mapM unitN ) . unitM ) swap
= joinM . mapM join . mapM (map (mapM unitN ) . unitM ) (2M)
= join . joinM . mapM (map (mapM unitN ) . unitM ) J(1)
= join . map (mapM unitN ) . joinM . mapM unitM map, (4M), (2M)
= join . map (mapM unitN ) (6M)
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With these results, it is straightforward to show that, given a composite monad satisfying
J(1) and J(2), the swap function defined above satisfies the laws S(1)–S(4) required for
the swap construction; see Figure 9 for the proofs. For convenience, we have used

swap . mapN (mapM f )
= dorp . unitM . mapN (mapM f ) swap
= dorp . map (mapM f ) . unitM (3M), map
= map f . dorp . unitM D(1)
= mapM (mapN f ) . swap map, swap

swap . unitN
= dorp . unitM . unitN swap
= dorp . unit unit
= mapM unitN D(2)

swap . mapN unitM
= dorp . unitM . mapN unitM swap
= dorp . map unitM . unitM (3M), map
= unitM D(3)

dorp . prod
= dorp . join . unitM prod
= join . map dorp . unitM D(4)
= join . unitM . mapN dorp map, (3M)
= prod . mapN dorp prod

Figure 9: Proof of S(1)–S(4) from the existence of a composition

the properties of dorp described by the laws D(1)–D(4) to establish these properties of
swap. Similar derivations are also possible using the laws for prod , or directly using the
definition of swap in terms of join although the proofs are a little longer, particularly in
the second case.

Given the comments above, this completes the proof that the set of monads which can
be constructed from a swap function are precisely those satisfying both J(1) and J(2).

4.4 Summary

Corresponding to the diagram in Section 3.5, we can summarize the results about the
converses for the prod , dorp and swap constructions as follows:
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prod :: N (M (N a)) → M (N a)

satisfying P(1)–P(4)

swap :: N (M a) → M (N a)

satisfying S(1)–S(4)

join :: M (N (M (N a))) → M (N a)

satisfying (4)–(7)

dorp :: M (N (M a)) → M (N a)

satisfying D(1)–D(4)

¾J(1), J(2)

@
@I

J(1)
¡

¡ªJ(2)

¡
¡ª

J(2)
@

@I
J(1)

This time, we have labeled the arrows between the different constructions with the
additional properties required to establish the converse.

The properties J(1) and J(2) that we have used in these results are actually fairly similar,
each given by a law of the form:

join . map f = f . join

For J(1), the join and map functions here should be read as the corresponding operators
for the monad M with f the join function in the composite monad. For J(2), the join
and map operators are taken from the composite monad with f = mapM joinN .

Incidentally, functions satisfying a law of the form shown above are actually quite widely
studied in functional programming. For example, in the special case of the list monad
where join is just the concatenation of a list of lists (the concat function in Haskell),
functions satisfying the law above are often referred to as list homomorphisms.

5 Programming monad composition

Our goal in this and remaining sections is to show how the different constructions for
monad composition presented above can be used in a practical programming language.
For convenience, we will use the notation of constructor classes [5] implemented as part
of the Gofer system, although the same ideas can also be applied to a much wider range
of languages.

In this section, we present a general framework for working with different forms of
monad composition. Later, we will describe a number of concrete examples of monad
composition, and use some of these in a simple application.

5.1 Representing functors

The Haskell programming language [3] makes use of a system of type classes to provide
a flexible treatment of ad-hoc polymorphism. A type class is a set of types, often
referred to as the instances of the class, together with a family of operations that are
defined for each instance. Constructor classes are a natural extension, allowing classes of
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type constructors. Since types are just nullary constructors (i.e. taking no arguments),
this includes Haskell style type classes as a special case. For example, the following
declaration introduces a class Functor and specifies that, for each instance f , there is a
map function that maps functions of type (a → b) to functions of type (f a → f b):

class Functor f where
map :: (a → b) → (f a → f b)

This corresponds fairly closely to the definition of a functor in Section 2, except that it
does not include the functor laws (1) and (2). Equality of functions is not computable
so there is no way for a compiler to ensure that these laws are satisfied. However, it is
useful to be able to include these as part of the program to check that they are, at the
very least, type correct. One way to do this is to define an operator representing the
desired equality:

(===) :: a → a → Law a
x === y = error ”uncomputable equality”

The type signature here is particularly important, specifying that the two values being
compared must be of the same type. The exact definition of the Law a type isn’t
important1, but the argument type is used to record the type of the values that are
asserted as being equal. Note however that any attempt to use this operator to compare
two values will produce a runtime error.

Using this technique, we can represent the functor laws by the function definitions:

law1 :: Functor f ⇒ () → Law (f a → f a)
law1 () = map id === id

law2 :: Functor f ⇒ (b → c) → (a → b) → Law (f a → f c)
law2 f g = map f . map g === map (f . g)

Notice the use of function arguments to model free variables in the definition of law2 .
The types of these variables, as well as the type of the expressions being compared,
can be read directly from the type signature. Note that, although we have written
this explicitly as part of the program, the same type could also have been obtained
automatically by the Gofer type inference mechanism.

In the first law we have used the unit value () to emphasize the fact that the law has no
free variables2.

