
Mark P Jones 
Portland State University

Languages & Low-Level Programming

CS 410/510

Week 10: Abstractions and Performance

Fall 2018

 1

Copyright Notice
• These slides are distributed under the Creative Commons

Attribution 3.0 License

• You are free:

• to share—to copy, distribute and transmit the work

• to remix—to adapt the work

• under the following conditions:

• Attribution: You must attribute the work (but not in any way that
suggests that the author endorses you or your use of the work) as
follows: “Courtesy of Mark P. Jones, Portland State University”

 
The complete license text can be found at  
http://creativecommons.org/licenses/by/3.0/legalcode

 2

The CEMLaBS Project
• “Using a Capability-Enhanced Microkernel as a Testbed for

Language-Based Security”

• Started October 2014, Funded by The National Science
Foundation

• Three main questions:

• Feasibility: Is it possible to build an inherently “unsafe”
system like seL4 in a “safe” language like Habit?

• Benefit: What benefits might this have, for example, in
reducing verification costs?

• Performance: Is it possible to meet reasonable
performance goals for this kind of system?

 3

Chipping away ...

 4

HaL4: A Capability-
Enhanced Microkernel
Implemented in Habit

based on seL4

HaL4: A Capability-
Enhanced Microkernel
Implemented in Habit

Chipping away ...

 5

based on Haskell

Opportunities for high-level abstractions?
• Are there good uses for higher-level abstractions in bare

metal programming?

• Algebraic datatypes?

• First class and higher-order functions?

• Classes and objects?

• ...

• And with concerns about performance, can we afford to use
them?

 6

Algebraic Datatypes

 7

Sums types and product types
• A sum type allows us to capture alternatives:

data Bool = False | True -- Haskell

enum Bool { False, True } // Rust

• A product type allows us to package multiple values up as
a single, composite value:

data Point = MkPoint Int Int -- Haskell

enum Point { MkPoint(i32, i32) } // Rust

(tuples, arrays, records, structures, etc. are also examples of
of product type)

 8

Algebraic datatypes
• Algebraic datatypes provide a unified framework for

sum and product types as well as arbitrary sums of products:

-- Haskell  
data Maybe a = Nothing | Just a  
data Either a b = Left a | Right b

// Rust  
enum Option<T> { None, Some(T) }  
enum Result<T, E> { Ok(T), Err(E) }

• These examples are taken from the standard libraries of the
respective languages

• They are also examples of parameterized types, allowing
reuse over many type parameter combinations

 9

Constructing values of algebraic datatypes
• To make a value of an algebraic datatype, just write the
constructor followed by an appropriate list of arguments:

In Haskell:

• Nothing and Just 12 are values of type Maybe Int

• Left True and Right "hello" are values of type
Either Bool String

In Rust:
• None and Some(12) are values of type Option<i32>
• Ok(true) and Err("hello") are values of type
Result<bool, String>

 10

Using values of algebraic datatypes
• We use pattern matching constructs to inspect and

extract data from values of algebraic datatypes:

In Haskell, assuming val has type Maybe String:

case val of  
 Nothing -> "I don't know your name"  
 Just name -> "hello " ++ name

In Rust, assuming val has type Option<String>:
match val {  
 None => "I don't know your name"  
 Some(name) => "hello " + name  
}

 11

Representing values of algebraic datatypes
• Language definitions typically do not specify exactly how

values of algebraic datatypes are represented
• Two common approaches:

Boxed representations: Every value is described by a
pointer to a block of memory:

Union representations: Every value is described by a
block of memory big enough to store any value of that type:

 12

0

Nothing

1 12

Just 12

0

None

1 12

Some(12)

tag tag data

Algebraic datatypes + recursion
• Algebraic datatypes become even more powerful when

combined with recursion:

-- Haskell  
data List a = Nil | Cons a (List a)

// Rust  
enum List<A> { Nil, Cons(Box<(A, List<A>)>)}

• (Box<T> is the Rust type for boxed values of type T)

• Example: Cons 1 (Cons 2 (Cons 3 (Cons 4 Nil))) is a
value of type List Int (might also be written [1, 2, 3, 4])

• Unsurprisingly, we can define recursive functions to work
with recursive types like these ...

 13

Algebraic datatypes using classes
• We can simulate algebraic datatypes with OO classes:

abstract class List<A> {  
 Cons isCons() { return null; }  
}

class Nil<A> extends List<A> { }

class Cons<A> extends List<A> {  
 A head;  
 List<A> tail;  
 Cons(A head, List<A> tail) {  
 this.head = head;  
 this.tail = tail;  
 }  
 Cons isCons() { return this; }  
}

• More verbose, but also more extensible

• Combines/tangles type and code definitions in classes

 14

Habit's bitdata types

 15

• The Habit programming language provides special syntax for
defining bitdata types:

bitdata Perms = Perms [r, w, x :: Bool]

bitdata Fpage = Fpage [base :: Bit 22 | size :: Bit 6  
 | reserved :: Bit 1 | perms :: Perms]

• A crucial feature of definitions like these is the ability to
specify bit-level representations/layout

• In other respects, bitdata types are like algebraic datatypes:

• Construct and update values without use of <<, &, |, etc.

• Pattern match to deconstruct values

Example: IA32 Paging Structures

 16

Vol. 3A 4-9

PAGING

Figure 4-4 gives a summary of the formats of CR3 and the paging-structure entries with 32-bit paging. For the
paging structure entries, it identifies separately the format of entries that map pages, those that reference other
paging structures, and those that do neither because they are “not present”; bit 0 (P) and bit 7 (PS) are high-
lighted because they determine how such an entry is used.

Figure 4-3. Linear-Address Translation to a 4-MByte Page using 32-Bit Paging

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Address of page directory1

NOTES:
1. CR3 has 64 bits on processors supporting the Intel-64 architecture. These bits are ignored with 32-bit paging.

