101111 .
01010 Languages & Low-Level Programming

X)gf;;gig CS 410/510

Mark P Jones
Portland State University

Fall 2018

Week 10: Abstractions and Performance

Copyright Notice

* These slides are distributed under the Creative Commons
Attribution 3.0 License

* You are free:
* to share—to copy, distribute and transmit the work
* to remix—to adapt the work

* under the following conditions:

* Attribution: You must attribute the work (but not in any way that
suggests that the author endorses you or your use of the work) as
follows: “Courtesy of Mark P. Jones, Portland State University”

The complete license text can be found at
http://creativecommons.org/licenses/by/3.0/legalcode

The CEMLaBS Project

* “Using a Capability-Enhanced Microkernel as a Testbed for
Language-Based Security”

» Started October 2014, Funded by The National Science
Foundation

* Three main questions:

* Feasibility: s it possible to build an inherently “unsafe”
system like seL4 in a “safe” language like Habit!?

* Benefit:VWhat benefits might this have, for example, in
reducing verification costs?

* Performance: Is it possible to meet reasonable
performance goals for this kind of system?

Chipping away ...

r based on sel 4

Hal4: A Capability-
Enhanced Microkernel

Implemented in Habit

Chipping away ...

¥

Hal4: A Capability-
Enhanced Microkernel
Implemented in Habit

based on Haskell

Opportunities for high-level abstractions?

* Are there good uses for higher-level abstractions in bare
metal programming?

* Algebraic datatypes?
* First class and higher-order functions?

* Classes and objects!?

* And with concerns about performance, can we afford to use
them!?

Algebraic Datatypes

Sums types and product types

* A sum type allows us to capture alternatives:

data Bool = False | True -- Haskell

enum Bool { False, True } // Rust

* A product type allows us to package multiple values up as
a single, composite value:

data Point = MkPoint Int Int —-— Haskell
enum Point { MkPoint(i32, i32) } // Rust

(tuples, arrays, records, structures, etc. are also examples of
of product type)

Algebraic datatypes

» Algebraic datatypes provide a unified framework for
sum and product types as well as arbitrary sums of products:

-- Haskell

data Maybe a = Nothing | Just a
data Either a b = Left a | Right b
// Rust

enum Option<T> { None, Some(T) }

enum Result<T, E> { Ok(T), Err(E) }

* These examples are taken from the standard libraries of the
respective languages

* They are also examples of parameterized types, allowing
reuse over many type parameter combinations

Constructing values of algebraic datatypes

* To make a value of an algebraic datatype, just write the
constructor followed by an appropriate list of arguments:

In Haskell:
* Nothing and Just 12 are values of type Maybe Int

* Left True and Right "hello" are values of type
Either Bool String

In Rust:
* None and Some (12) are values of type Option<i32>

* Ok(true) and Err("hello") are values of type
Result<bool, String>

Using values of algebraic datatypes

* We use pattern matching constructs to inspect and
extract data from values of algebraic datatypes:

In Haskell, assuming val has type Maybe String:

case val of
Nothing -> "I don't know your name"
Just name -> "hello " ++ name

In Rust, assuming val has type Option<String>:

match val {
None => "I don't know your name"
Some (name) => "hello " + name

Representing values of algebraic datatypes

* Language definitions typically do not specify exactly how
values of algebraic datatypes are represented

* Two common approaches:

Boxed representations: Every value is described by a
pointer to a block of memory:

\ Nothing \ Just 12

0 1 12
— . -~ U\ y J
tag tag data

Union representations: Every value is described by a
block of memory big enough to store any value of that type:

None Some (12)

0 1 12

Algebraic datatypes + recursion

* Algebraic datatypes become even more powerful when
combined with recursion:

-- Haskell
data Li?t a = Nil | Cons a (Li?t a)

// Rust
enum Li?t<A> { Nil, Cons(Box<(A, Li?t<A>)>)}

* (Box<T> is the Rust type for boxed values of type T)

* Example: Cons 1 (Cons 2 (Cons 3 (Cons 4 Nil))) isa
value of type List Int (might also be written [1, 2, 3, 4])

* Unsurprisingly, we can define recursive functions to work
with recursive types like these ...

