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Copyright Notice
• These slides are distributed under the Creative Commons 

Attribution 3.0 License 

• You are free:

• to share—to copy, distribute and transmit the work

• to remix—to adapt the work 

• under the following conditions: 

• Attribution: You must attribute the work (but not in any way that 
suggests that the author endorses you or your use of the work) as 
follows:   “Courtesy of Mark P. Jones, Portland State University”

 
The complete license text can be found at  
http://creativecommons.org/licenses/by/3.0/legalcode
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The CEMLaBS Project
• “Using a Capability-Enhanced Microkernel as a Testbed for 

Language-Based Security”

• Started October 2014, Funded by The National Science 
Foundation

• Three main questions:

• Feasibility: Is it possible to build an inherently “unsafe” 
system like seL4 in a “safe” language like Habit?

• Benefit: What benefits might this have, for example, in 
reducing verification costs?

• Performance: Is it possible to meet reasonable 
performance goals for this kind of system?
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Chipping away ...
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HaL4: A Capability-
Enhanced Microkernel 
Implemented in Habit

based on seL4

HaL4: A Capability-
Enhanced Microkernel 
Implemented in Habit

Chipping away ...
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based on Haskell

Opportunities for high-level abstractions?
• Are there good uses for higher-level abstractions in bare 

metal programming?

• Algebraic datatypes?

• First class and higher-order functions?

• Classes and objects?

• ...

• And with concerns about performance, can we afford to use 
them?
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Algebraic Datatypes
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Sums types and product types
• A sum type allows us to capture alternatives:

data Bool = False | True    -- Haskell

enum Bool { False, True }   // Rust

• A product type allows us to package multiple values up as 
a single, composite value:

data Point = MkPoint Int Int      -- Haskell

enum Point { MkPoint(i32, i32) }  // Rust

(tuples, arrays, records, structures, etc. are also examples of 
of product type)
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Algebraic datatypes
• Algebraic datatypes provide a unified framework for 

sum and product types as well as arbitrary sums of products:

-- Haskell  
data Maybe a    = Nothing | Just a  
data Either a b = Left a | Right b

// Rust  
enum Option<T>    { None, Some(T) }  
enum Result<T, E> { Ok(T), Err(E) }

• These examples are taken from the standard libraries of the 
respective languages

• They are also examples of parameterized types, allowing 
reuse over many type parameter combinations
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Constructing values of algebraic datatypes
• To make a value of an algebraic datatype, just write the 
constructor followed by an appropriate list of arguments:

In Haskell:

• Nothing and Just 12 are values of type Maybe Int

• Left True and Right "hello" are values of type 
Either Bool String

In Rust:
• None and Some(12) are values of type Option<i32>
• Ok(true) and Err("hello") are values of type 
Result<bool, String>
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Using values of algebraic datatypes
• We use pattern matching constructs to inspect and 

extract data from values of algebraic datatypes:

In Haskell, assuming val has type Maybe String:

case val of  
    Nothing   -> "I don't know your name"  
    Just name -> "hello " ++ name

In Rust, assuming val has type Option<String>:
match val {  
    None => "I don't know your name"  
    Some(name) => "hello " + name  
}
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Representing values of algebraic datatypes
• Language definitions typically do not specify exactly how 

values of algebraic datatypes are represented
• Two common approaches:

Boxed representations:  Every value is described by a 
pointer to a block of memory:

Union representations: Every value is described by a 
block of memory big enough to store any value of that type:
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Algebraic datatypes + recursion
• Algebraic datatypes become even more powerful when 

combined with recursion:

-- Haskell  
data List a = Nil | Cons a (List a)

// Rust  
enum List<A> { Nil, Cons(Box<(A, List<A>)>)}

• (Box<T> is the Rust type for boxed values of type T)

• Example: Cons 1 (Cons 2 (Cons 3 (Cons 4 Nil))) is a 
value of type List Int (might also be written [1, 2, 3, 4])

• Unsurprisingly, we can define recursive functions to work 
with recursive types like these ...
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Algebraic datatypes using classes
• We can simulate algebraic datatypes with OO classes:

abstract class List<A> {  
   Cons isCons() { return null; }  
}

class Nil<A> extends List<A> { }

class Cons<A> extends List<A> {  
   A       head;  
   List<A> tail;  
   Cons(A head, List<A> tail) {  
       this.head = head;  
       this.tail = tail;  
   }  
   Cons isCons() { return this; }  
}

• More verbose, but also more extensible

• Combines/tangles type and code definitions in classes
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Habit's bitdata types
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• The Habit programming language provides special syntax for 
defining bitdata types:

bitdata Perms = Perms [ r, w, x :: Bool]

bitdata Fpage = Fpage [ base :: Bit 22 | size :: Bit 6  
                      | reserved :: Bit 1 | perms :: Perms ]

• A crucial feature of definitions like these is the ability to 
specify bit-level representations/layout

• In other respects, bitdata types are like algebraic datatypes:

• Construct and update values without use of <<, &, |, etc.