Ignored
P
C
D

PW
T Ignored CR3

Bits 31:22 of address
of 4MB page frame

Reserved
(must be 0)

Bits 39:32 of
address2

2. This example illustrates a processor in which MAXPHYADDR is 36. If this value is larger or smaller, the number of bits reserved in
positions 20:13 of a PDE mapping a 4-MByte will change.

P
A
T

Ignored G 1 D A
P
C
D

PW
T

U
/
S

R
/
W

1
PDE:
4MB
page

Address of page table Ignored 0
I
g
n

A
P
C
D

PW
T

U
/
S

R
/
W

1
PDE:
page
table

Ignored 0
PDE:
not

present

Address of 4KB page frame Ignored G
P
A
T

D A
P
C
D

PW
T

U
/
S

R
/
W

1
PTE:
4KB
page

Ignored 0
PTE:
not

present

Figure 4-4. Formats of CR3 and Paging-Structure Entries with 32-Bit Paging

0
Directory Offset

Page Directory

PDE with PS=1

CR3

4-MByte Page

Physical Address

31 2122
Linear Address

10

22

32

18

Example: IA32 Paging Structures
Here is how we describe page directory entries in Habit:
bitdata PDE /WordSize -- Page Directory Entries  

 = UnmappedPDE [unused=0 :: Bit 31 | B0] -- Unused entry (present bit reset)  

 | PageTablePDE [ptab :: Phys PageTable -- physical address of page table  
 | unused=0 :: Bit 4  
 | B0 -- signals PageTablePDE  
 | attrs=readWrite :: PagingAttrs -- paging attributes  
 | B1] -- present bit set
 
 | SuperPagePDE [super :: Phys SuperPage -- physical address of superpage  
 | unused=0 :: Bit 13  
 | global=0 :: Bit 1 -- 1 => global translation (if cr4.pge=1)  
 | B1 -- signals SuperPagePDE  
 | attrs :: PagingAttrs -- paging attributes  
 | B1] -- present bit set  

bitdata PagingAttrs /6  
 = PagingAttrs [dirty = 0 :: Bit 1 -- Dirty; 1 => data written to page  
 | accessed = 0 :: Bit 1 -- Accessed; 1 => page accessed  
 | caching = Caching[] :: Caching  
 | us :: Bit 1 -- User/supervisor; 1 => user access allowed  
 | rw :: Bit 1] -- Read/write; 1 => write access allowed

 17

Example: IA32 Paging Structures
And here is how we might write functions that use these
definitions to implement useful operations on paging
structures:

mapPage pdir virt phys
 = case<- readRef (pdir @ virt.dir) of
 UnmappedPDE -> ... add page table and map page ...
 SuperPagePDE[] -> ... superpage already mapped ...
 PageTablePDE[ptab] ->
 case<- readRef (fromPhys ptab @ virt.tab) of
 MappedPTE[] -> ... page already mapped ...
 UnmappedPTE -> ... map the page ...

There are no messy bit-level operations to worry about here:
all of that is handled automatically by bitdata mechanisms ...

 18

First-class Functions 
and 

Higher-order Functions

 19

First-class functions
• A lot of modern programming languages provide mechanisms

for writing down anonymous functions / lambda expressions:

• These expressions construct functions as first class values:

• they can be passed as arguments to other functions
• returned as results
• stored in data structures

 20

Haskell \x -> x + 1

LISP
(lambda (x)  
(+ x 1))

Python lambda x: x + 1

Javascript function (x) x + 1

C++ 11
[] (int x) -> int  

 { return x + 1; }

Rust |x| (x + 1)

Simple examples
• The identity function:

id = \x -> x

• The "successor" function

succ = \x -> x + 1

• The "add" function

add = \x -> (\y -> x + y)

• The "compose" function

compose = \f -> \g -> \x -> f (g x)

 21

id has a polymorphic type: It
can be treated as a function of
type t -> t for any type t

succ has type Int -> Int

add has type Int -> Int -> Int

compose has type 
(b -> c) -> (a -> b) -> (a -> c)

Higher-order functions
• Higher-order functions are functions that take other

functions as inputs or return functions as outputs
• compose and map are classic examples of higher-order

functions
 map = \f xs ->  

 case xs of  
Nil -> Nil  
Cons y ys -> Cons (f y) (map f ys)

• For example:
map (\x -> x + 1) [1,2,3,4] == [2,3,4,5]

map (\x -> 2 * x) [1,2,3,4] == [2,4,6,8]

• Good for capturing recurring patterns as reusable functions

 22

First-class functions using classes
• We can use OO classes to represent first-class functions:

abstract class Func<A, B> {  
 abstract B applyTo(A arg);  
}

class Id<A> extends Func<A, A> {  
 A applyTo(A arg) { return arg; }  
}

class Succ extends Func<int, int> {  
 int applyTo(int arg) { return arg + 1; }  
}

• Objects that represent first-class functions are called
closures

• Some language descriptions even use the term "closure"
instead of "first-class function"

 23

First-class functions using classes, continued
• We can build closures for functions with multiple arguments:

class Add1 extends Func<int, int> {  
 private int n;  
 new Add1(int n) { this.n = n; }  
 int applyTo(int arg) { return arg + n; }  
}

class Add extends Func<int, int> {  
 Func<int, int> applyTo(int arg) { return new Add1(n); }  
}

• Sample use:
new Add().applyTo(1).applyTo(2) ===> returns 3

• A single class can have many methods, which might require
multiple functions

• But the verbose notation can discourage users ...

 24

Functions vs procedures
• In many languages, the terms "function" and "procedure" are

used almost interchangeably

• In Habit, they are different!