1The definition we used was: data Law a = Unspecified .
2The addition of a dummy argument also helps to avoids the monomorphism restriction in

Haskell/Gofer so that the type of law1 can be calculated by the type inference mechanism. Without the
dummy argument, an explicit type signature would be mandatory, not optional as it is here.
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5.2 Representing premonads

With the framework established above, the representation of premonads is straightfor-
ward. The class of premonads can be described by the class:

class Functor m ⇒ Premonad m where
unit :: a → m a

Note the first line in this declaration that captures the requirement that every pre-
monad is also a functor; another way of saying this is that Premonad is a subclass of
Functor . The premonad law, referred to as (3) in the first part of this report, can now
be represented by:

law3 :: Premonad m ⇒ (a → b) → Law (a → m b)
law3 f = map f . unit === unit . f

5.3 Representing monads

The representation of monads also follows directly from our earlier definitions, captured
by the class Monad , which is a subclass of Premonad :

class Premonad m ⇒ Monad m where
join :: m (m a) → m a

The monad laws (4)–(7) are represented by the following:

law4 :: Monad m ⇒ (a → b) → Law (m (m a) → m b)
law4 f = join . map (map f ) === map f . join

law5 :: Monad m ⇒ () → Law (m a → m a)
law5 () = join . unit === id

law6 :: Monad m ⇒ () → Law (m a → m a)
law6 () = join . map unit === id

law7 :: Monad m ⇒ () → Law (m (m (m a)) → m a)
law7 () = join . map join === join . join

5.4 A general framework for composition constructions

It is easy to describe the composition of functors and premonads using the definitions:

mapC :: (Functor f , Functor g) ⇒ (a → b) → (f (g a) → f (g b))
mapC = map . map

unitC :: (Premonad m, Premonad n) ⇒ a → m (n a)
unitC = unit . unit
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However, neither of these functions has a type of the right form to be able to define
an instance of the Functor or Premonad classes. Furthermore, when we consider the
different constructions for monad composition, there is nothing in a type expression of
the form f (g x ) to indicate which construction is intended. To avoid this problem,
we will define a different constructor c for each of the composition constructions with
the intention that c f g x is isomorphic to the composition f (g x ), identifying the
construction used.

To simplify the task of converting between values of type c f g x and those of type
f (g x ), we introduce a constructor class to describe the required isomorphisms3:

class Composer c where
open :: c f g x → f (g x )
close :: f (g x ) → c f g x

Using these functions, we can package up the mapC operator defined above to give an
instance of the Functor class:

instance (Composer c, Functor f , Functor g) ⇒ Functor (c f g) where
map f = close . mapC f . open

Note that this definition can be used with any suitable c; we do not need to repeat the
definition of the map function for each different construction.

The definition of the composition of premonads can also be dealt with in a similar
manner.

instance (Composer c, Premonad m, Premonad n) ⇒ Premonad (c m n) where
unit = close . unitC

In each of these instance declarations, we used compositions with open and close to
modify the type of a value so that it could be used to define an instance of a particular
class. The following function will be used a number of times in subsequent sections to
wrap up the definition of a join function in an instance of the Monad class:

wrap :: (Composer c, Functor m, Functor n) ⇒
(m (n (m (n a))) → m (n a)) →

(c m n (c m n a) → c m n a)
wrap j = close . j . mapC open . open

The type of this function may seem a little daunting. However, all it really does is
convert a function with a type suitable for the join function of a composition to an
equivalent form using a instance c of the Composer class.

3As another, technical aside, the implementations that we give in later sections are not strictly isomor-
phisms – the representations we use for each c f g x are actually isomorphic to the lifted representation
of f (g x ), not to f (g x ) itself. This could be fixed using strict constructors or irrefutable pattern
matching; for the purposes of this work, we will assume that open and close are genuine isomorphisms
and we will not consider the details any further here.
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We will also need a way to embed computations in one component into the composite
monad. This can be accomplished using the following functions:

right :: (Composer c, Premonad f ) ⇒ g a → c f g a
right = close . unit

left :: (Composer c, Functor f , Premonad g) ⇒ f a → c f g a
left = close . map unit

See Section 7 for a concrete example of this.

5.5 Programming the prod construction

Our first construction, and our first application of the Composer class introduced above,
is based on the prod construction first described in Section 3.2. We will use the following
composer to identify this particular construction.

data PComp f g x = PC (f (g x ))

instance Composer PComp where
open (PC x ) = x
close = PC

The construction itself requires a prod function, as described by the following class
declaration:

class (Monad m, Premonad n) ⇒ PComposable m n where
prod :: n (m (n a)) → m (n a)

Note that PComposable uses two parameters and that the superclass constraints capture
the requirement that m is a monad, while only a premonad structure is needed for n.
The definition of the composite join function follows directly from our earlier results:

joinP :: (PComposable m n) ⇒ m (n (m (n a))) → m (n a)
joinP = join . map prod

For good measure, we will also include the laws P(1)–P(4) that are required for the prod
construction. For brevity, we omit the corresponding type signatures, all of which can
in any case, be inferred automatically:

p1 f = prod . map (mapC f ) === mapC f . prod
p2 () = prod . unit === id
p3 () = prod . map unitC === unit
p4 () = prod . map joinP === joinP . prod

Finally, we can package up the joinP function defined above to define a new instance of
the Monad class (the corresponding superclass instances for Functor and Premonad are
already covered by the definitions in the previous section):

instance PComposable m n ⇒ Monad (PComp m n) where
join = wrap joinP
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5.6 Programming the dorp construction

With the previous section still fresh in our minds, the treatment of the dorp construction
in this section is unlikely to cause any big surprises. We begin with the definition of a
new composer to identify compositions obtained from this construction:

data DComp f g x = DC (f (g x ))

instance Composer DComp where
open (DC x ) = x
close = DC

The construction requires a function dorp, specified by:

class (Premonad m, Monad n) ⇒ DComposable m n where
dorp :: m (n (m a)) → m (n a)

and yields a monad structure with a join function given by:

joinD :: (DComposable m n) ⇒ m (n (m (n a))) → m (n a)
joinD = map join . dorp

Any definition of dorp is expected to satisfy the laws D(1)–D(4) which are represented
as follows:

d1 f = dorp . mapC (map f ) === mapC f . dorp
d2 () = dorp . unitC === map unit
d3 () = dorp . mapC unit === id
d4 () = dorp . joinD === joinD . mapC dorp