• Pattern match to deconstruct values

Example: IA32 Paging Structures
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Figure 4-4 gives a summary of the formats of CR3 and the paging-structure entries with 32-bit paging. For the 
paging structure entries, it identifies separately the format of entries that map pages, those that reference other 
paging structures, and those that do neither because they are “not present”; bit 0 (P) and bit 7 (PS) are high-
lighted because they determine how such an entry is used.

Figure 4-3.  Linear-Address Translation to a 4-MByte Page using 32-Bit Paging
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Example: IA32 Paging Structures
Here is how we describe page directory entries in Habit:
bitdata PDE /WordSize                               -- Page Directory Entries  

 = UnmappedPDE  [ unused=0        :: Bit 31 | B0 ]  -- Unused entry (present bit reset)  

 | PageTablePDE [ ptab            :: Phys PageTable -- physical address of page table  
                | unused=0        :: Bit 4  
                | B0                                -- signals PageTablePDE  
                | attrs=readWrite :: PagingAttrs    -- paging attributes  
                | B1 ]                              -- present bit set
 
 | SuperPagePDE [ super           :: Phys SuperPage -- physical address of superpage  
                | unused=0        :: Bit 13  
                | global=0        :: Bit 1          -- 1 => global translation (if cr4.pge=1)  
                | B1                                -- signals SuperPagePDE  
                | attrs           :: PagingAttrs    -- paging attributes  
                | B1 ]                              -- present bit set  

bitdata PagingAttrs /6  
 = PagingAttrs [ dirty    = 0         :: Bit 1    -- Dirty; 1 => data written to page  
               | accessed = 0         :: Bit 1    -- Accessed; 1 => page accessed  
               | caching  = Caching[] :: Caching  
               | us                   :: Bit 1    -- User/supervisor; 1 => user access allowed  
               | rw                   :: Bit 1 ]  -- Read/write; 1 => write access allowed
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Example: IA32 Paging Structures
And here is how we might write functions that use these 
definitions to implement useful operations on paging 
structures:

mapPage pdir virt phys
  = case<- readRef (pdir @ virt.dir) of
       UnmappedPDE    -> ... add page table and map page ...
       SuperPagePDE[] -> ... superpage already mapped ...
       PageTablePDE[ptab] ->
         case<- readRef (fromPhys ptab @ virt.tab) of
            MappedPTE[] -> ... page already mapped ...
            UnmappedPTE -> ... map the page ...

There are no messy bit-level operations to worry about here: 
all of that is handled automatically by bitdata mechanisms ...
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First-class Functions 
and 

Higher-order Functions
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First-class functions
• A lot of modern programming languages provide mechanisms 

for writing down anonymous functions / lambda expressions:

• These expressions construct functions as first class values:

• they can be passed as arguments to other functions
• returned as results
• stored in data structures
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Haskell \x -> x + 1

LISP
(lambda (x)  
(+ x 1)) 

Python lambda x: x + 1

Javascript function (x) x + 1

C++ 11
[] (int x) -> int  

  { return x + 1; }

Rust |x| (x + 1)

Simple examples
• The identity function:

id = \x -> x

• The "successor" function

succ = \x -> x + 1

• The "add" function

add = \x -> (\y -> x + y)

• The "compose" function

compose = \f -> \g -> \x -> f (g x)
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id has a polymorphic type: It 
can be treated as a function of 
type t -> t for any type t

succ has type Int -> Int

add has type Int -> Int -> Int

compose has type 
(b -> c) -> (a -> b) -> (a -> c)

Higher-order functions
• Higher-order functions are functions that take other 

functions as inputs or return functions as outputs
• compose and map are classic examples of higher-order 

functions
  map = \f xs ->  

   case xs of  
Nil     -> Nil  
Cons y ys -> Cons (f y) (map f ys)

• For example:
map (\x -> x + 1) [1,2,3,4]  == [2,3,4,5]

map (\x -> 2 * x) [1,2,3,4]  == [2,4,6,8]

• Good for capturing recurring patterns as reusable functions
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First-class functions using classes
• We can use OO classes to represent first-class functions:

abstract class Func<A, B> {  
   abstract B applyTo(A arg);  
}

class Id<A> extends Func<A, A> {  
    A applyTo(A arg) { return arg; }  
}

class Succ extends Func<int, int> {  
   int applyTo(int arg) { return arg + 1; }  
}

• Objects that represent first-class functions are called 
closures

• Some language descriptions even use the term "closure" 
instead of "first-class function"
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First-class functions using classes, continued
• We can build closures for functions with multiple arguments:

class Add1 extends Func<int, int> {  
   private int n;  
   new Add1(int n) { this.n = n; }  
   int applyTo(int arg) { return arg + n; }  
}

class Add extends Func<int, int> {  
   Func<int, int> applyTo(int arg) { return new Add1(n); }  
}

• Sample use:
new Add().applyTo(1).applyTo(2)  ===>   returns 3

• A single class can have many methods, which might require 
multiple functions

• But the verbose notation can discourage users ...
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Functions vs procedures
• In many languages, the terms "function" and "procedure" are 

used almost interchangeably

• In Habit, they are different!