Algebraic datatypes using classes

* We can simulate algebraic datatypes with OO classes:

abstract class List<A> {
Cons isCons() { return null; }

}
class Nil<A> extends List<A> { }

class Cons<A> extends List<A> {
A head;
List<A> tail;
Cons (A head, List<A> tail) {

this.head = head;
this.tail = tail;

}

Cons isCons() { return this; }

}
* More verbose, but also more extensible

» Combines/tangles type and code definitions in classes

Habit's bitdata types

* The Habit programming language provides special syntax for
defining bitdata types:

bitdata Perms = Perms [r, w, X :: Bool]

bitdata Fpage = Fpage [base :: Bit 22 | size :: Bit 6
| reserved :: Bit 1 | perms :: Perms]

* A crucial feature of definitions like these is the ability to
specify bit-level representations/layout
* In other respects, bitdata types are like algebraic datatypes:
* Construct and update values without use of <<, &, |, etc.

* Pattern match to deconstruct values

Example: IA32 Paging Structures

31[30]29]28]27]26]25]24]23]22]21]20]19]18][17]16]15[14[13][12]11]10[9[8[7[6[5[4[3J2[1]0
p
Address of page direc‘(ory1 Ignored [C) P¥V Ignored CR3
. ; P P U[R PDE:
Bits 31:22 of address Reserved Bits 39:32 of PW|
Al Ignored |G|1|D|A|C /| /]|1] 4MB
of 4MB page frame (must be 0) address T D T Slw page
| P PW U[R PDE:
Address of page table Ignored O(g|A|C T /| /]1 page
n D S|W table
PDE:
Ignored 0 not
present
P P lowl Y[R PTE:
Address of 4KB page frame Ignored |[G|A|D|A|C T /|71 4KB
T D Siw page
PTE:
Ignored 0 not
present

Figure 4-4. Formats of CR3 and Paging-Structure Entries with 32-Bit Paging

Example: IA32 Paging Structures

Here is how we describe page directory entries in Habit:

bitdata PDE /WordSize -- Page Directory Entries
= UnmappedPDE [unused=0 :: Bit 31 | BO] -- Unused entry (present bit reset)
| PageTablePDE [ptab :: Phys PageTable -- physical address of page table
| unused=0 :: Bit 4
| BO -- signals PageTablePDE
| attrs=readwWrite :: PagingAttrs -- paging attributes
| B1] -- present bit set
| SuperPagePDE [super :: Phys SuperPage -- physical address of superpage
| unused=0 :: Bit 13
| global=0 :: Bit 1 -- 1 => global translation (if cr4.pge=1)
| B1 -- signals SuperPagePDE
| attrs :: PagingAttrs -- paging attributes
| BL] -- present bit set

bitdata PagingAttrs /6

= PagingAttrs [dirty =0 :: Bit 1 -- Dirty; 1 => data written to page
| accessed = 0 :: Bit 1 —- Accessed; 1 => page accessed
| caching = Caching[] :: Caching
| us :: Bit 1 -- User/supervisor; 1 => user access allowec
| rw :: Bit 1] -- Read/write; 1 => write access allowed

Example: IA32 Paging Structures

And here is how we might write functions that use these
definitions to implement useful operations on paging
structures:

mapPage pdir virt phys
= case<- readRef (pdir @ wvirt.dir) of

UnmappedPDE -> ... add page table and map page

SuperPagePDE[] -> ... superpage already mapped ...

PageTablePDE[ptab] ->

case<- readRef (fromPhys ptab @ virt.tab) of

MappedPTE[] -> ... page already mapped ...
UnmappedPTE -> ... map the page ...

There are no messy bit-level operations to worry about here:
all of that is handled automatically by bitdata mechanisms ...

First-class Functions
and
Higher-order Functions

First-class functions

* A lot of modern programming languages provide mechanisms
for writing down anonymous functions / lambda expressions:

Haskell \x => x + 1 Javascript| function (x) x + 1

(lambda (x) C+t || [1 (int x) -> int

LISP (+ x 1)) { return x + 1; }

Python lambda x: x + 1 Rust x| (x + 1)

* These expressions construct functions as first class values:

* they can be passed as arguments to other functions
* returned as results
* stored in data structures

20

Simple examples

id has a polymorphic type: It
can be treated as a function of
type t -> t for any type t

* The identity function: (

id = \x -> x

* The "successor" function %succ has type Int -> Int]

succ = \x -> x + 1

. add has type Int -> Int -> Int]
* The "add" functlon% 7P

add = \x -=> (\y -=> x + vy)
(compose has type }

(b =>c¢c) -=> (a -=> b) -=> (a => ¢)

* The "compose” function

compose = \f -> \g -> \x -> f (g x)

21

Higher-order functions

* Higher-order functions are functions that take other
functions as inputs or return functions as outputs

 compose and map are classic examples of higher-order
functions

map = \f xs ->
case xs of
Nil -> Nil
Cons y ys -> Cons (f y) (map f ys)

* For example:
map (\x -> x + 1) [1,2,3,4] =
map (\x -> 2 * x) [1,2,3,4] =

2,3,4,5]