And we can package the dorp construction as an instance of the Monad class using the
following declaration:

instance (DComposable m n) ⇒ Monad (DComp m n) where
join = wrap joinD

5.7 Programming the swap construction

Following, once again, the pattern of the previous sections, we begin our implementation
of the swap construction with the definition of a corresponding new composer:

data SComp f g x = SC (f (g x ))

instance Composer SComp where
open (SC x ) = x
close = SC

To compose two monads using this technique, we require a swap function given by:

class (Monad m, Monad n) ⇒ SComposable m n where
swap :: n (m a) → m (n a)
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and satisfying the laws S(1)–S(4), represented by:

s1 f = swap . mapC f === mapC f . swap
s2 () = swap . unit === map unit
s3 () = swap . map unit === unit
s4 () = prod . map dorp === dorp . prod

where prod = map join . swap
dorp = join . map swap

This allows us to define a monad structure on the composition with join function given
by:

joinS :: (SComposable m n) ⇒ m (n (m (n a))) → m (n a)
joinS = map join . join . map swap

which leads to the following instance of the Monad class:

instance (SComposable m n) ⇒ Monad (SComp m n) where
join = wrap joinS

Finally, we can capture some aspects of the relationship between the different construc-
tions using the following instance declarations.

instance (SComposable m n) ⇒ PComposable m n where
prod = map join . swap

instance (SComposable m n) ⇒ DComposable m n where
dorp = join . map swap

These definitions reflect the fact, proved in Section 3.4, that values for prod and dorp
can always be derived from a suitable definition of swap.

6 Some specific monad constructions

Now that we have established the basic framework for our approach to monad com-
position, we will show how our results can be used to compose some specific monads.
We have already seen that we cannot define a composition that works for two arbitrary
monads. The next best option is to fix one of the components in a composition to be
a particular monad and allow the other component to range over a family of different
monads.

To illustrate the three different constructions, the following sections show how we can
define certain compositions with the Maybe, reader, and list monads using the prod ,
dorp and swap constructions, respectively. We will also present some further examples
using the same techniques to obtain compositions with other standard monads.
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6.1 The Maybe datatype

The Maybe datatype, used in [12] to model a form of exception handling, is defined by:

data Maybe a = Just a | Nothing

There is a natural functor and monad structure corresponding to this datatype, given
by the following declarations (proofs that these functions satisfy the appropriate laws
are left as an exercise for the reader):

instance Functor Maybe where
map f (Just x ) = Just (f x )
map f Nothing = Nothing

instance Premonad Maybe where
unit = Just

instance Monad Maybe where
join (Just m) = m
join Nothing = Nothing

Our goal now is to show how to construct a new monad by composing the Maybe
constructor with an arbitrary datatype. Using the prod construction, a composition of
the form Maybe . n would require a function:

prod :: n (Maybe (n a)) → Maybe (n a).

However, using only the monad operators for n, there does not appear to be any reason-
able way to define a suitable function with this type. (This could probably be proved
formally using the same kind of techniques as in the proof in the appendix.) On the
other hand, for a composition of the form m . Maybe, we require a function:

prod :: Maybe (m (Maybe a)) → m (Maybe a).

In this case, since we know something about the structure of objects constructed using
Maybe, it is relatively easy to find a suitable definition for prod :

instance PComposable m Maybe where
prod (Just m) = m
prod Nothing = unit Nothing

Proofs that this definition satisfies the necessary laws P(1)–P(4) are given in Figure 10.
In each case, except for law P(2), we split the proof into two case – one for values of the
form Nothing and a second for values Just m.
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prod (map (mapC f ) Nothing) = prod Nothing map
= unit Nothing prod
= unit (map f Nothing) map
= map (map f ) (unit Nothing) law3
= mapC f (unit Nothing) mapC
= mapC f (prod Nothing) prod

prod (map (mapC f ) (Just m)) = prod (Just (mapC f m)) map
= mapC f m prod
= mapC f (prod (Just m)) prod

prod (unit m) = prod (Just m) unit
= m prod

prod (map unitC Nothing) = prod Nothing map
= unit Nothing prod

prod (map unitC (Just x )) = prod (Just (unitC x )) map
= unitC x prod
= unit (unit x ) unitC
= unit (Just x ) unit

prod (map joinP Nothing) = prod Nothing map
= join (unit (prod Nothing)) law5
= join (map prod (unit Nothing)) law3
= joinP (unit Nothing) joinP
= joinP (prod Nothing) prod

prod (map joinP (Just m)) = prod (Just (joinP m)) map
= joinP m prod
= joinP (prod (Just m)) prod

Figure 10: Proof of P(1)–P(4) for the Maybe monad
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6.2 Monad Comprehension Syntax

For most of the monad constructions introduced in the following sections, it is convenient
to work with the notation of monad comprehensions. Several functional programming
languages, including Haskell and Gofer, provide a special syntax for list comprehensions
which allow some list-based computations to be expressed very clearly and concisely.
Lists form a monad (see Section 6.4 for details) and, noticing this, Wadler [14] showed
how the comprehension notation could be generalized to an arbitrary monad. A com-
prehension is written using the notation [ exp | gs ] where exp is an expression and gs is
a list of generators i.e. expressions of the form x ← e. The meaning of a comprehension
can be defined by translating it into a form using the standard monad operators:

[ exp | x ← e ] = map (\x → exp) e mapComp
[ exp ] = unit exp unitComp
[ exp | gs, hs ] = join [ [ exp | hs ] | gs ] joinComp

The first equation can be considered as a way of defining map using the comprehension
notation, with map f [ exp | gs ] = [ f exp | gs ]. The second equation gives the
meaning of a comprehension with an empty sequence of qualifiers. In the last equation,
the variables gs and hs range over (possibly empty) sequences of generators. Using the
monad laws, we can show that the way in which these rules are used to find a translation
of a monad comprehension does not have any effect on the meaning of the result. See
[14] for further details.

For convenience, we will also use the following laws about monad comprehensions, each
of which can be derived from the definitions above and the monad laws.