• A function is a value of type a -> b for some input type a 
and output type b

For any given input value, a function always produces the 
same output value

• A procedure is a value of type Proc a for some result type a

Every time it is executed, a procedure can have a side effect 
and produce a result of type a (both which could be different 
every time ...)
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Combining functions and procedures
• We can use these together to describe procedures with 

arguments

• Compare:

A1 -> A2 -> ... -> R

A1 -> A2 -> ... -> Proc R

• A typical C prototype for a function like this:

R f(A1 arg1,  A2 arg2, ...)
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a pure function, 
no side effects

a parameterized 
procedure, may 
have side effects

no guarantees, could 
do almost anything!

Why is this useful?
1. We can distinguish between procedures that can have side 

effects and pure functions that do not

Useful documentation; simplifies reasoning; enables 
optimizations

2. We can generalize to support multiple procedure types:

Proc a for regular procedures

Init a for procedures that can only run during kernel 
initialization

Now we can enforce restrictions on the use of functions that 
should only be called during initialization (e.g., allocPage() 
in the capabilities lab) via compile-time type checking
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Talk to me for further details; this is related 
to"Monads" in functional programming

Opportunities for high-level abstractions?
• Are there good uses for higher-level abstractions in bare 

metal programming?

• Algebraic datatypes?

• First class and higher-order functions?

• Classes and objects?

• ...

• And with concerns about performance, can we afford to use 
them?
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A small case study:  
The Multiboot Information Structure
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HaL4: A Capability-
Enhanced Microkernel 
Implemented in Habit

Chipping away ...
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based on Haskell



HaL4: A Capability-
Enhanced Microkernel 
Implemented in Habit

Using types ...
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based on Haskell

• Bitdata
• Strongly-typed memory areas
• Type classes, functional dependencies, 
and Functional notation

• Instance chains
• ...

Booting a PC via GRUB
When you turn on a PC:

• The CPU initializes itself and performs a self test, before 
jumping to a known address in the BIOS ROM

• The BIOS searches for a "bootable device" and loads a 446 
byte program into memory from its first sector (the MBR)

• The MBR code uses BIOS functions to load a full featured 
boot loader (GRUB) in to memory

• GRUB searches the disk for a configuration file and interprets 
the commands there to load a full featured OS in to memory

• The OS configures itself using information passed in from 
GRUB via a "Multiboot Information Structure"
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The Multiboot Information Structure
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magic

eax

mbi

ebx

lowerflags upper boot cmd addr ...... syms len addrcount

memory modules

...... endstart str 0

module 1

endstart str 0

module 2

'y''x' 'z' 'z' 'y' 0 ......

command line string

...... 0 ... .........

module 1 string
...... 0 ... ...

module 2 string

memory map

basesize len type ...

region 1

0x2badboo2

basesize len type ...

region 2

...

...

The Multiboot Information Structure, in C
extern struct MultibootInfo* mbi;
extern unsigned              mbi_magic;
#define MBI_MAGIC 0x2BADB002

struct MultibootInfo {
  unsigned                flags;
# define MBI_MEM_VALID    (1 << 0)
# define MBI_CMD_VALID    (1 << 2)
# define MBI_MODS_VALID   (1 << 3)
# define MBI_MMAP_VALID   (1 << 6)

  unsigned                memLower;
  unsigned                memUpper;
  unsigned                bootDevice;
  char*                   cmdline;
  unsigned                modsCount;
  struct MultibootModule* modsAddr;
  unsigned                syms[4];
  unsigned                mmapLength;
  unsigned                mmapAddr;
};

struct MultibootModule {
  unsigned modStart;
  unsigned modEnd;
  char*    modString;
  unsigned reserved;
};

struct MultibootMMap {
  unsigned size;
  unsigned baseLo;
  unsigned baseHi;
  unsigned lenLo;
  unsigned lenHi;
  unsigned type;
};
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Intentionally or otherwise, 
the multiboot designers 
used multiple techniques 

to represent variable-
length components

Representing variable length components
• Intentionally or otherwise, the multiboot designers used 

multiple techniques to represent variable-length components:

• Mark end of list with a special value, no need to store the 
length explicitly

• Store the number of items and a pointer to the first (0th) 
entry in an array of equally sized items

• Store the size (in bytes) of the array with a pointer to 
(some known position in) the first item; access later items 
by an offset (or pointer) to allow for varying item sizes

• Many other variations are possible (e.g., store address or 
offset of last byte; pack pointer + size in single word; ...) 
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The Multiboot Information Structure
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magic

eax

mbi

ebx

lowerflags upper boot cmd addr ...... syms len addrcount

memory modules

...... endstart str 0

module 1

endstart str 0

module 2

'y''x' 'z' 'z' 'y' 0 ......

command line string

...... 0 ... .........

module 1 string
...... 0 ... ...

module 2 string

memory map

basesize len type ...

region 1

0x2badboo2

basesize len type ...

region 2

...

...

Mark end of 
list with a 

special value



The Multiboot Information Structure
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magic

eax

mbi

ebx

lowerflags upper boot cmd addr ...... syms len addrcount

memory modules

...... endstart str 0

module 1

endstart str 0

module 2

'y''x' 'z' 'z' 'y' 0 ......

command line string

...... 0 ... .........

module 1 string
...... 0 ... ...

module 2 string

memory map

basesize len type ...

region 1

0x2badboo2

basesize len type ...

region 2

...