[
[2I4I6I8]

» Good for capturing recurring patterns as reusable functions

22

First-class functions using classes

* We can use OO classes to represent first-class functions:

abstract class Func<A, B> {
abstract B applyTo(A arg);

}

class Id<A> extends Func<A, A> {
A applyTo(A arg) { return arg; }

}

class Succ extends Func<int, int> {
int applyTo(int arg) { return arg + 1; }
}

* Objects that represent first-class functions are called
closures

» Some language descriptions even use the term "closure”
instead of "first-class function”

23

First-class functions using classes, continued

* We can build closures for functions with multiple arguments:

class Addl extends Func<int, int> {
private int n;
new Addl(int n) { this.n = n; }
int applyTo(int arg) { return arg + n; }

}

class Add extends Func<int, int> {
Func<int, int> applyTo(int arg) { return new Addl(n); }

}

* Sample use:
new Add().applyTo(1l).applyTo(2) ===> returns 3

* A single class can have many methods, which might require
multiple functions

* But the verbose notation can discourage users ...

24

Functions vs procedures

* In many languages, the terms "function" and "procedure" are
used almost interchangeably

* In Habit, they are different!

A function is a value of type a -> b for some input type a
and output type b

For any given input value, a function always produces the
same output value

* A procedure is a value of type Proc a for some result type a

Every time it is executed, a procedure can have a side effect
and produce a result of type a (both which could be different
every time ...)

25

Combining functions and procedures

* We can use these together to describe procedures with
arguments

(a pure function,
° Compare: no side effects

Ay -=> Ay => ... -=> R i
a parameterized
) B ~ procedure, may
Ay -> A; -> ... => Proc R<[have side effects}

* A typical C prototype for a function like this:

no guarantees, could
do almost anything!

R f(A:1 argi, Az argz, «...) }

26

Why is this useful?

|. We can distinguish between procedures that can have side
effects and pure functions that do not

Useful documentation; simplifies reasoning; enables
optimizations
2. We can generalize to support multiple procedure types:
Proc a for regular procedures
Init a for procedures that can only run during kernel
initialization
Now we can enforce restrictions on the use of functions that

should only be called during initialization (e.g., allocPage ()
in the capabilities lab) via compile-time type checking

Talk to me for further details; this is related
to"Monads" in functional programming

27

Opportunities for high-level abstractions?

Are there good uses for higher-level abstractions in bare
metal programming?

* Algebraic datatypes?
* First class and higher-order functions?

* Classes and objects!?

[]
coe

And with concerns about performance, can we afford to use
them!?

28

A small case study:
The Multiboot Information Structure

Chipping away ...

¥

Hal4: A Capability-
Enhanced Microkernel
Implemented in Habit

based on Haskell

* Bitdata
* Strongly-typed memory areas

Using types ... @
* Type classes, functional dependencies,

and Functional notation

r * Instance chains
[]

Hal4: A Capability-
Enhanced Microkernel
Implemented in Habit

based on Haskell

31

Booting a PC via GRUB

When you turn on a PC:

* The CPU initializes itself and performs a self test, before
jumping to a known address in the BIOS ROM

* The BIOS searches for a "bootable device" and loads a 446
byte program into memory from its first sector (the MBR)

* The MBR code uses BIOS functions to load a full featured
boot loader (GRUB) in to memory

* GRUB searches the disk for a configuration file and interprets
the commands there to load a full featured OS in to memory

* The OS configures itself using information passed in from
GRUB via a "Multiboot Information Structure”

32

The Multiboot Information Structure

eax ebx region | region 2
f—};\f—/;\
‘ ‘ size | base ‘ len ‘ type ‘ ‘ size ‘ base ‘ len ‘ type ‘
- —
0x2badboo2 R gl
memory modules memory map
‘ - ﬂags‘lower‘upper‘boot‘ cmd ‘count‘addr ‘ syms ‘ len ‘ addr‘ ~J ‘

7 _/

IXI lyl 'Z' 'ZI lyl o ‘ - ‘
command line string
module | module 2
‘ - start H end ‘ str ‘ 0 ‘start H end ‘ str ‘ 0 ‘ ‘
module | string module 2 string
-1-1-To[-T- BEOES