• A function is a value of type a -> b for some input type a
and output type b

For any given input value, a function always produces the
same output value

• A procedure is a value of type Proc a for some result type a

Every time it is executed, a procedure can have a side effect
and produce a result of type a (both which could be different
every time ...)

 25

Combining functions and procedures
• We can use these together to describe procedures with

arguments

• Compare:

A1 -> A2 -> ... -> R

A1 -> A2 -> ... -> Proc R

• A typical C prototype for a function like this:

R f(A1 arg1, A2 arg2, ...)

 26

a pure function,
no side effects

a parameterized
procedure, may
have side effects

no guarantees, could
do almost anything!

Why is this useful?
1. We can distinguish between procedures that can have side

effects and pure functions that do not

Useful documentation; simplifies reasoning; enables
optimizations

2. We can generalize to support multiple procedure types:

Proc a for regular procedures

Init a for procedures that can only run during kernel
initialization

Now we can enforce restrictions on the use of functions that
should only be called during initialization (e.g., allocPage()
in the capabilities lab) via compile-time type checking

 27

Talk to me for further details; this is related
to"Monads" in functional programming

Opportunities for high-level abstractions?
• Are there good uses for higher-level abstractions in bare

metal programming?

• Algebraic datatypes?

• First class and higher-order functions?

• Classes and objects?

• ...

• And with concerns about performance, can we afford to use
them?

 28

A small case study:  
The Multiboot Information Structure

 29

HaL4: A Capability-
Enhanced Microkernel
Implemented in Habit

Chipping away ...

 30

based on Haskell

HaL4: A Capability-
Enhanced Microkernel
Implemented in Habit

Using types ...

 31

based on Haskell

• Bitdata
• Strongly-typed memory areas
• Type classes, functional dependencies,
and Functional notation

• Instance chains
• ...

Booting a PC via GRUB
When you turn on a PC:

• The CPU initializes itself and performs a self test, before
jumping to a known address in the BIOS ROM

• The BIOS searches for a "bootable device" and loads a 446
byte program into memory from its first sector (the MBR)

• The MBR code uses BIOS functions to load a full featured
boot loader (GRUB) in to memory

• GRUB searches the disk for a configuration file and interprets
the commands there to load a full featured OS in to memory

• The OS configures itself using information passed in from
GRUB via a "Multiboot Information Structure"

 32

The Multiboot Information Structure

 33

magic

eax

mbi

ebx

lowerflags upper boot cmd addr syms len addrcount

memory modules

...... endstart str 0

module 1

endstart str 0

module 2

'y''x' 'z' 'z' 'y' 0

command line string

...... 0

module 1 string
...... 0

module 2 string

memory map

basesize len type ...

region 1

0x2badboo2

basesize len type ...

region 2

...

...

The Multiboot Information Structure, in C
extern struct MultibootInfo* mbi;
extern unsigned mbi_magic;
#define MBI_MAGIC 0x2BADB002

struct MultibootInfo {
 unsigned flags;
define MBI_MEM_VALID (1 << 0)
define MBI_CMD_VALID (1 << 2)
define MBI_MODS_VALID (1 << 3)
define MBI_MMAP_VALID (1 << 6)

 unsigned memLower;
 unsigned memUpper;
 unsigned bootDevice;
 char* cmdline;
 unsigned modsCount;
 struct MultibootModule* modsAddr;
 unsigned syms[4];
 unsigned mmapLength;
 unsigned mmapAddr;
};

struct MultibootModule {
 unsigned modStart;
 unsigned modEnd;
 char* modString;
 unsigned reserved;
};

struct MultibootMMap {
 unsigned size;
 unsigned baseLo;
 unsigned baseHi;
 unsigned lenLo;
 unsigned lenHi;
 unsigned type;
};

 34

Intentionally or otherwise,
the multiboot designers
used multiple techniques

to represent variable-
length components

Representing variable length components
• Intentionally or otherwise, the multiboot designers used

multiple techniques to represent variable-length components:

• Mark end of list with a special value, no need to store the
length explicitly

• Store the number of items and a pointer to the first (0th)
entry in an array of equally sized items

• Store the size (in bytes) of the array with a pointer to
(some known position in) the first item; access later items
by an offset (or pointer) to allow for varying item sizes

• Many other variations are possible (e.g., store address or
offset of last byte; pack pointer + size in single word; ...)

 35

The Multiboot Information Structure

 36

magic

eax

mbi

ebx

lowerflags upper boot cmd addr syms len addrcount

memory modules

...... endstart str 0

module 1

endstart str 0

module 2

'y''x' 'z' 'z' 'y' 0

command line string

...... 0

module 1 string
...... 0

module 2 string

memory map

basesize len type ...

region 1

0x2badboo2

basesize len type ...

region 2

...

...

Mark end of
list with a

special value

The Multiboot Information Structure

 37

magic

eax

mbi

ebx

lowerflags upper boot cmd addr syms len addrcount

memory modules

...... endstart str 0

module 1

endstart str 0

module 2

'y''x' 'z' 'z' 'y' 0

command line string

...... 0

module 1 string
...... 0

module 2 string

memory map

basesize len type ...

region 1

0x2badboo2

basesize len type ...

region 2

...

...

Store the number of
items and a pointer

to an array of
equally sized items

The Multiboot Information Structure

 38

magic

eax

mbi

ebx

lowerflags upper boot cmd addr syms len addrcount

memory modules

...... endstart str 0

module 1

endstart str 0

module 2

'y''x' 'z' 'z' 'y' 0

command line string

...... 0

module 1 string
...... 0

module 2 string

memory map

basesize len type ...

region 1

0x2badboo2

basesize len type ...

region 2

...

...

Link from one item
to the next using
size information,
pointers, etc..