...

Store the number of 
items and a pointer 

to an array of 
equally sized items

The Multiboot Information Structure
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magic

eax

mbi

ebx

lowerflags upper boot cmd addr ...... syms len addrcount

memory modules

...... endstart str 0

module 1

endstart str 0

module 2

'y''x' 'z' 'z' 'y' 0 ......

command line string

...... 0 ... .........

module 1 string
...... 0 ... ...

module 2 string

memory map

basesize len type ...

region 1

0x2badboo2

basesize len type ...

region 2

...

...

Link from one item 
to the next using 
size information, 
pointers, etc..

The Multiboot Information Structure
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magic

eax

mbi

ebx

lowerflags upper boot cmd addr ...... syms len addrcount

memory modules

...... endstart str 0

module 1

endstart str 0

module 2

'y''x' 'z' 'z' 'y' 0 ......

command line string

...... 0 ... .........

module 1 string
...... 0 ... ...

module 2 string

memory map

basesize len type ...

region 1

0x2badboo2

basesize len type ...

region 2

...

...

Many other variations are possible 
(e.g., store address or offset of last 
byte; pack pointer + size in single 
word; length at start of array; etc.)

Programming challenges
• What could go wrong if we're writing C programs to work 

with a Multiboot Information Structure?

• How do we enforce checking for the magic number?

• How do we identify/access individual flag bits?

• How do we find the start of a variable length component?

• How do we move to the next component?

• How do we determine when we have reached the end?

• How do we prevent access to adjacent regions of memory 
that are not part of the Multiboot Information Structure?

• Current practices to avoid/minimize errors: Disciplined 
programming; Code reviews; Extensive testing; Limit revisions.

• Do modern language designs have anything to offer here?
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Abstract types
• Instead of exposing the underlying pointer type, with full (and 

unsafe) pointer arithmetic, we could use an abstract type

• Key idea: separate specifications from implementations

• Specification:  We can work with null-terminated strings by 
introducing a type AsciiZ with a single operation:

    next :: AsciiZ -> Proc (Maybe (Char, AsciiZ))

• Implementation:  An AsciiZ value is a (non-null) pointer 
to a null-terminated string of characters

• next s returns Just (c, s1) if s points to character c 
and the remainder of the string is s1

• Otherwise next s returns Nothing
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Notes
• The next operation encapsulates checking for null, reading a 

character, and incrementing the pointer in a single operation

• In general, an abstract type's design should:

• ensure safety (leverage types)

• avoid redundant computation (e.g., repeated tests)

• allow for an efficient implementation ...

• Don't underestimate the challenges of figuring out a good 
design!
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Cursors
• This approach generalizes quite easily to handle other 

components of the MultiBoot Information Structure as well 
as other table and tree structures in low-level code

    next :: Cursor -> Proc (Maybe (Val, Cursor))

• For example, we could traverse an array using a Cursor that 
encapsulates two components:

• The number of remaining elements

• A pointer to the current element
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A sample consumer of AsciiZ strings
• Using some notation from Habit:

putStr  :: AsciiZ -> Proc ()  
putStr s = case<- next s of  
             Nothing      -> return ()  
             Just (c, s1) -> do putChar c  
                                putStr s1

• A simple implementation of next would construct a value of 
the form Just (c,s1) for every character in the string

⇒ Significant heap allocation, performance will suffer

⇒ Garbage collection; predictability will be compromised

⇒ Heavyweight approach: a single pointer is all you need ...

• It might be hard to get good performance out of this ...
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A sample consumer of AsciiZ strings
• Using some notation from Habit:

putStr  :: AsciiZ -> Proc ()  
putStr s = case<- next s of  
             Nothing      -> return ()  
             Just (c, s1) -> do putChar c  
                                putStr s1

• putStr immediately consumes values produced by next
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A sample consumer of AsciiZ strings
• Using some notation from Habit:

putStr  :: AsciiZ -> Proc ()  
putStr s = case<- next s of  
             Nothing      -> return ()  
             Just (c, s1) -> do putChar c  
                                putStr s1

• putStr immediately consumes values produced by next

a whole program optimizer should be able to fuse the code 
for the two functions to eliminate the overhead ...
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putStr <- k54{}

k54{} t564 = k53{t564}

k53{t563} [] = b97[t563]

b97[t560] =
  t561 <- readChar((t560))
  t562 <- nullChar((t561))
  if t562
    then b96[]
    else b102[t560, t561]

b102[t555, t556] =
  t557 <- incAsciiz((t555))
  [] <- putChar((t556))
  t558 <- readChar((t557))
  t559 <- nullChar((t558))
  if t559
    then b96[]
    else b102[t557, t558]

b96[] = return Unit

Unit <- Unit()
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The compiled version of putStr

Key details:

• No allocation in the main putStr loop (i.e., in block b102)!