The Multiboot Information Structure, in C

extern struct MultibootInfo* mbi; struct MultibootModule {
extern unsigned mbi magic; unsigned modStart;
#define MBI MAGIC 0x2BADB002 unsigned modEnd;
char* modString;
struct MultibootInfo { unsigned reserved;
unsigned flags; }s
define MBI _MEM VALID (1 << 0)
define MBI CMD VALID (1 << 2) struct MultibootMMap {
define MBI MODS VALID (1 << 3) unsigned size;
define MBI MMAP VALID (1 << 6) unsigned baselo;
unsigned baseHi;
unsigned memLower; unsigned lenLo;
unsigned memUpper; unsigned lenHi;
unsigned bootDevice; unsigned type;
char* cmdline; };
unsigned modsCount; . .
struct MultibootModule* modsAddr; Intentionally or otherwise,
unsigned syms[4]; the multiboot designers
unsigned mmapLength; . .
unsigned mmapAddr ; used multiple techniques
}i to represent variable-
length components

Representing variable length components

* Intentionally or otherwise, the multiboot designers used
multiple techniques to represent variable-length components:

* Mark end of list with a special value, no need to store the
length explicitly

* Store the number of items and a pointer to the first (Oth)
entry in an array of equally sized items

* Store the size (in bytes) of the array with a pointer to
(some known position in) the first item; access later items
by an offset (or pointer) to allow for varying item sizes

* Many other variations are possible (e.g., store address or
offset of last byte; pack pointer + size in single word;...)

35

The Multiboot Information Structure

eax ebx region | region 2
—
‘ ‘ size base‘ len ‘type‘ ‘ size ‘base‘ len ‘type‘ ‘
0x2badboo2 — S
Mark end of
memory list with a modules memory map
~— 7 special valuef e
‘ flags ‘Iower‘upp/ ‘ ‘ Wcount‘ addr‘ syms ‘ len ‘addr‘) ‘
‘ - XY 'Y 0 ‘ ‘
command line string
module | module 2
‘ - start H end ‘ str ‘ 0 ‘start H end ‘ str ‘ 0 ‘ ‘
module | string module 2 string

36

The Multiboot Information Structure

eax ebx region | region 2

‘ ‘sizs base‘ len ‘type‘ ‘ l l ‘ P

ox2badbons Store the numbgr of
NG items and a pointer |-
to an array of
equally sized items
memory modules
‘ flags ‘Iower‘upper‘ boot‘ cmd ‘count‘ addr syms ‘ len ‘ addr ‘) ‘

_/

Sy ey]

command line string

module | module 2
‘ start H end ‘ str ‘ 0 ‘ start H end ‘ str ‘ 0 ‘ ‘
module | string module 2 string

37

The Multiboot Information Structure

eax ebx region | region 2
f_);\f—/;\
‘ ‘ size base‘ len ‘ type ‘ ‘ size ‘base ‘ len ‘type ‘ ‘
0x2badboo?2 A o
Link from one item
to the next using modules memory map
ize inf Forn
‘ = | flag Slgii:t:::\:é?n ‘cmd ‘count‘ addr‘ syms ‘ len ‘addr‘) ‘

Sy ey]

command line string

module | module 2
‘ start H end ‘ str ‘ 0 ‘start H end ‘ str ‘ 0 ‘ ‘
module | string module 2 string

38

The Multiboot Information Structure

eax ebx region | region 2
—
‘ ‘ size | base ‘ len ‘ type ‘ ‘ size ‘ base ‘ len ‘ type ‘ ‘
0x2badboo2 e S
memory modules memory map
‘ flags ‘Iower‘upper‘ boot ‘ cmd ‘count‘ addr ‘ syms ‘ len ‘ addr ‘) ‘

Many other variations are possible
0 ‘ ‘ (e.g., store address or offset of last
byte; pack pointer + size in single
word; length at start of array; etc.)

X

lyl ly'
command line string

z

IZI

module |
‘ start H end ‘ str ‘ 0 ‘start H end ‘ str ‘ 0 ‘ ‘
module | string module 2 string
] -]-]-]o]-]~] BEDEE

39

Programming challenges

* What could go wrong if we're writing C programs to work
with a Multiboot Information Structure?

* How do we enforce checking for the magic number?

* How do we identify/access individual flag bits?

* How do we find the start of a variable length component!?
* How do we move to the next component?

* How do we determine when we have reached the end?

* How do we prevent access to adjacent regions of memory
that are not part of the Multiboot Information Structure?

* Current practices to avoid/minimize errors: Disciplined
programming; Code reviews; Extensive testing; Limit revisions.

* Do modern language designs have anything to offer here!?