[ x | x ← xs ] = xs compId
[ f x | x ← map g e ] = [ f (g x ) | x ← e ] compMap
[ f x | x ← unit e ] = [ f e ] compUnit
[ exp | x ← join e ] = [ exp | z ← e, x ← z ] compJoin

For example, the first of these is just another way of writing the functor law (1), while
the second follows directly (2) and can be used to justify equalities such as:

[ h x y | x ← map f u, y ← map g v ] = [ h (f x ) (g y) | x ← u, y ← v ]
[ exp | m ← map f n, x ← m ] = [ exp | m ← n, x ← f m ]

In a similar way, compUnit can also be used in the justification of laws like:

[ h x y | x ← unit u, y ← unit v ] = [ h u v ].

Finally, we mention that the compId and compJoin can be used together to give a
definition of the join operator using the comprehension notation:

join e = [ x | x ← join e ] = [ z | z ← e, x ← z ].
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6.3 Reader monads

A reader monad is described by a constructor of the form (r →) mapping each type a
to the function type r → a. We refer to computations in this monad as readers because
they can read the value passed in the parameter of type r , but they cannot change that
value. The functor, premonad and monad structures for readers are given by:

instance Functor (r →) where
map f g = f . g

instance Premonad (r →) where
unit x y = x

instance Monad (r →) where
join f x = f x x

The following declaration can be used to compose an arbitrary monad n with a reader
monad (r →) using the dorp construction:

instance DComposable (r →) n where
dorp m r = [ g r | g ← m r ]

Proofs that this definition satisfies the laws D(1)–D(4) are included in Figure 11.

6.4 The List monad

Lists are one of the most widely used monads in functional programming. The structure
of the list monad is captured by the type constructor List4, together with the following
instance declarations:

instance Functor List where
map f [ ] = [ ]
map f (x : xs) = f x : map f xs

instance Premonad List where
unit x = [ x ]

instance Monad List where
join = foldr (++) [ ]

The foldr function and the list append operator (++) used here are both taken from the
standard prelude.

This time, we will use the swap construction to obtain a composition of a monad m
with the List monad (we will see shortly that this construction only yields a composite

4In fact, the concrete syntax of Gofer currently requires that we write this constructor as [ ], but we
use the notation List here for clarity. The type List a is the same as the type [a] in standard Haskell
notation.
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dorp (mapC (map f ) m) r
= [ g r | g ← map (map (map f )) m r ] dorp, mapC
= [ g r | g ← map (map f ) (m r) ] map
= [map f g r | g ← m r ] compMap
= [ f (g r) | g ← m r ] map
= map f [ g r | g ← m r ] compMap
= map f (dorp m r) dorp
= map (map f ) (dorp m) r map
= mapC f (dorp m) r mapC

dorp (unitC f ) r = [ g r | g ← unit (unit f ) r ] dorp, unitC
= [ g r | g ← unit f ] unit
= [ f r ] compUnit
= unit (f r) unitComp
= map unit f r map

dorp (mapC unit f ) r = [ g r | g ← map (map unit) f r ] dorp,mapC
= [ g r | g ← map unit (f r) ] map
= [ unit g r | g ← f r ] compMap
= [ g | g ← f r ] unit
= f r compId

dorp (joinD f ) r = [ g r | g ← map join (dorp f ) r ] dorp, joinD
= [ g r | g ← join (dorp f r) ] map
= [ g r | h ← dorp f r , g ← h ] compJoin
= [ g r | h ← [ k r | k ← f r ], g ← h ] dorp
= [ g r | h ← f r , g ← h r ] mapComp
= join [ [ g r | g ← h r ] | h ← f r ] joinComp
= join [ dorp h r | h ← f r ] dorp
= join [ h r | h ← map dorp (f r) ] compMap
= join [ h r | h ← map (map dorp) f r ] map
= join [ h r | h ← mapC dorp f r ] mapC
= join (dorp (mapC dorp f ) r) dorp
= map join (dorp (mapC dorp f )) r map
= joinD (mapC dorp f ) r joinD

Figure 11: Proof of D(1)–D(4) for reader monads
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monad if m has a certain commutativity property):

instance SComposable m List where
swap [ ] = unit [ ]
swap (x : xs) = [ y : ys | y ← x , ys ← swap xs ]

The proofs for S(1)–S(3) in Figure 12 hold for any monad m. Structural induction is
required for the proofs of S(1) and S(3); we have not shown the case for ⊥ values which
follow directly from the use of pattern matching in the definition of the monad operators.

The proof of law S(4) is rather more involved. To begin with, we need to introduce the
auxiliary functions:

prod = map join . swap
dorp = join . map swap

A quick calculation (or, if you prefer, proof by induction) based on the definition of swap
allows us to use the following definition for the prod function:

prod [ ] = unit [ ]
prod (x : xs) = [ u++v | u ← x , v ← prod xs ]

The proof of S(4), by structural induction, is presented in Figure 13.

There are two steps in the proof which require further explanation. The first is a lemma
describing the way that swap distributes over (++):

swap (xs++ys) = [ x++y | x ← swap xs, y ← swap ys ]

This law holds for any monad m (i.e. the monad in which the comprehension is in-
terpreted) and can be proved using the simple structural induction on xs in Figure 14.

Notice that we made use of (yet another) variant of compMap :

[ f x y | x ← u, t ← [ h y z | y ← v , z ← w ] ]
= [ f x (h y z ) | x ← u, y ← v , z ← w ]

The other important step is the use of a commutativity property that enables us to swap
two of the generators in a comprehension. We require that the following law is satisfied :

[ r++s | v ← x , r ← swap v , u ← prod xs, s ← swap u ]
= [ r++s | v ← x , u ← prod xs, r ← swap v , s ← swap u ]

One way to ensure that this law holds is to insist that m is a commutative monad – i.e.
that it satisfies the law:

[ (x , y) | x ← u, y ← v ] = [ (x , y) | y ← v , x ← u ].