• Simple pointers

Another example: CursorSum in Habit
Add a collection of items accessed via a cursor:
main :: Proc Word
main  = do c <- getCursor
           foldCursor accum c 0

accum    :: ItemRef -> Word -> Proc Word
accum i a = fmap (add a) (itemData i)

foldCursor :: (ItemRef -> a -> Proc a) -> Cursor -> a -> Proc a
foldCursor f c a
  = case next c of
      Nothing      -> return a
      Just (i, nc) -> f i a >>= foldCursor f nc

 48

Things to note: higher-order functions, pattern matching, 
monads, polymorphic types, etc...

Things to ignore: everything else!



Another example: CursorSum in Habit
main <- k59{}

k59{} [] = b95[]

b95[] =
  t618 <- getCursor(())
  t619 <- Cursor 0 t618
  t620 <- Cursor 1 t618
  t621 <- primGte((t620, 0))
  if t621
    then b120[t619, t620, 0]
    else b121[]

b120[t610, t611, t612] =
  t613 <- add((t611, -1))
  t614 <- incItemRef((t610))
  t615 <- itemData((t610))
  t616 <- add((t612, t615))
  t617 <- primGte((t613, 0))
  if t617
    then b120[t614, t613, t616]
    else b121[]

b121[] = return 0
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main

k59

b95

b120

b121

Another Case Study: System Call 
Validators
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HaL4: A Capability-
Enhanced Microkernel 
Implemented in Habit

Using types ...
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based on Haskell

HaL4: A Capability-
Enhanced Microkernel 
Implemented in Habit

Using lambda ...
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based on Haskell

HaL4: A Capability-
Enhanced Microkernel 
Implemented in Habit

Using lambda ...
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based on Haskell

?
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Using lambda ...
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System 
Calls

Interrupt 
Handlers

Exception 
Handlers

Using lambda ...
Interrupt 
Handlers

System 
Calls

Exception 
Handlers
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Shared (Kernel) State

Using lambda ...

Validate 
Parameters

Perform 
Action Return with 

success code

Return with 
error code
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Action

Parameter 
Validation

Error 
Reporting

syscallMapPageDir :: (KE k, KW k) => k a 
syscallMapPageDir 
 = do curr <- getCurrent 
      asidIdx <- getReg asidCapReg curr 
      case<- lookupCapAll curr.cspace asidIdx of 
        Ref asidCap -> 
         case<- get asidCap.objptr of 
           ASIDTableObj[] -> 
             range  <- getCapdata asidCap 
             offset <- getReg offsetReg 
             case offset `inRange` range of 
               Just asid -> 
                 let slot = asidTable @@ asid 
                 count <- get slot.count 
                 if count==0 then 
                   pdirIdx <- getReg pdirCapReg curr 
                   case<- lookupCapAll curr.cspace pdirIdx curr of 
                     Ref pdirCap -> 
                       case<- get pdirCap.objptr of 
                        PageDirObj[pdir] -> 
                          case<- getCapdata pdirCap of 
                            UnmappedPD[] -> 
                              set slot.pdir (Ref pdir) 
                              set slot.count 1 
                              setCapdata pdcap MappedPD[asid] 
                              success curr 
                            _ -> mappedErr curr 
                        _ -> invalidCapabilityErr curr 
                     Null -> invalidCapabilityErr curr 
                 else mappedErr curr 
             Nothing -> rangeErrorErr curr 
           _ -> invalidCapabilityErr curr 
        Null -> invalidCapabilityErr curr
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Imperative Functional Programming
• Traditional sequential control flow

do f  <- openFile "file.txt"  
   l1 <- readLine f  
   l2 <- readLine f  
   out (l1, l2)  
   closeFile f

• How to deal with errors?  multiple results?

• Make functions return error codes (and hope that callers 
will check those codes)?

• Add the ability to throw and catch exceptions?

• Use continuations …
 59

Programming with continuations
• Instead of 

openFile :: String -> Proc FileHandle

• Try:

openFile :: String  
              -> (ErrorCode  -> Proc a)  
              -> (FileHandle -> Proc a)  
              -> Proc a

• It’s as if we’ve given openFile two return addresses: one to 
use when an error occurs, and one to use when the call is 
successful.

 60

higher-order, or first-
class functions



Programming with continuations
• Our original program using continuations:

openFile "file.txt"  
   (\error -> …)  
   (\f -> do l1 <- readLine f  
             l2 <- readLine f  
             out (l1, l2)  
             closeFile f)

• Could we do the same for readLine?
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Programming with continuations
• Our original program using continuations:

openFile "file.txt"  
  (\error -> …)  
  (\f -> readLine f  
      (\error -> …)  
      (\l1 -> readLine f  
           (\error -> …)  
           (\l2 <- do out (l1, l2)  
                      closeFile f)))

• Hmm, not so pretty …
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Programming with continuations
• Name the error handlers:

openFile "file.txt"  
  err1  
  (\f -> readLine f  
      err2  
      (\l1 -> readLine f  
           err3  
           (\l2 <- do out (l1, l2)  
                      closeFile f)))
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Programming with continuations
• Reformat:

openFile "file.txt" err1  (\f ->  
readLine f          err2  (\l1 -> 
readLine f          err3  (\l2 ->  
do out (l1, l2)  
   closeFile f)))