40

Abstract types

* Instead of exposing the underlying pointer type, with full (and
unsafe) pointer arithmetic, we could use an abstract type

* Key idea: separate specifications from implementations
 Specification: We can work with null-terminated strings by
introducing a type AsciiZ with a single operation:
next :: AsciiZ -> Proc (Maybe (Char, AsciiZ))
* Implementation: An Ascii?Z value is a (hon-null) pointer
to a null-terminated string of characters

* next s returns Just (c, sl) if s points to character c
and the remainder of the string is s1

e Otherwise next s returns Nothing

41

Notes

* The next operation encapsulates checking for null, reading a
character, and incrementing the pointer in a single operation

* In general, an abstract type's design should:
* ensure safety (leverage types)
e avoid redundant computation (e.g., repeated tests)

* allow for an efficient implementation ...

* Don't underestimate the challenges of figuring out a good
design!

42

Cursors

* This approach generalizes quite easily to handle other
components of the MultiBoot Information Structure as well
as other table and tree structures in low-level code

next :: Cursor -> Proc (Maybe (Val, Cursor))

* For example, we could traverse an array using a Cursor that
encapsulates two components:

* The number of remaining elements

* A pointer to the current element

43

A sample consumer of AsciiZ strings

* Using some notation from Habit:

putStr :: AsciiZ -> Proc ()
putStr s = case<- next s of
Nothing -> return ()
Just (¢, sl) -> do putChar c
putStr sl

* A simple implementation of next would construct a value of
the form Just (c,sl) for every character in the string

= Significant heap allocation, performance will suffer
= Garbage collection; predictability will be compromised

= Heavyweight approach: a single pointer is all you need ...

* It might be hard to get good performance out of this ...

A sample consumer of AsciiZz strings

* Using some notation from Habit:

putStr :: AsciiZ -> Proc ()

putStr s = case<- next s of
Nothing -> return ()
Just (c, sl) -> do putChar c

putStr sl

e putStr immediately consumes values produced by next

45

A sample consumer of AsciiZz strings

* Using some notation from Habit:

putStr :: AsciiZ -> Proc ()

putStr s = case<- next s of
Nothing -> return ()
Just (c, sl) -> do putChar c

putStr sl

e putStr immediately consumes values produced by next

a whole program optimizer should be able to fuse the code

for the two functions to eliminate the overhead ...

46

The compiled version of putsStr

putStr <- k54{} b102[t555, t556] =
t557 <- incAsciiz((t555))
k54{} t564 = k53{t564} [] <- putChar((t556))
t558 <- readChar((t557))
k53{t563} [] = b97[t563] t559 <- nullChar((t558))
if t559
b97[t560] = then b96[]
t561 <- readChar((t560)) else bl02[t557, t558]
t562 <- nullChar((t561))
if t562 b96[]1 = return Unit
then b96][]
else bl02[t560, t561] Unit <- Unit()
Key details:

* No allocation in the main putStr loop (i.e., in block b102)!

* Simple pointers

47

Another example: CursorSum in Habit

Add a collection of items accessed via a cursor:

main :: Proc Word
main = do ¢ <- getCursor
foldCursor accum c 0

accum :: ItemRef -> Word -> Proc Word
accum i a = fmap (add a) (itemData i)

foldCursor :: (ItemRef -> a -> Proc a) -> Cursor -> a -> Proc a
foldCursor £ c a
= case next c of
Nothing -> return a
Just (i, nc) -> £ i a >>= foldCursor f nc

Things to note: higher-order functions, pattern matching,
monads, polymorphic types, etc...

Things to ighore: everything else!

48

Another example: CursorSum in Habit

main <- k59{}

main

k59{} [] = b95[]

bo95[] =

t618 <- getCursor(())

t619 <- Cursor 0 t618

t620 <- Cursor 1 t618

t621 <- primGte((t620, 0))

if t621 b95
then b120[t619, t620, 0]
else bl21[]

b120[t610, t611l, t612] =
t613 <- add((t6ll, -1))
t614 <- incItemRef((t610)) A A 4
t615 <- itemData((t610))
t616 <- add((t612, t615)) b120
t617 <- primGte((t613, 0))
if t617
then bl20[t614, t613, t616] LR
else bl21[]

b121[] = return 0

Another Case Study: System Call
Validators

Using types ...

¥

Hal4: A Capability-
Enhanced Microkernel
Implemented in Habit

based on Haskell

Using lambda ...

Hal4: A Capability-
Enhanced Microkernel

Implemented in Habit

based on Haskell

Using lambda ...

Hal4: A Capability-
Enhanced Microkernel

Implemented in Habit

based on Haskell

Using lambda ...

Using lambda ...

System Interrupt Exception
Calls Handlers Handlers

55

Using lambda ...