30



swap (mapC f [ ])
= swap (map (map f ) [ ]) mapC
= swap [ ] mapC , map
= unit [ ] swap
= unit (map f [ ]) map
= map (map f ) (unit [ ]) law3
= mapC f (swap [ ]) mapC , swap

swap (mapC f (x : xs))
= swap (map (map f ) (x : xs)) mapC
= swap (map f x : map (map f ) xs) map
= [ y : ys | y ← map f x , ys ← swap (map (map f ) xs) ] swap
= [ y : ys | y ← map f x , ys ← map (map f ) (swap xs) ] induction
= [ f y : map f ys | y ← x , ys ← swap xs ] compMap
= [map f (y : ys) | y ← x , ys ← swap xs ] compMap
= map (map f ) [ y : ys | y ← x , ys ← swap xs ] map
= mapC f (swap (x : xs)) mapC , swap

swap (unit x )
= swap [x ] unit
= [ y : ys | y ← x , ys ← swap [ ] ] swap
= [ y : ys | y ← x , ys ← unit [ ] ] swap
= [ [y ] | y ← x ] compUnit
= [ unit y | y ← x ] unitComp
= map unit x mapComp

swap (map unit [ ])
= swap [ ] map
= unit [ ] swap

swap (map unit (x : xs))
= swap (unit x : map unit xs) map
= [ y : ys | y ← unit x , ys ← swap (map unit xs) ] swap
= [ y : ys | y ← unit x , ys ← unit xs ] induction
= [ x : xs ] compUnit
= unit (x : xs) unitComp

Figure 12: Proof of S(1)–S(3) for the list monad
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prod (map dorp [ ])
= prod [ ] map
= unit [ ] prod
= swap [ ] swap
= join (unit (swap [ ])) law5
= join (map swap (unit [ ])) law3
= dorp (unit [ ]) dorp
= dorp (prod [ ]) prod

prod (map dorp (x : xs))
= prod (dorp x : map dorp xs) map
= [ r++s | r ← dorp x , s ← prod (map dorp xs) ] prod
= [ r++s | r ← dorp x , s ← dorp (prod xs) ] induction
= [ r++s | r ← dorp x , s ← join (map swap (prod xs)) ] dorp
= [ r++s | r ← dorp x , u ← map swap (prod xs), s ← u ] compJoin
= [ r++s | r ← dorp x , u ← prod xs, s ← swap u ] compMap
= [ r++s | r ← join (map swap x ), u ← prod xs, s ← swap u ] dorp
= [ r++s | v ← map swap x , r ← v , u ← prod xs, s ← swap u ] compJoin
= [ r++s | v ← x , r ← swap v , u ← prod xs, s ← swap u ] compMap
= [ r++s | v ← x , u ← prod xs, r ← swap v , s ← swap u ] commute
= join [ [ r++s | r ← swap v , s ← swap u ]

| v ← x , u ← prod xs ]
joinComp

= join [ swap (v++u) | v ← x , u ← prod xs ] lemma
= join (map swap [ v++u | v ← x , u ← prod xs ]) compMap
= dorp [ v++u | v ← x , u ← prod xs ] dorp
= dorp (prod (x : xs)) prod

Figure 13: Proof of S(4) for the list monad
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swap ([ ]++ys)
= swap ys (++)
= [ vs | vs ← swap ys ] compId
= [ [ ]++vs | vs ← swap ys ] (++)
= [ us++vs | us ← unit [ ], vs ← swap ys ] compUnit
= [ us++vs | us ← swap [ ], vs ← swap ys ] swap

swap ((x : xs)++ys)
= swap (x : xs++ys) (++)
= [ z : zs | z ← x , zs ← swap (xs++ys) ] swap
= [ z : zs | z ← x , zs ← [ us++vs | us ← swap xs, vs ← swap ys ] ] induction
= [ z : us++vs | z ← x , us ← swap xs, vs ← swap ys ] compMap
= [ us++vs | us ← swap (x : xs), vs ← swap ys ] swap

Figure 14: Proof of swap (xs++ys) = [ x++y | x ← swap xs, y ← swap ys ].

The identity monad, the set monad and reader monads all have this property. On the
other hand, the list monad, Maybe monad and state monad are non-commutative.

In summary, if m is a commutative monad, then SComp m List is a monad. Since we
require only a single special case of the commutativity property, it is possible that we
may be able to relax the restriction to commutative monads to some degree. However,
it is not possible to remove the restrictions altogether. In particular, our constructions
cannot be used to compose the List monad with itself.

The importance of commutative monads has also been recognized in other situations.
For example, in [6], monads satisfying the commutativity axiom are used to capture
explicit parallel execution of programs written in a monadic style.

6.4.1 Composing a monad with itself

In Section 2 we commented that, just by looking at the types involved, it was clear that
a definition join = joinM . joinN could not be used to form a composition of two monads
M and N . The argument was that, while the function joinN produces a result with type
of the form N a, the function joinM expects a value with a type of the form M (M a).
In the general case, these types do not match. However, as the reader may have realized,
this argument fails in the special case where M = N .

In fact, although it has the required type, we still cannot use the function joinM . joinM ,
because it does not satisfy the monad laws. For example, using the list monad, we can
demonstrate a direct counter example to law (6):

(join . join . map unitC ) [[ ]] = [ ] 6= [[ ]] = id [[ ]]

So, in general, the composition of a monad with itself cannot be treated as a special
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case; we still need to use one of the constructions described above.

6.4.2 Comparison with ‘Combining monads’

Our results restrict composition with List to commutative monads. In contrast, King and
Wadler [8] give a slightly different construction which seems more general, avoiding any
restrictions on the choice of monads that can be composed with List . Unfortunately, this
promise of a more general construction turns out to be something of a mirage; although
developed in a rather different manner, their approach turns out to be equivalent to our
prod construction and does, in fact, require some form of commutativity.