• Looking better …
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Programming with continuations
• Add an infix operator:  f $ x = f x

openFile "file.txt" err1  $ \f ->  
readLine f          err2  $ \l1 -> 
readLine f          err3  $ \l2 ->  
do out (l1, l2)  
   closeFile f

• Fewer parentheses …

• Easier to add or remove individual lines …

• … still a little cluttered by error handling behavior
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Programming with continuations
• Continuation-based control flow, integrated error handlers:

openFile "file.txt" $ \f ->  
readLine f          $ \l1 ->  
readLine f          $ \l2 ->  
do out (l1, l2)  
   closeFile f

• Not always applicable …

• … but a good choice for HaL4 where the response to a 
particular type of invalid parameter is always the same 
(typically, returning an error code to the caller)

• … and this also encourages consistent API behavior
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“Validators”
The implementation of prototype HaL4 includes a small library 
of validator functions:

getCurrent          :: KR k => (TCBRef -> k a) -> k a

getRegCap           :: KE k => #r -> TCBRef  
                                    -> (CapRef -> k a) -> k a

emptyCapability     :: KE k => TCBRef -> CapRef -> k a -> k a

cdtLeaf             :: KE k => TCBRef -> CapRef -> k a -> k a

notMaxDepth         :: KE k => TCBRef -> CapRef -> k a -> k a

untypedCapability   :: KE k => TCBRef -> CapRef  
                                -> (UntypedRef -> k a) -> k a

pageDirCapability   :: KE k => TCBRef -> CapRef  
                   -> (PageDirRef -> PDMapData -> k a) -> k a

pageTableCapability :: KE k => TCBRef -> CapRef  
                   -> (PageTableRef -> MapData -> k a) -> k a
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“Validators”
• In effect, we have built an embedded domain specific language, 

just for validating parameters in HaL4

• Benefits include:

• Ease of reuse

• Consistency

• Clarity

• Ability to pass multiple results on to continuation
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Validators

Action

syscallMapPageDir :: (KE k, KW k) => k a 
syscallMapPageDir 
 = getCurrent                        $ \curr      -> 
   getMapPageDirASIDTab curr         $ \asidcap   -> 
   asidTableCapability curr asidcap  $ \range     -> 

   getMapPageDirOffset curr          $ \offset    -> 
   asidInRange curr offset range     $ \asid      -> 
   asidNotUsed curr asid             $ \slot      -> 

   getMapPageDirPDir curr            $ \pdcap     -> 
   pageDirCapability curr pdcap      $ \pdir pdmd -> 
   unmappedPD curr pdmd              $              

   do set slot.pdir (Ref pdir) 
      set slot.count 1 
      setCapdata pdcap MappedPD[asid] 
      success curr
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syscallMapPageDir :: (KE k, KW k) => k a 
syscallMapPageDir 
 = getCurrent                        $ \curr      -> 
   getMapPageDirASIDTab curr         $ \asidcap   -> 
   asidTableCapability curr asidcap  $ \range     -> 

   getMapPageDirOffset curr          $ \offset    -> 
   asidInRange curr offset range     $ \asid      -> 
   asidNotUsed curr asid             $ \slot      -> 

   getMapPageDirPDir curr            $ \pdcap     -> 
   pageDirCapability curr pdcap      $ \pdir pdmd -> 
   unmappedPD curr pdmd              $              

   do set slot.pdir (Ref pdir) 
      set slot.count 1 
      setCapdata pdcap MappedPD[asid] 
      success curr

"clear" and 
"concise"
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syscallMapPageDir :: (KE k, KW k) => k a 
syscallMapPageDir 
 = getCurrent                        $ \curr      -> 
   getMapPageDirASIDTab curr         $ \asidcap   -> 
   asidTableCapability curr asidcap  $ \range     -> 

   getMapPageDirOffset curr          $ \offset    -> 
   asidInRange curr offset range     $ \asid      -> 
   asidNotUsed curr asid             $ \slot      -> 

   getMapPageDirPDir curr            $ \pdcap     -> 
   pageDirCapability curr pdcap      $ \pdir pdmd -> 
   unmappedPD curr pdmd              $              

   do set slot.pdir (Ref pdir) 
      set slot.count 1 
      setCapdata pdcap MappedPD[asid] 
      success curr

reusable
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syscallMapPageDir :: (KE k, KW k) => k a 
syscallMapPageDir 
 = getCurrent                        $ \curr      -> 
   getMapPageDirASIDTab curr         $ \asidcap   -> 
   asidTableCapability curr asidcap  $ \range     -> 

   getMapPageDirOffset curr          $ \offset    -> 
   asidInRange curr offset range     $ \asid      -> 
   asidNotUsed curr asid             $ \slot      -> 

   getMapPageDirPDir curr            $ \pdcap     -> 
   pageDirCapability curr pdcap      $ \pdir pdmd -> 
   unmappedPD curr pdmd              $              

   do set slot.pdir (Ref pdir) 
      set slot.count 1 
      setCapdata pdcap MappedPD[asid] 
      success curr