System Interrupt Exception
Calls Handlers Handlers

Shared (Kernel) State

56

r(\\
Validate Return with
Parameters ﬁ> error code
Perform
Action :{> Return with
¢ /) success code

asidIdx <- getReg asidCapReg curr
case<- lookupCapAll curr.cspace asidIdx of
Ref asidCap ->
case<- get asidCap.objptr of

range <- getCapdata asidCap
offset <- getReg offsetReg
case offset ‘inRange’ range of
Just asid ->
let slot = asidTable @@ asid
count <- get slot.count
if count==0 then
pdirIdx <- getReg pdirCapReg curr
case<- lookupCapAll curr.cspace pdirIdx curr of
Ref pdirCap ->
case<- get pdirCap.objptr of
PageDirObj [pdir] ->
case<- getCapdata pdirCap of
UnmappedPD[] =>

Parameter
ASIDTableObj[] -> Valida.tion

set slot.pdir (Ref pdir)

set slot.count 1

setCapdata pdcap MappedPD[asid]
success curr

Action

~ —-> mappedErr curr
-> invalidCapabilityErr curr
Null -> invalidCapabilityErr curr
else mappedErr curr
Nothing -> rangeErrorErr curr
~ —> invalidCapabilityErr curr
Null -> invalidCapabilityErr curr

Error

Reporting

58

Imperative Functional Programming

* Traditional sequential control flow

do £ <- openFile "file.txt"
l; <- readLine f
l, <- readLine f£
out (1li1, 12)
closeFile £

* How to deal with errors? multiple results?

* Make functions return error codes (and hope that callers
will check those codes)!?

* Add the ability to throw and catch exceptions?

* Use continuations ...

59

Programming with continuations

* [nstead of

openFile :: String -> Proc FileHandle
higher-order, or ﬂrst—]

* Try:
class functions

String
-> (ErrorCode -> Proc a)
-> (FileHandle -> Proc a)
-> Proc a

openFile

* It’s as if we've given openFile two return addresses: one to
use when an error occurs, and one to use when the call is
successful.

60

Programming with continuations

* Our original program using continuations:

openFile "file.txt"
(\error -> ..)
(\Mf -=> do 1; <- readLine f
l, <- readLine f
out (1li, 1»2)
closeFile f)

e Could we do the same for readLine!?

6l

Programming with continuations

* Our original program using continuations:

openFile "file.txt"
(\error -> ..)
(\f -> readLine f
(\error -> ..)
(\1l1 -> readLine £
(\error -> ..)
(\12 <- do out (1li, 12)
closeFile f)))

* Hmm, not so pretty ...

62

Programming with continuations

* Name the error handlers:

openFile "file.txt"

err;
(\f -> readLine f
err;
(\1l1 -> readLine £

errs
(\12 <- do out (1li, 12)
closeFile f)))

63

Programming with continuations

* Reformat:
openFile "file.txt" err:; (\f ->
readLine £ err, (\l1;. ->
readLine £ errs (\l

do out (1l:, 1)
closeFile f)))

* Looking better ...

64

Programming with continuations

* Add an infix operator: £ $ x = f x

openFile "file.txt" err; $ \f ->
readLine f err, $ \1l; ->
readLine f err; $ \1l, —>
do out (1li, 12)

closeFile £

* Fewer parentheses ...
 Easier to add or remove individual lines ...

e ... still a little cluttered by error handling behavior

65

Programming with continuations

 Continuation-based control flow, integrated error handlers:

openFile "file.txt" $ \f ->
readLine f $ \1, ->
readLine f S \1, ->
do out (1li, 1)

closeFile £

* Not always applicable ...

e ... but a good choice for HaL4 where the response to a
particular type of invalid parameter is always the same
(typically, returning an error code to the caller)

* ... and this also encourages consistent APl behavior

66

“Validators”

The implementation of prototype Hal4 includes a small library

of validator functions:

getCurrent :: KR k => (TCBRef -> k a) -> k a

o
Il
\%

#r -> TCBRef
-> (CapRef -> k a)

getRegCap :: KE

emptyCapability :: KE k => TCBRef -> CapRef -> k a
cdtLeaf :: KE k => TCBRef -> CapRef -> k a
notMaxDepth :: KE k => TCBRef -> CapRef -> k a
untypedCapability :: KE k => TCBRef -> CapRef

-> (UntypedRef -> k a)
pageDirCapability :: KE k => TCBRef -> CapRef

-> (PageDirRef -> PDMapData -> k a)

pageTableCapability :: KE k => TCBRef -> CapRef
-> (PageTableRef -> MapData -> k a)

->

->

A~ A A~

67

“Validators”

* In effect, we have built an embedded domain specific language,

just for validating parameters in Hal 4
* Benefits include:
* Ease of reuse
* Consistency
* Clarity