The Multiboot Information Structure

 39

magic

eax

mbi

ebx

lowerflags upper boot cmd addr syms len addrcount

memory modules

...... endstart str 0

module 1

endstart str 0

module 2

'y''x' 'z' 'z' 'y' 0

command line string

...... 0

module 1 string
...... 0

module 2 string

memory map

basesize len type ...

region 1

0x2badboo2

basesize len type ...

region 2

...

...

Many other variations are possible
(e.g., store address or offset of last
byte; pack pointer + size in single
word; length at start of array; etc.)

Programming challenges
• What could go wrong if we're writing C programs to work

with a Multiboot Information Structure?

• How do we enforce checking for the magic number?

• How do we identify/access individual flag bits?

• How do we find the start of a variable length component?

• How do we move to the next component?

• How do we determine when we have reached the end?

• How do we prevent access to adjacent regions of memory
that are not part of the Multiboot Information Structure?

• Current practices to avoid/minimize errors: Disciplined
programming; Code reviews; Extensive testing; Limit revisions.

• Do modern language designs have anything to offer here?
 40

Abstract types
• Instead of exposing the underlying pointer type, with full (and

unsafe) pointer arithmetic, we could use an abstract type

• Key idea: separate specifications from implementations

• Specification: We can work with null-terminated strings by
introducing a type AsciiZ with a single operation:

 next :: AsciiZ -> Proc (Maybe (Char, AsciiZ))

• Implementation: An AsciiZ value is a (non-null) pointer
to a null-terminated string of characters

• next s returns Just (c, s1) if s points to character c
and the remainder of the string is s1

• Otherwise next s returns Nothing

 41

Notes
• The next operation encapsulates checking for null, reading a

character, and incrementing the pointer in a single operation

• In general, an abstract type's design should:

• ensure safety (leverage types)

• avoid redundant computation (e.g., repeated tests)

• allow for an efficient implementation ...

• Don't underestimate the challenges of figuring out a good
design!

 42

Cursors
• This approach generalizes quite easily to handle other

components of the MultiBoot Information Structure as well
as other table and tree structures in low-level code

 next :: Cursor -> Proc (Maybe (Val, Cursor))

• For example, we could traverse an array using a Cursor that
encapsulates two components:

• The number of remaining elements

• A pointer to the current element

 43

A sample consumer of AsciiZ strings
• Using some notation from Habit:

putStr :: AsciiZ -> Proc ()  
putStr s = case<- next s of  
 Nothing -> return ()  
 Just (c, s1) -> do putChar c  
 putStr s1

• A simple implementation of next would construct a value of
the form Just (c,s1) for every character in the string

⇒ Significant heap allocation, performance will suffer

⇒ Garbage collection; predictability will be compromised

⇒ Heavyweight approach: a single pointer is all you need ...

• It might be hard to get good performance out of this ...

 44

A sample consumer of AsciiZ strings
• Using some notation from Habit:

putStr :: AsciiZ -> Proc ()  
putStr s = case<- next s of  
 Nothing -> return ()  
 Just (c, s1) -> do putChar c  
 putStr s1

• putStr immediately consumes values produced by next

 45

A sample consumer of AsciiZ strings
• Using some notation from Habit:

putStr :: AsciiZ -> Proc ()  
putStr s = case<- next s of  
 Nothing -> return ()  
 Just (c, s1) -> do putChar c  
 putStr s1

• putStr immediately consumes values produced by next

a whole program optimizer should be able to fuse the code
for the two functions to eliminate the overhead ...

 46

putStr <- k54{}

k54{} t564 = k53{t564}

k53{t563} [] = b97[t563]

b97[t560] =
 t561 <- readChar((t560))
 t562 <- nullChar((t561))
 if t562
 then b96[]
 else b102[t560, t561]

b102[t555, t556] =
 t557 <- incAsciiz((t555))
 [] <- putChar((t556))
 t558 <- readChar((t557))
 t559 <- nullChar((t558))
 if t559
 then b96[]
 else b102[t557, t558]

b96[] = return Unit

Unit <- Unit()

 47

The compiled version of putStr

Key details:

• No allocation in the main putStr loop (i.e., in block b102)!

• Simple pointers

Another example: CursorSum in Habit
Add a collection of items accessed via a cursor:
main :: Proc Word
main = do c <- getCursor
 foldCursor accum c 0

accum :: ItemRef -> Word -> Proc Word
accum i a = fmap (add a) (itemData i)

foldCursor :: (ItemRef -> a -> Proc a) -> Cursor -> a -> Proc a
foldCursor f c a
 = case next c of
 Nothing -> return a
 Just (i, nc) -> f i a >>= foldCursor f nc

 48

Things to note: higher-order functions, pattern matching,
monads, polymorphic types, etc...

Things to ignore: everything else!

Another example: CursorSum in Habit
main <- k59{}

k59{} [] = b95[]

b95[] =
 t618 <- getCursor(())
 t619 <- Cursor 0 t618
 t620 <- Cursor 1 t618
 t621 <- primGte((t620, 0))
 if t621
 then b120[t619, t620, 0]
 else b121[]

b120[t610, t611, t612] =
 t613 <- add((t611, -1))
 t614 <- incItemRef((t610))
 t615 <- itemData((t610))
 t616 <- add((t612, t615))
 t617 <- primGte((t613, 0))
 if t617
 then b120[t614, t613, t616]
 else b121[]

b121[] = return 0
 49

main

k59

b95

b120

b121

Another Case Study: System Call
Validators

 50

HaL4: A Capability-
Enhanced Microkernel
Implemented in Habit

Using types ...

 51

based on Haskell

HaL4: A Capability-
Enhanced Microkernel
Implemented in Habit

Using lambda ...

 52

based on Haskell

HaL4: A Capability-
Enhanced Microkernel
Implemented in Habit

Using lambda ...