performance 
concerns?
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The MapPage System Call
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k120 unmapped

b152

b149b151 @pdirOf

readRef

b148

alreadyMappedErrb150success incRefMapped toCapData PageTablePDEwriteRef

dataOf

b111

k85

b102

k77

b101

k76

b100

Unit

b66

k44

b84

k61

b67

k45

b73

k50

b72

k49

b71

k48

b70

at

b77

k54

b76

k53

b98

k74

b171

k129

b170

k128

b169

b167 b168 b0

b166

b116

k90

b185

k134

b184

k133

b183

k132

b182

b179 b181objptrOf

notPageTabCapabilityErr

b178b114

k88

b180

b209

k143

b208

k142

b207

k141

b206

b205ptrOf

nexthiOf

b203 b204 lt getDepth

notLeafErr b202

b117

k91

return
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(622 steps)
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main

mapPageTable

k161

b254

b278

b196

b187 b263

b277 b271

b276

b281 b0

b203 b282 b210

b179 b284

b152

b149 b151

prioSet = \i prio -> do writeRef (at prioset i) prio
                        writeRef (at prioidx prio) i

insertPriority = \prio -> do s <- readRef priosetSize
                             writeRef priosetSize (add s 1)
                             heapRepairUp (modIx s) prio

heapRepairUp = \i prio ->
  case dec i of
    Nothing -> prioSet 0 prio
    Just j  -> do parent <- ret (shiftR j 1)
                  pprio  <- readRef (at prioset parent)
                  if lt pprio prio then
                    prioSet i pprio
                    heapRepairUp parent prio
                  else
                    prioSet i prio

removePriority = \prio ->
  do s <- readRef priosetSize
     writeRef priosetSize (sub s 1)
     rprio <- readRef (at prioset (modIx (sub s 1)))
     if neq prio rprio then
       i <- readRef (at prioidx prio)
       heapRepairDown i rprio (modIx (sub s 2))
       nprio <- readRef (at prioset i)
       heapRepairUp i nprio

heapRepairDown = \i prio last ->
 do let u = unsigned i  // <- ret (unsigned i)
    case leq (add (mul 2 u) 1) last of            // Look for a left child
     Nothing -> prioSet i prio                    // i has no children
     Just l  ->                                   // i has a left child
       do lprio <- readRef (at prioset l)
          case leq (add (mul 2 u) 2) last of      // Look for a right child
            Nothing ->                            // i has no right child
              if gt lprio prio then
                prioSet i lprio
                prioSet l prio
              else
                prioSet i prio
            Just r  ->                            // i has two children
              do rprio <- readRef (at prioset r)
                 if gt prio lprio && gt prio rprio then
                   prioSet i prio
                 else if gt lprio rprio then
                        prioSet i lprio // left is higher
                        heapRepairDown l prio last
                      else
                        prioSet i rprio // right is higher
                        heapRepairDown r prio last

Prioset
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insertPriority
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b65
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b53

k30

b52
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b3
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b130

k62
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k61

b128

b14

k5

b13

k4

b12

readRef

b17

k7

b16

k6

b15

writeRef0

b4

writeRef1

b5

writeRef2

b6

writeRef3

b7

readRef0

b8

readRef1

b9

readRef2

prioSet = \i prio -> do writeRef (at prioset i) prio
                        writeRef (at prioidx prio) i

insertPriority = \prio -> do s <- readRef priosetSize
                             writeRef priosetSize (add s 1)
                             heapRepairUp (modIx s) prio

heapRepairUp = \i prio ->
  case dec i of
    Nothing -> prioSet 0 prio
    Just j  -> do parent <- ret (shiftR j 1)
                  pprio  <- readRef (at prioset parent)
                  if lt pprio prio then
                    prioSet i pprio
                    heapRepairUp parent prio
                  else
                    prioSet i prio

removePriority = \prio ->
  do s <- readRef priosetSize
     writeRef priosetSize (sub s 1)
     rprio <- readRef (at prioset (modIx (sub s 1)))
     if neq prio rprio then
       i <- readRef (at prioidx prio)
       heapRepairDown i rprio (modIx (sub s 2))
       nprio <- readRef (at prioset i)
       heapRepairUp i nprio

heapRepairDown = \i prio last ->
 do let u = unsigned i  // <- ret (unsigned i)
    case leq (add (mul 2 u) 1) last of            // Look for a left child
     Nothing -> prioSet i prio                    // i has no children
     Just l  ->                                   // i has a left child
       do lprio <- readRef (at prioset l)
          case leq (add (mul 2 u) 2) last of      // Look for a right child
            Nothing ->                            // i has no right child
              if gt lprio prio then
                prioSet i lprio
                prioSet l prio
              else
                prioSet i prio
            Just r  ->                            // i has two children
              do rprio <- readRef (at prioset r)
                 if gt prio lprio && gt prio rprio then
                   prioSet i prio
                 else if gt lprio rprio then
                        prioSet i lprio // left is higher
                        heapRepairDown l prio last
                      else
                        prioSet i rprio // right is higher
                        heapRepairDown r prio last

Prioset
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(1217 rewrite 
steps later)

insertPriority

k54

k53

b110

b257

b229

removePriority

k49

k48

b97

b95

b177

b237

b103

b113

Unit

b258

b260

b182b82

b184

b187

b75

Wrapping Up ...
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Current status
• For the three main questions for CEMLaBS:

• Feasibility: Still chipping away ... but getting closer!