* Ability to pass multiple results on to continuation

68

syscallMapPageDir (KE k, KW k) => k a

syscallMapPageDir

= [getCurrent S \curr ->
getMapPageDirASIDTab curr S \asidcap ->
asidTableCapability curr asidcap |[|$ \range ->
getMapPageDirOffset curr S \offset ->
asidInRange curr offset range $ \asid ->
asidNotUsed curr asid . S \slot ->

~ Validators

getMapPageDirPDir curr $ \pdcap ->
pageDirCapability curr pdcap $ \pdir pdmd ->
unmappedPD curr pdmd S

do set slot.pdir
set slot.count 1

setCapdata pdcap MappedPD[asid]

Success Ccurr

(Ref pdir)

Action

69

SYS
SYS

callMapPageDir
callMapPageDir
getCurrent

getMapPageDirASIDTab

(KE k, KW k)

=>

curr

asidTableCapability curr asidcap

getMapPageDirOffset curr
asidInRange curr offset range
asidNotUsed curr asid

getMapPageDirPDir curr
pageDirCapability curr pdcap

unmappedPD curr pdmd

do set slot.pdir
set slot.count 1

setCapdata pdcap MappedPD[asid]

Success curr

(Ref pdir)

k

Uy U Ur U

Ur U

a
\curr ->
\asidcap ->
\range ->
\offset ->
\asid ->
\slot ->
\pdcap ->
\pdir pdmd ->

"clear" and

"concise"

70

syscallMapPageDir :: (KE k, KW k) => k a

syscallMapPageDir

= [getCurrent $ \curr ->
getMapPageDirASIDTab curr $ \asidcap ->
asidTableCapability curr asidcap |$ \range ->
getMapPageDirOffset curr $ \offset ->
asidInRange curr offset range $ \asid ->
asidNotUsed curr asid S \slot ->
getMapPageDirPDir curr $ \pdcap ->
pageDirCapability curr pdcap $ \pdir pdmd ->
unmappedPD curr pdmd S

do set slot.pdir (Ref pdir)
set slot.count 1

setCapdata pdcap MappedPD[asid] I‘eusab|e
success curr

71

syscallMapPageDir :: (KE k, KW k) => k a

syscallMapPageDir

= getCurrent S \curr ->
getMapPageDirASIDTab curr S \asidcap ->
asidTableCapability curr asidcap [$ \range ->
getMapPageDirOffset curr S \offset ->
asidInRange curr offset range $ \asid ->
asidNotUsed curr asid $ \slot ->
getMapPageDirPDir curr $ \pdcap ->
pageDirCapability curr pdcap $ \pdir pdmd ->
unmappedPD curr pdmd S

do set slot.pdir (Ref pdir)

set slot.count 1 Performance
setCapdata pdcap MappedPD[asid])
success curr concerns?

72

The MapPage System Call

CTER R EDTED DD @
OO ® @

73

@

LoD ©® ®©
®
)

2
]
=]
©
&
&
e
=
5
£

74

Prioset

prioSet = \i prio -> do writeRef (at prioset i) prio
writeRef (at prioidx prio) i

insertPriority = \prio -> do s <- readRef priosetSize
writeRef priosetSize (add s 1)
heapRepairUp (modIx s) prio

heapRepairUp = \i prio ->
case dec i of
Nothing -> prioSet 0 prio
Just j -> do parent <- ret (shiftR j 1)
pprio <- readRef (at prioset parent)
if 1t pprio prio then
prioset i pprio
heapRepairUp parent prio
else
prioSet i prio

removePriority = \prio ->
do s <- readRef priosetSize

writeRef priosetSize (sub s 1)

rprio <- readRef (at prioset (modIx (sub s 1)))

if neq prio rprio then
i <- readRef (at prioidx prio)
heapRepairDown i rprio (modIx (sub s 2))
nprio <- readRef (at prioset i)
heapRepairUp i nprio

heapRepairDown = \i prio last ->
do let u = unsigned i // <- ret (unsigned i)

prioset i lprio
prioSet 1 prio
else
prioSet i prio

Just r > // i has two children

do rprio <- readRef (at prioset r)
if gt prio lprio && gt prio rprio then
prioSet i prio

else if gt lprio rprio then
prioSet i lprio // left is higher
heapRepairDown 1 prio last

else

prioSet i rprio // right is higher
heapRepairDown r prio last

G
& o
=]

B\

/

()

©;
0‘»
Beié\@ 66066

&

e

oo 0o-§-o-4-0--)