 53

based on Haskell

?
 54

Using lambda ...

 55

System
Calls

Interrupt
Handlers

Exception
Handlers

Using lambda ...
Interrupt
Handlers

System
Calls

Exception
Handlers

 56

Shared (Kernel) State

Using lambda ...

Validate
Parameters

Perform 
Action Return with

success code

Return with
error code

 57

Action

Parameter 
Validation

Error 
Reporting

syscallMapPageDir :: (KE k, KW k) => k a
syscallMapPageDir
 = do curr <- getCurrent
 asidIdx <- getReg asidCapReg curr
 case<- lookupCapAll curr.cspace asidIdx of
 Ref asidCap ->
 case<- get asidCap.objptr of
 ASIDTableObj[] ->
 range <- getCapdata asidCap
 offset <- getReg offsetReg
 case offset `inRange` range of
 Just asid ->
 let slot = asidTable @@ asid
 count <- get slot.count
 if count==0 then
 pdirIdx <- getReg pdirCapReg curr
 case<- lookupCapAll curr.cspace pdirIdx curr of
 Ref pdirCap ->
 case<- get pdirCap.objptr of
 PageDirObj[pdir] ->
 case<- getCapdata pdirCap of
 UnmappedPD[] ->
 set slot.pdir (Ref pdir)
 set slot.count 1
 setCapdata pdcap MappedPD[asid]
 success curr
 _ -> mappedErr curr
 _ -> invalidCapabilityErr curr
 Null -> invalidCapabilityErr curr
 else mappedErr curr
 Nothing -> rangeErrorErr curr
 _ -> invalidCapabilityErr curr
 Null -> invalidCapabilityErr curr

 58

Imperative Functional Programming
• Traditional sequential control flow

do f <- openFile "file.txt"  
 l1 <- readLine f  
 l2 <- readLine f  
 out (l1, l2)  
 closeFile f

• How to deal with errors? multiple results?

• Make functions return error codes (and hope that callers
will check those codes)?

• Add the ability to throw and catch exceptions?

• Use continuations …
 59

Programming with continuations
• Instead of

openFile :: String -> Proc FileHandle

• Try:

openFile :: String  
 -> (ErrorCode -> Proc a)  
 -> (FileHandle -> Proc a)  
 -> Proc a

• It’s as if we’ve given openFile two return addresses: one to
use when an error occurs, and one to use when the call is
successful.

 60

higher-order, or first-
class functions

Programming with continuations
• Our original program using continuations:

openFile "file.txt"  
 (\error -> …)  
 (\f -> do l1 <- readLine f  
 l2 <- readLine f  
 out (l1, l2)  
 closeFile f)

• Could we do the same for readLine?

 61

Programming with continuations
• Our original program using continuations:

openFile "file.txt"  
 (\error -> …)  
 (\f -> readLine f  
 (\error -> …)  
 (\l1 -> readLine f  
 (\error -> …)  
 (\l2 <- do out (l1, l2)  
 closeFile f)))

• Hmm, not so pretty …

 62

Programming with continuations
• Name the error handlers:

openFile "file.txt"  
 err1  
 (\f -> readLine f  
 err2  
 (\l1 -> readLine f  
 err3  
 (\l2 <- do out (l1, l2)  
 closeFile f)))

 63

Programming with continuations
• Reformat:

openFile "file.txt" err1 (\f ->  
readLine f err2 (\l1 ->
readLine f err3 (\l2 ->  
do out (l1, l2)  
 closeFile f)))

• Looking better …

 64

Programming with continuations
• Add an infix operator: f $ x = f x

openFile "file.txt" err1 $ \f ->  
readLine f err2 $ \l1 ->
readLine f err3 $ \l2 ->  
do out (l1, l2)  
 closeFile f

• Fewer parentheses …

• Easier to add or remove individual lines …

• … still a little cluttered by error handling behavior

 65

Programming with continuations
• Continuation-based control flow, integrated error handlers:

openFile "file.txt" $ \f ->  
readLine f $ \l1 ->  
readLine f $ \l2 ->  
do out (l1, l2)  
 closeFile f

• Not always applicable …

• … but a good choice for HaL4 where the response to a
particular type of invalid parameter is always the same
(typically, returning an error code to the caller)

• … and this also encourages consistent API behavior

 66

“Validators”
The implementation of prototype HaL4 includes a small library
of validator functions:

getCurrent :: KR k => (TCBRef -> k a) -> k a

getRegCap :: KE k => #r -> TCBRef  
 -> (CapRef -> k a) -> k a

emptyCapability :: KE k => TCBRef -> CapRef -> k a -> k a

cdtLeaf :: KE k => TCBRef -> CapRef -> k a -> k a

notMaxDepth :: KE k => TCBRef -> CapRef -> k a -> k a

untypedCapability :: KE k => TCBRef -> CapRef  
 -> (UntypedRef -> k a) -> k a

pageDirCapability :: KE k => TCBRef -> CapRef  
 -> (PageDirRef -> PDMapData -> k a) -> k a

pageTableCapability :: KE k => TCBRef -> CapRef  
 -> (PageTableRef -> MapData -> k a) -> k a

 67

“Validators”
• In effect, we have built an embedded domain specific language,

just for validating parameters in HaL4

• Benefits include:

• Ease of reuse

• Consistency

• Clarity

• Ability to pass multiple results on to continuation

 68

Validators

Action

syscallMapPageDir :: (KE k, KW k) => k a
syscallMapPageDir
 = getCurrent $ \curr ->
 getMapPageDirASIDTab curr $ \asidcap ->
 asidTableCapability curr asidcap $ \range ->

 getMapPageDirOffset curr $ \offset ->
 asidInRange curr offset range $ \asid ->
 asidNotUsed curr asid $ \slot ->

 getMapPageDirPDir curr $ \pdcap ->
 pageDirCapability curr pdcap $ \pdir pdmd ->
 unmappedPD curr pdmd $

 do set slot.pdir (Ref pdir)
 set slot.count 1
 setCapdata pdcap MappedPD[asid]
 success curr