The construction given in [8], is based on the definitions:

(⊗) :: Monad m ⇒ m [a] → m [a] → m [a]
a ⊗ b = [ x ++ y | x ← a, y ← b ]

prod :: Monad m ⇒ [m [a]] → m [a]
prod = foldr (⊗) (unit [ ])

This prod function is used to define join = join . map prod , the proof that this defines a
monad structure for m composed with the list monad resting on a number of properties
of prod , including:

prod . map (join . map prod) = join . map prod . prod .

However, using the following, somewhat contrived counter example, we find that this
law does not always hold:

? (prod . map (join . map prod)) [[[[[1],[3]]]],[[[[4]]],[[[2]]]]]
[[1, 4], [1, 2], [3, 4], [3, 2]]
? (join . map prod . prod) [[[[[1],[3]]]],[[[[4]]],[[[2]]]]]
[[1, 4], [3, 4], [1, 2], [3, 2]]

Of course, none of what we have said here proves that it is impossible to construct
monads by composition of arbitrary monads with the list monad; all we know is that it
is not possible using the constructions described in this report.

6.5 Some additional monad compositions

The following sections deal with some further examples, providing compositions with
standard monads. In each case, we use the swap construction to obtain the composition,
but detailed proofs are not included since they are very similar to those in previous
sections5.

5Detailed proofs of results in this section are included, as program comments, in a Gofer script
containing an executable version of the definitions in this report. See comments on the Page 1 for details
of availability.
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6.5.1 Writer monads

A writer monad can be used for describing programs that produce both output and a
return value. It pays to take a general approach, allowing the type of values used as
output to be provided as a parameter to the monad constructor, rather than committing
ourselves to a particular output type at an early stage. The following declarations define
a constructor Writer and, assuming an output type s, a corresponding functor and
monad structure for each Writer s constructor:

data Writer s a = Result s a

instance Functor (Writer s) where
map f (Result s a) = Result s (f a)

instance Monoid s ⇒ Premonad (Writer s) where
unit = Result zero

instance Monoid s ⇒ Monad (Writer s) where
join (Result s (Result t x )) = Result (add s t) x

write :: s → Writer s ()
write msg = Result msg ()

The write function defined here is used to perform output; the argument msg is returned
as the output and the value returned is just (), the unit value.

The values zero and add in the definitions above represent the null output, and the
sequencing of one output after another. To establish the monad laws for Writer s
constructors, we need to insist that add is associative with zero as both a left and right
identity. In other words, we require that these values form a monoid. This can be
captured by the following class declaration:

class Monoid s where
zero :: s
add :: s → s → s

Two obvious choices for output types, each of which forms a monad, are lists and func-
tions, as described by the following instance declarations.

instance Monoid [a] where
zero = [ ]
add = (++)

instance Monoid (a → a) where
zero = id
add = (.)

For the example in Section 7, we will use lists of strings (i.e. values of type String ,
each corresponding to a line of output) for output values. In practice, an output type
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of the form String → String might be more sensible, allowing tree like structures to be
printed in linear time rather than in time quadratic in the size of the tree. Both of these
possibilities are permitted by the definitions above.

Incidentally, we will also mention that the monad Writer Int , assuming the monoid
structure:

instance Monoid Int where
zero = 0
add = (+)

gives us another example of a commutative monad (see Section 6.4). This might be used,
for example, in a simple profiler, counting the number of times that particular tasks are
carried out and using the command write 1 to increment the counter at suitable points
in the program.

Writer monads can be composed with arbitrary monads using the following definition of
swap:

instance Monoid s ⇒ SComposable m (Writer s) where
swap (Result s m) = [Result s a | a ← m ]

6.5.2 The Error monad

As a simple variation on the Maybe monad described in Section 6.1, it is often useful to
be able to return some form of error message when an exception occurs. This can be
described by the Error monad:

data Error a = Ok a | Error String

instance Functor Error where
map f (Ok x ) = Ok (f x )
map f (Error msg) = Error msg

instance Premonad Error where
unit = Ok

instance Monad Error where
join (Ok x ) = x
join (Error msg) = Error msg

As with Maybe, we can use the prod construction to obtain a composition of Error (on
the left) with any monad m. Suitable definitions and proofs can be obtained by replacing
each reference to Just with Ok and each Nothing with a value of the form Error msg in
Section 6.1. Alternatively, we can use the swap construction, based on the definition:

instance SComposable m Error where
swap (Ok m) = map Ok m
swap (Error msg) = unit (Error msg)
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6.5.3 The Tree monad

The final example we will consider is tree monad, defined by the constructor Tree, and
mapping a type a to the type Tree a of binary trees with leaf values of type a. The
monad structure is given by the following declarations:

data Tree a = Leaf a | Tree a :∧ : Tree a

instance Functor Tree where
map f (Leaf x ) = Leaf (f x )
map f (lx :∧ : rx ) = map f lx :∧ : map f rx

instance Premonad Tree where
unit = Leaf

instance Monad Tree where
join (Leaf m) = m
join (lm :∧ : rm) = join lm :∧ : join rm

Composition of the Tree monad with a monad m can be described using the swap
construction with:

instance SComposable m Tree where
swap (Leaf m) = [Leaf m | x ← m ]
swap (lm :∧ : rm) = [ lx :∧ : rx | lx ← swap lm, rx ← swap rm ]

As in the case of list monads, the proof of S(4) depends on a commutativity property for
m. The proofs for S(1)–S(3) however (and hence, the proofs of the monad laws (4)–(6)
for SComp m Tree) do not require any special properties of m.

7 A simple example: an evaluator

In this section, we show how two of the monad constructions introduced above can be
used in a small, but practical, example – an expression evaluator. To make the example
more interesting we will use an environment mapping variables to values (with a careful
treatment of unbound variables) and we will provide a simple trace facility.