• Benefit: Good evidence that we will benefit from the use 
of functional language features
+Types
+Higher-order functions

• Performance: acceptable performance may be within 
reach
+We can generate good quality code, even when lambdas 

are used in fundamental ways
+Some code duplication (but, so far, this is entirely tolerable 

for our specific use case ...)
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The Habit Compiler
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Front end Back end

Habit ... ... Lambda 
Case

Optimizer

The Habit Compiler
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MILLC MIL LLVM

Front end Back end

Why MIL?
• If we want a good optimizer, we need to work in a language 

that exposes key implementation details/sources of overhead

• Constructing a closure: k{x1, …, xn}

• code pointer: k

• stored fields: x1, …, xn

• Entering a closure: If f is a closure, then we write f @ x for 
the result of entering f with argument x

• Defining a closure: k{x1, …, xn} a = t

• The code in t describes the result that is produced when 
you enter the closure with argument a
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From Functional Source Code ...
id  = \x -> x

compose = \f g x -> f (g x)

map  = \f xs ->
case xs of

Nil       -> Nil
Cons y ys -> Cons (f y) (map f ys)
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... to MIL Programs
id ← k0{}
k0{} x = b0[x]
b0[x] = return x  

map  ← k4{}
k4{} f = k5{f}
k5{f} xs = b2[f,xs]
b2[f,xs] = case xs of  

Nil()⟶ b3[]  
Cons(y,ys)⟶ b4[f,y,ys]

b3[] = Nil()
b4[f,y,ys] = z ←  f @ y  

m ←  map @ f  
zs ←  m @ ys  
Cons(z,zs)

compose ← k1{}
k1{} f = k2{f}
k2{f} g = k3{f,g}
k3{f,g} x = b1[f,g,x]
b1[f,g,x] = y ←  g @ x  

f @ y  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Intuition: arguments are like 
registers that have been 
loaded with values on entry 
to a basic block of code

... to Optimized MIL Programs
map  ← k4{}
k4{} f = k5{f}
k5{f} xs = b2[f,xs]
b2[f,xs] = case xs of  

Nil()⟶ b3[]  
Cons(y,ys)⟶ b4[f,y,ys]

b3[] = Nil()
b4[f,y,ys] = z ←  f @ y  

m ←  map @ f  
zs ←  m @ ys  
Cons(z,zs)

unknown function call

known function call
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map  ← k4{}  
k4{} f = k5{f}  
k5{f} xs = b2[f,xs]  
b2[f,xs] = case xs of  

Nil()⟶ b3[]  
Cons(y,ys)⟶ b4[f,y,ys]  

b3[] = Nil()  
b4[f,y,ys] = z ←  f @ y  

m ←  map @ f  
zs ←  m @ ys  
Cons(z,zs)

... to Optimized MIL Programs
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known function call

... to Optimized MIL Programs
map  ← k4{}  
k4{} f = k5{f}  
k5{f} xs = b2[f,xs]  
b2[f,xs] = case xs of  

Nil()⟶ b3[]  
Cons(y,ys)⟶ b4[f,y,ys]  

b3[] = Nil()  
b4[f,y,ys] = z ←  f @ y  

m ←  k5{f}  
zs ←  m @ ys  
Cons(z,zs) known function call
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map  ← k4{}  
k4{} f = k5{f}  
k5{f} xs = b2[f,xs]  
b2[f,xs] = case xs of  

Nil()⟶ b3[]  
Cons(y,ys)⟶ b4[f,y,ys]  

b3[] = Nil()  
b4[f,y,ys] = z ←  f @ y  

m ←  k5{f}  
zs ←  m @ ys  
Cons(z,zs)

... to Optimized MIL Programs
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known function call

map  ← k4{}  
k4{} f = k5{f}  
k5{f} xs = b2[f,xs]  
b2[f,xs] = case xs of  

Nil()⟶ b3[]  
Cons(y,ys)⟶ b4[f,y,ys]  

b3[] = Nil()  
b4[f,y,ys] = z ←  f @ y  

m ←  k5{f}  
zs ←  b2[f,ys]  
Cons(z,zs)

pure, dead code

... to Optimized MIL Programs
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map  ← k4{}  
k4{} f = k5{f}  
k5{f} xs = b2[f,xs]  
b2[f,xs] = case xs of  

Nil()⟶ b3[]  
Cons(y,ys)⟶ b4[f,y,ys]  

b3[] = Nil()  
b4[f,y,ys] = z ←  f @ y  

zs ←  b2[f,ys]  
Cons(z,zs)  

 

... to Optimized MIL Programs
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MIL Optimization
• Basic strategy:

• many small rewrites

• combined in large numbers

• Sources of rewrites:

• algebraic laws

• simple data flow

• specialization and derived blocks
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