 69

syscallMapPageDir :: (KE k, KW k) => k a
syscallMapPageDir
 = getCurrent $ \curr ->
 getMapPageDirASIDTab curr $ \asidcap ->
 asidTableCapability curr asidcap $ \range ->

 getMapPageDirOffset curr $ \offset ->
 asidInRange curr offset range $ \asid ->
 asidNotUsed curr asid $ \slot ->

 getMapPageDirPDir curr $ \pdcap ->
 pageDirCapability curr pdcap $ \pdir pdmd ->
 unmappedPD curr pdmd $

 do set slot.pdir (Ref pdir)
 set slot.count 1
 setCapdata pdcap MappedPD[asid]
 success curr

"clear" and
"concise"

 70

syscallMapPageDir :: (KE k, KW k) => k a
syscallMapPageDir
 = getCurrent $ \curr ->
 getMapPageDirASIDTab curr $ \asidcap ->
 asidTableCapability curr asidcap $ \range ->

 getMapPageDirOffset curr $ \offset ->
 asidInRange curr offset range $ \asid ->
 asidNotUsed curr asid $ \slot ->

 getMapPageDirPDir curr $ \pdcap ->
 pageDirCapability curr pdcap $ \pdir pdmd ->
 unmappedPD curr pdmd $

 do set slot.pdir (Ref pdir)
 set slot.count 1
 setCapdata pdcap MappedPD[asid]
 success curr

reusable

 71

syscallMapPageDir :: (KE k, KW k) => k a
syscallMapPageDir
 = getCurrent $ \curr ->
 getMapPageDirASIDTab curr $ \asidcap ->
 asidTableCapability curr asidcap $ \range ->

 getMapPageDirOffset curr $ \offset ->
 asidInRange curr offset range $ \asid ->
 asidNotUsed curr asid $ \slot ->

 getMapPageDirPDir curr $ \pdcap ->
 pageDirCapability curr pdcap $ \pdir pdmd ->
 unmappedPD curr pdmd $

 do set slot.pdir (Ref pdir)
 set slot.count 1
 setCapdata pdcap MappedPD[asid]
 success curr

performance
concerns?

 72

The MapPage System Call

 73

main

mapPageTable

b165

b164

getCap

k127

b163

b162pageDirCap

k126

b161

k125

b160

b159

fromCapData

mapped

k124

b158

b157

k123

b156

b155

pageTableCap

cdtLeaf

k122

b154

k121

b153

k120 unmapped

b152

b149b151 @pdirOf

readRef

b148

alreadyMappedErrb150success incRefMapped toCapData PageTablePDEwriteRef

dataOf

b111

k85

b102

k77

b101

k76

b100

Unit

b66

k44

b84

k61

b67

k45

b73

k50

b72

k49

b71

k48

b70

at

b77

k54

b76

k53

b98

k74

b171

k129

b170

k128

b169

b167 b168 b0

b166

b116

k90

b185

k134

b184

k133

b183

k132

b182

b179 b181objptrOf

notPageTabCapabilityErr

b178b114

k88

b180

b209

k143

b208

k142

b207

k141

b206

b205ptrOf

nexthiOf

b203 b204 lt getDepth

notLeafErr b202

b117

k91

return

b201

b58

k37

b57

k36

b56

bconv

btruebfalse

truefalse

b212

k145

b211

k144

b210

levOf mkDepth prevloOf

b95

k71

b97

k73

b96

k72

primRet

b7

k4

b6

ret1

b86

k63

b94

k70

b85

k62

b83

k60

b177

k131

b176

k130

b175

b173b174

b172unmappedErr

b115

k89

b193

k137

b192

k136

b191

k135

b190

b187 b189

notPageDirCapabilityErr

b186b113

k87

b188

b82

k59

b81

k58

b200

k140

b199

k139

b198

k138

b197

b195 b196 lookupCap>>=

b194 missingCapabilityErr

b112

k86

b80

k57

b79

k56

b75

k52

b74

k51

b216

k148

b215

k147

b214

k146

b213

(622 steps)

 74

main

mapPageTable

b165

b164

getCap

k127

b163

b162pageDirCap

k126

b161

k125

b160

b159

fromCapData

mapped

k124

b158

b157

k123

b156

b155

pageTableCap

cdtLeaf

k122

b154

k121

b153

k120 unmapped

b152

b149b151 @pdirOf

readRef

b148

alreadyMappedErrb150success incRefMapped toCapData PageTablePDEwriteRef

dataOf

b111

k85

b102

k77

b101

k76

b100

Unit

b66

k44

b84

k61

b67

k45

b73

k50

b72

k49

b71

k48

b70

at

b77

k54

b76

k53

b98

k74

b171

k129

b170

k128

b169

b167 b168 b0

b166

b116

k90

b185

k134

b184

k133

b183

k132

b182

b179 b181objptrOf

notPageTabCapabilityErr

b178b114

k88

b180

b209

k143

b208

k142

b207

k141

b206

b205ptrOf

nexthiOf

b203 b204 lt getDepth

notLeafErr b202

b117

k91

return

b201

b58

k37

b57

k36

b56

bconv

btruebfalse

truefalse

b212

k145

b211

k144

b210

levOf mkDepth prevloOf

b95

k71

b97

k73

b96

k72

primRet

b7

k4

b6

ret1

b86

k63

b94

k70

b85

k62

b83

k60

b177

k131

b176

k130

b175

b173b174

b172unmappedErr

b115

k89

b193

k137

b192

k136

b191

k135

b190

b187 b189

notPageDirCapabilityErr

b186b113

k87

b188

b82

k59

b81

k58

b200

k140

b199

k139

b198

k138

b197

b195 b196 lookupCap>>=

b194 missingCapabilityErr

b112

k86

b80

k57

b79

k56

b75

k52

b74

k51

b216

k148

b215

k147

b214

k146

b213

main

mapPageTable

k161

b254

b278

b196

b187 b263

b277 b271

b276

b281 b0

b203 b282 b210

b179 b284

b152

b149 b151

prioSet = \i prio -> do writeRef (at prioset i) prio
 writeRef (at prioidx prio) i