We will base the expression evaluator on the following types representing values, variable
names, environments (i.e. mappings from variable names to values) and expressions:

type Value = Int
type Name = String
type Env = [(Name,Value)]
data Expr = Const Value | Var Name | Expr :+: Expr | Trace String Expr

To keep this example short, we have restricted ourselves to a very simple expression
language, allowing only constants, variables, addition and a simple trace mechanism.
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The evaluator itself will need to access variables bound in an environment, may produce
output if the trace facility is used, and requires some form of error handling to deal with
unbound variables. This could be captured by defining a monad structure for the type
constructor:

type M a = Env → Writer [String ] (Error a),

working out suitable versions of the monad operators for this particular type. If we’re
going to be really fussy, we should also verify the monad laws for whatever definitions
we choose for these operators. Given that the definition of M is quite complex, this is
likely to require a long, error-prone, and largely uninspiring calculation.

The alternative, using the tools introduced in this report, is to recognize that the def-
inition of M can be expressed as a composition of monads. Assuming that all the
components are themselves monads, our results mean that we can use this approach
without requiring any further proofs:

type M a = DComp (Env →) (SComp (Writer [String ]) Error) a

In all honesty, we have to admit that this looks rather ugly. However, in a language
designed from scratch to support this kind of work, we might reasonably expect to be
able to define M in a less clumsy manner, using an equation of the form:

M = (Env →) . Writer [String ] . Error

We will also use the following functions, defined in terms of the general left and right
functions introduced in Section 5.4, to embed computations in each of the component
monads into the full monad M :

inError :: Error a → M a
inError = right . right

inReader :: (Env → a) → M a
inReader = left

inWriter :: Writer [String ] a → M a
inWriter = right . left

It is possible to package these functions in a more general way using the overloading
mechanism (all have types of the form N a → M a for some constructor N ), but we
will not consider this any further here.

Before we can give the definition of the evaluator, we need a simple utility function to
determine the value bound to a particular variable in a given environment. We will
use the Maybe type to enable us to deal with the two cases, depending on whether the
variable is bound or not in the given environment.

lookup :: Name → Env → Error Value
lookup x ((n, v) : env) = if x == n then Ok v else lookup x env
lookup x [ ] = Error (”unbound variable ” ++ x )
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The complete evaluator is defined as follows, with a single case for each possible form of
expression:

eval :: Expr → M Value
eval (Const v) = [unit v ]
eval (Var n) = [ x | r ← inReader (lookup n), x ← inError r ]
eval (e :+: f ) = [ x + y | x ← eval e, y ← eval f ]
eval (Trace m e) = [ x | x ← eval e,

() ← inWriter (write [m ++ ” = ”++show r ]) ]

Finally, we provide a function that can be used to execute a computation in the M
monad, using a given environment value and returning a string as its result:

result :: Text a ⇒ M a → Env → String
result m env = unlines ([”Output : ”] ++ s ++ [”Result : ” ++ val ])

where Result s x = open (open m env)
val = case x of

Ok x → show x
Error msg → msg

For example, using the programs described here in the Gofer interpreter with the expres-
sion testExpr = Trace ”sum” (Const 1 : + : Const 2 ) :+ : Var ”x” gives the following
results:

? result (eval testExpr) []
Output:
sum = 3
Result: unbound variable x

? result (eval testExpr) [("x",42)]
Output:
sum = 3
Result: 45

8 Other ways to combine monads

Having spent so much time concentrating on the composition of monads, it is important
to point out that there are other methods that can be used to combine monads.

In some cases, a composition of monads is not suitable because it implies a certain
level of independence between the components than may not be desired. For example,
one common application of monads is to model state-based computations using state
transformers; i.e. functions taking an initial state and returning a pair containing a final
state and a return value of some type. This is described, for example in [5], using a type
constructor:

data State s a = ST (s → (s, a))
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The type s used here gives the type of values used for the state while a represents
the type of return values. The standard functor and monad structure are given by the
declarations:

instance Functor (State s) where
map f (ST st) = ST (\s → let (s ′, x ) = st s in (s ′, f x ))

instance Premonad (State s) where
unit x = ST (\s → (s, x ))

instance Monad (State s) where
join (ST m) = ST (\s → let (s ′,ST m ′) = m s in m ′ s ′)

Notice that, as a type constructor, State s is isomorphic to the composition of a reader
monad with a writer monad, DComp (s →) (Writer s). However, the monad structure
associated with these two constructors is very different. For example, the unit function
for the state monad returns the initial state value unchanged, while the unit operator for
the composition returns the zero of s (with the additional constraint that s is a monoid).
Perhaps there is another general construction for combining two monads that could be
applied to (s →) and Writer s to obtain a state monad?

As a more interesting example, we can combine a simple state monad with an arbitrary
using the following definitions, adapted from [5]:

data StateM m s a = STM (s → m (s, a))

instance Monad m ⇒ Functor (StateM m s) where
map f (STM xs) = STM (\s → [ (s ′, f x ) | (s ′, x ) ← xs s ])

instance Monad m ⇒ Premonad (StateM m s) where
unit x = STM (\s → unit (s, x ))

instance Monad m ⇒ Monad (StateM m s) where
join (STM xss) = STM (\s → [ (s ′′, x ) | (STM xs, s ′) ← xss s,

(s ′′, x ) ← xs s ′ ])

For example, a monad of this form is often used in the construction of a combinator
parser [4, 14, 15]. In this kind of application, we use the stream of tokens to be parsed
as the state. Possible choices for the monad m include:

• The List monad, to deal with ambiguous grammars.

• The Maybe monad, to support backtracking parsers.

• The Error monad, to provide error handling.

• A composition of Maybe and Error , to allow both error handling and backtracking.

Looking only at the types involved, we can express StateM m s as a composition of a
reader, the monad m, and a writer:

StateM m s = (s →) . m . Writer s.

40



However, using the definitions in this report, the monad structure for the composition
on the right is very different from the monad structure for the constructor StateM m s
on the left given by the declarations above. Perhaps this combination of a state monad
with another arbitrary monad can be described as an instance of some more general
construction for monad combination?