insertPriority = \prio -> do s <- readRef priosetSize
 writeRef priosetSize (add s 1)
 heapRepairUp (modIx s) prio

heapRepairUp = \i prio ->
 case dec i of
 Nothing -> prioSet 0 prio
 Just j -> do parent <- ret (shiftR j 1)
 pprio <- readRef (at prioset parent)
 if lt pprio prio then
 prioSet i pprio
 heapRepairUp parent prio
 else
 prioSet i prio

removePriority = \prio ->
 do s <- readRef priosetSize
 writeRef priosetSize (sub s 1)
 rprio <- readRef (at prioset (modIx (sub s 1)))
 if neq prio rprio then
 i <- readRef (at prioidx prio)
 heapRepairDown i rprio (modIx (sub s 2))
 nprio <- readRef (at prioset i)
 heapRepairUp i nprio

heapRepairDown = \i prio last ->
 do let u = unsigned i // <- ret (unsigned i)
 case leq (add (mul 2 u) 1) last of // Look for a left child
 Nothing -> prioSet i prio // i has no children
 Just l -> // i has a left child
 do lprio <- readRef (at prioset l)
 case leq (add (mul 2 u) 2) last of // Look for a right child
 Nothing -> // i has no right child
 if gt lprio prio then
 prioSet i lprio
 prioSet l prio
 else
 prioSet i prio
 Just r -> // i has two children
 do rprio <- readRef (at prioset r)
 if gt prio lprio && gt prio rprio then
 prioSet i prio
 else if gt lprio rprio then
 prioSet i lprio // left is higher
 heapRepairDown l prio last
 else
 prioSet i rprio // right is higher
 heapRepairDown r prio last

Prioset

 75

insertPriority

b112

k54

b111

k53

b110

heapRepairUp

modIx

add

writeRef32 readRef32

removePriority

b99

k49

b98

k48

b97

b95

b0

b96neq

at

readRef8

sub

heapRepairDownb94

b109

b103

b102

prioSet

k52

b108

k51

b107

b101b106

dec b100k50

b105

b104lt lshr return

b62

k36

b61

k35

b60

bconv

b40

k22

b39

k21

b38

b127

k60

b126

b124 b125eq

b123 Nothing Justb50

k28

b49

k27

b48

b93

b81

b80

b82

k47

b92

k46

b91

k45

b90

b72 b89

mulleq

unsigned

b71 k44

b88

b77

b87

b75 b76gt

b74

b73

b85 b86

b84 False

b79

b83

b78b116

k57

b115

k56

b114

k55

b113

writeRef8

writeRef

b56

k32

b55

k31

b54

b20

k9

b19

k8

b18

b122

k59

b121

k58

b120

b118b119 lte

b117

b70

k43

b65

k38

b64

k37

b63

b132

k63

b131

Unit

primRet

b11

k3

b10

ret1

b53

k30

b52

k29

b51

btrue bfalse

true false

b3

k2

b130

k62

b129

k61

b128

b14

k5

b13

k4

b12

readRef

b17

k7

b16

k6

b15

writeRef0

b4

writeRef1

b5

writeRef2

b6

writeRef3

b7

readRef0

b8

readRef1

b9

readRef2

prioSet = \i prio -> do writeRef (at prioset i) prio
 writeRef (at prioidx prio) i

insertPriority = \prio -> do s <- readRef priosetSize
 writeRef priosetSize (add s 1)
 heapRepairUp (modIx s) prio

heapRepairUp = \i prio ->
 case dec i of
 Nothing -> prioSet 0 prio
 Just j -> do parent <- ret (shiftR j 1)
 pprio <- readRef (at prioset parent)
 if lt pprio prio then
 prioSet i pprio
 heapRepairUp parent prio
 else
 prioSet i prio

removePriority = \prio ->
 do s <- readRef priosetSize
 writeRef priosetSize (sub s 1)
 rprio <- readRef (at prioset (modIx (sub s 1)))
 if neq prio rprio then
 i <- readRef (at prioidx prio)
 heapRepairDown i rprio (modIx (sub s 2))
 nprio <- readRef (at prioset i)
 heapRepairUp i nprio

heapRepairDown = \i prio last ->
 do let u = unsigned i // <- ret (unsigned i)
 case leq (add (mul 2 u) 1) last of // Look for a left child
 Nothing -> prioSet i prio // i has no children
 Just l -> // i has a left child
 do lprio <- readRef (at prioset l)
 case leq (add (mul 2 u) 2) last of // Look for a right child
 Nothing -> // i has no right child
 if gt lprio prio then
 prioSet i lprio
 prioSet l prio
 else
 prioSet i prio
 Just r -> // i has two children
 do rprio <- readRef (at prioset r)
 if gt prio lprio && gt prio rprio then
 prioSet i prio
 else if gt lprio rprio then
 prioSet i lprio // left is higher
 heapRepairDown l prio last
 else
 prioSet i rprio // right is higher
 heapRepairDown r prio last

Prioset

 76

(1217 rewrite
steps later)

insertPriority

k54

k53

b110

b257

b229

removePriority

k49

k48

b97

b95

b177

b237

b103

b113

Unit

b258

b260

b182b82

b184

b187

b75

Wrapping Up ...