Another way to view many of the examples in this report is as a generalization of the
concept of a monad to include a ‘hole’ that can be filled with another monad to obtain
suitable combinations of features. For example, the constructors PComp m Maybe,
DComp (r →) m, and StateM m s are all examples of this with a hole represented by
the parameter m. A similar idea motivates the recent work of Steele [13] except that the
holes are built into so-called pseudomonad operators rather than individual constructors.
The pseudomonad operators are difficult to express properly in the Haskell type system
and appear to require some form of existential or recursive typing. Fortunately, it is
quite easy to express these operators using constructor classes:

class Premonad p ⇒ Pseudomonad p where
pbind :: Monad m ⇒ p a → (a → m (p b)) → m (p b)
pjoin :: Monad m ⇒ p (m (p a)) → m (p a)

pjoin m = m ‘pbind ‘ id
m ‘pbind ‘ f = pjoin (map f m)

The pbind function is included for those familiar with [13] and provides a pseudomonad
version of the monadic bind operator mentioned in Section 2. The pjoin function is
not used by Steele, but is included because of its close relationship to the join-based
formulation of monads used in this report. Strictly speaking, only one of the pbind and
pjoin functions is actually required to define an instance of the Pseudomonad class; the
default definitions provided by the last two lines of the class declaration show how each
can be defined in terms of the other.

The types of both pjoin and pbind are very similar to the types of the corresponding
monad operators, except that they also make use of an additional parameter representing
an arbitrary monad m. Replacing this parameter with the identity monad gives the
familiar monad operators. On the other hand, this extra parameter enables us to describe
composition in a simple, elegant manner. Starting with the definition of a new composer:

data Comp f g x = CC (f (g x ))

instance Composer Comp where
open (CC x ) = x
close = CC

the composition of an arbitrary pseudomonad p with an arbitrary monad m, yielding a
composite monad Comp m p, can be described by the following instance declaration:

instance (Pseudomonad p, Monad m) ⇒ Monad (Comp m p) where
join = wrap (join . map pjoin)

41



In this way, we can build up a chain of pseudomonads, p1 , . . . , pn , with the final hole
plugged by a monad m:

Comp (. . . (Comp (Comp m p1) p2) . . .) pn ,

or, using an infix dot instead of Comp, just:

(· · · ((m · p1) · p2) · · · · pn).

This certainly seems like a promising approach, and we hope to investigate its relation-
ship with the constructions used here more fully in future work.

9 Conclusions

We have presented three different constructions that can be used to compose monads
and shown how these can be encoded and used in practical programming problems
to provide a combination of the features offered by the component monads. The proofs
required to establish the monad laws for each composition require only simple equational
reasoning (sometimes with structural induction), although they can be a little long. On
the other hand, we have already developed a small library describing compositions with
certain standard monads which can be extended to include other monads as necessary.
These results can already be used to construct new monads without any further proof
obligations.

One surprising aspect of this work is the need to restrict our attention to commutative
monads in compositions with the List monad. This additional property is necessary
only to establish the monad law (7), sometimes referred to as the associative law for
monads. In practice, there are several examples where the basic framework suggested
by the types of the monad operators is useful in practical programming examples, even
though the corresponding monad laws are not all satisfied. Examples of this include the
strictness monad in [14], state transformers in [10] and ‘composable contexts’ in [7]. In
a similar way, we expect the composition of arbitrary monads with List may still be
useful in practical programming applications, even though the associativity law does not
always hold. Perhaps functional programmers will be prepared to sacrifice the algebraic
properties of a full monad, gaining wider application of the techniques of the monadic
style of programming as a reward.
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Appendix: On the non-existence of a natural join

In Section 3, we commented that, in a certain sense, it is impossible to construct a join
function for the composition of two monads using only the operators of the component
monads. We will now sketch a proof of this claim.

A full justification of the approach that we have used goes a little beyond the scope of this
paper. In particular, we need to recognize the fact that, from a categorical perspective,
the type of the map function involves two different kinds of function – arrows between
objects and arrows between arrows. These distinctions are lost in functional languages
like Haskell or Gofer. Nevertheless, we believe that this result, as well as the techniques
used in its proof, are likely to be of interest to some readers, and we have therefore
decided to outline some of the details in this appendix.

Suppose that we are working in a category with two monads given by endofunctors M
and N . In the most general case, the well-typed terms that can be constructed setting
using only the functors and the natural transformations unit and join for the two monads
are precisely those terms which can be obtained using the following set of typing rules:

a id−→ a

b
f−→ c a

f−→ b

a
f . g−→ c

a
f−→ b

M a
mapM f−→ M b

a
f−→ b

N a
mapN f−→ N b

a
unitM−→ M a a

unitN−→ N a

M (M a)
joinM−→ M a N (N a)

joinN−→ N a
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(Of course, this assumes only the very basic properties of a category. Richer categories
may also have operations for forming products, sums, exponentials etc. In addition,
we have no guarantee of full abstraction; there may well be arrows in the underlying
category that cannot be obtained by these rules. After all, our main aim is to use exactly
this kind of arrow (i.e. a prod , dorp or swap function) to construct the composition!)

Using this characterization, we will show that there is no way to construct a term with
type M (N (M (N a))) → M (N a), and hence there is no natural join function for
the composition of M with N . We can regard the types in the rules above as purely
formal expressions and, for convenience, will write types like M (N (M (N X ))) as strings
MNMNX . We will also use the notation rd X for the string obtained by removing all
adjacent duplicates from X . For example, rd MMNMNNX = MNMNX . The result that
we want follows from the following lemma, proved by a simple structural induction.

Lemma 1 If ` X → Y then rd X is a suffix of rd Y .

Since MNMNX is not a suffix of MNX , it follows that there is no way to define a join
function with the required type. Similar arguments can be used to show that there is
also no way to define natural prod , dorp or swap functions in this framework.
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