 77

Current status
• For the three main questions for CEMLaBS:

• Feasibility: Still chipping away ... but getting closer!

• Benefit: Good evidence that we will benefit from the use
of functional language features
+Types
+Higher-order functions

• Performance: acceptable performance may be within
reach
+We can generate good quality code, even when lambdas

are used in fundamental ways
+Some code duplication (but, so far, this is entirely tolerable

for our specific use case ...)
 78

Acknowledgement (likely incomplete!)
Numerous people at PSU (and beyond) have contributed
to the design and implementation of Habit, including:

 79

• Michael Adams
• Aaron Altman
• Justin Bailey
• Tim Chevalier
• Lewis Coates
• Ted Cooper
• Dan Cristofani
• Iavor Diatchki
• Thomas

DuBuisson

• Kenneth Graunke
• Thomas Hallgren
• Tom Harke
• Caylee Hogg
• Jim Hook
• Brian Huffman
• Mark Jones
• Dick Kieburtz
• Rebekah Leslie-

Hurd

• John Matthews
• Andrew

McCreight
• Garrett Morris
• Ryan Niebur
• Andrew

Sackville-West
• Andrew Tolmach
• Peter White
• ...

Some Words about the Habit
Implementation

 80

The Habit Compiler

 81

Front end Back end

Habit Lambda 
Case

Optimizer

The Habit Compiler

 82

MILLC MIL LLVM

Front end Back end

Why MIL?
• If we want a good optimizer, we need to work in a language

that exposes key implementation details/sources of overhead

• Constructing a closure: k{x1, …, xn}

• code pointer: k

• stored fields: x1, …, xn

• Entering a closure: If f is a closure, then we write f @ x for
the result of entering f with argument x

• Defining a closure: k{x1, …, xn} a = t

• The code in t describes the result that is produced when
you enter the closure with argument a

 83

From Functional Source Code ...
id = \x -> x

compose = \f g x -> f (g x)

map = \f xs ->
case xs of

Nil -> Nil
Cons y ys -> Cons (f y) (map f ys)

 84

... to MIL Programs
id ← k0{}
k0{} x = b0[x]
b0[x] = return x  

map ← k4{}
k4{} f = k5{f}
k5{f} xs = b2[f,xs]
b2[f,xs] = case xs of  

Nil()⟶ b3[]  
Cons(y,ys)⟶ b4[f,y,ys]

b3[] = Nil()
b4[f,y,ys] = z ← f @ y  

m ← map @ f  
zs ← m @ ys  
Cons(z,zs)

compose ← k1{}
k1{} f = k2{f}
k2{f} g = k3{f,g}
k3{f,g} x = b1[f,g,x]
b1[f,g,x] = y ← g @ x  

f @ y  

 85

Intuition: arguments are like
registers that have been
loaded with values on entry
to a basic block of code

... to Optimized MIL Programs
map ← k4{}
k4{} f = k5{f}
k5{f} xs = b2[f,xs]
b2[f,xs] = case xs of  

Nil()⟶ b3[]  
Cons(y,ys)⟶ b4[f,y,ys]

b3[] = Nil()
b4[f,y,ys] = z ← f @ y  

m ← map @ f  
zs ← m @ ys  
Cons(z,zs)

unknown function call

known function call

 86

map ← k4{}  
k4{} f = k5{f}  
k5{f} xs = b2[f,xs]  
b2[f,xs] = case xs of  

Nil()⟶ b3[]  
Cons(y,ys)⟶ b4[f,y,ys]  

b3[] = Nil()  
b4[f,y,ys] = z ← f @ y  

m ← map @ f  
zs ← m @ ys  
Cons(z,zs)

... to Optimized MIL Programs

 87

known function call

... to Optimized MIL Programs
map ← k4{}  
k4{} f = k5{f}  
k5{f} xs = b2[f,xs]  
b2[f,xs] = case xs of  

Nil()⟶ b3[]  
Cons(y,ys)⟶ b4[f,y,ys]  

b3[] = Nil()  
b4[f,y,ys] = z ← f @ y  

m ← k5{f}  
zs ← m @ ys  
Cons(z,zs) known function call

 88

map ← k4{}  
k4{} f = k5{f}  
k5{f} xs = b2[f,xs]  
b2[f,xs] = case xs of  

Nil()⟶ b3[]  
Cons(y,ys)⟶ b4[f,y,ys]  

b3[] = Nil()  
b4[f,y,ys] = z ← f @ y  

m ← k5{f}  
zs ← m @ ys  
Cons(z,zs)

... to Optimized MIL Programs

 89

known function call

map ← k4{}  
k4{} f = k5{f}  
k5{f} xs = b2[f,xs]  
b2[f,xs] = case xs of  

Nil()⟶ b3[]  
Cons(y,ys)⟶ b4[f,y,ys]  

b3[] = Nil()  
b4[f,y,ys] = z ← f @ y  

m ← k5{f}  
zs ← b2[f,ys]  
Cons(z,zs)

pure, dead code

... to Optimized MIL Programs

 90

map ← k4{}  
k4{} f = k5{f}  
k5{f} xs = b2[f,xs]  
b2[f,xs] = case xs of  

Nil()⟶ b3[]  
Cons(y,ys)⟶ b4[f,y,ys]  

b3[] = Nil()  
b4[f,y,ys] = z ← f @ y  

zs ← b2[f,ys]  
Cons(z,zs)  

 

... to Optimized MIL Programs

 91

MIL Optimization
• Basic strategy:

• many small rewrites

• combined in large numbers

• Sources of rewrites:

• algebraic laws

• simple data flow

• specialization and derived blocks

 92