% z\:f:'(&:?\ 9%

OOTID Ut

oS | & ® &S

case leq (add (mul 2 u) 1) last of // Look for a left child ©S @ ® @
Nothing -> prioSet i prio // i has no children ® o ® &
Just 1 -> // i has a left child

do lprio <- readRef (at prioset 1) ® @ ©

case leq (add (mul 2 u) 2) last of // Look for a right child| @@ @&
Nothing -> // i has no right child
if gt lprio prio then XS

\g-6-0-0-0-0

75

Prioset

prioSet = \i prio -> do writeRef (at prioset i) prio
writeRef (at prioidx prio) i

insertPriority = \prio -> do s <- readRef priosetSize
writeRef priosetSize (add s 1)
heapRepairUp (modIx s) prio

heapRepairUp = \i prio ->
case dec i of
Nothing -> prioSet 0 prio
Just j -> do parent <- ret (shiftR j 1)
pprio <- readRef (at prioset parent)
if 1t pprio prio then
prioset i pprio
heapRepairUp parent prio
else
prioSet i prio

removePriority = \prio ->
do s <- readRef priosetSize

writeRef priosetSize (sub s 1)

rprio <- readRef (at prioset (modIx (sub s 1)))

if neq prio rprio then
i <- readRef (at prioidx prio)
heapRepairDown i rprio (modIx (sub s 2))
nprio <- readRef (at prioset i)
heapRepairUp i nprio

heapRepairDown = \i prio last ->
do let u = unsigned i // <- ret (unsigned i)

case leq (add (mul 2 u) 1) last of // Look for a left child
Nothing -> prioSet i prio // i has no children
Just 1 -> // i has a left child
do lprio <- readRef (at prioset 1)
case leq (add (mul 2 u) 2) last of // Look for a right child
Nothing -> // i has no right child

if gt lprio prio then
prioset i lprio
prioSet 1 prio
else
prioSet i prio

Just r > // i has two children

do rprio <- readRef (at prioset r)
if gt prio lprio && gt prio rprio then
prioSet i prio

else if gt lprio rprio then
prioSet i lprio // left is higher
heapRepairDown 1 prio last

else

prioSet i rprio // right is higher
heapRepairDown r prio last

(1217 rewrite
steps later)

76

Wrapping Up ...

77

Current status

* For the three main questions for CEMLaBS:
* Feasibility: Still chipping away ... but getting closer!

» Benefit: Good evidence that we will benefit from the use
of functional language features

+Types
+Higher-order functions

* Performance: acceptable performance may be within
reach

+We can generate good quality code, even when lambdas
are used in fundamental ways

+Some code duplication (but, so far, this is entirely tolerable
for our specific use case ...)

78

Acknowledgement (likely incomplete!)

Numerous people at PSU (and beyond) have contributed
to the design and implementation of Habit, including:

* Michael Adams * Kenneth Graunke ¢ John Matthews

* Aaron Altman * Thomas Hallgren <+ Andrew

* Justin Bailey Tom Harke McCreight

e Tim Chevalier « Caylee Hogg * Garrett Morris

e Lewis Coates * Jim Hook * Ryan Niebur

* Ted Cooper e Brian Huffman * Andrew

* Dan Cristofani * Mark Jones Sackville-VVest

 lavor Diatchki + Dick Kieburtz ~ * Andrew Tolmach

« Thomas - Rebekah Leslie- * Peter White
DuBuisson Hurd ...

79

Some Words about the Habit
Implementation

80

The Habit Compiler

I:|'> Front end i::> Back end i::>

The Habit Compiler

I:|'> Front end i::> Back end i::>

Optimizer

Why MIL?

* If we want a good optimizer, we need to work in a language
that exposes key implementation details/sources of overhead
* Constructing a closure: k{x1, .., Xa}
* code pointer: k
e stored fields: x1, .., Xa
* Entering a closure: If £ is a closure, then we write £ @ x for
the result of entering £ with argument x
* Defining a closure: k{xi, .., X2} a = t

* The code in t describes the result that is produced when
you enter the closure with argument a

83

From Functional Source Code ...

id = \Xx -> X
compose = \f g x -> f (g Xx)
map = \f xs ->
case xs of
Nil -> Nil

Cons y ys -> Cons (f y) (map f ys)

84

... to MIL Programs

compose < ki{}

]td Koty Ki{} £ = ko{f}
ol x = Dbol[x] ko{ £ = ks{f
bo[x] = return x 2{t} g 3{t, 9}
k3{f,g} x = bi[f,qg,x]

map “— ka{} bi[f,g,x] = y ¢« g @ x
ka{} £ = ks{f} tey
ks{f} xs = by[f,xs]
b[f,x8] = case xs of

Nil()— bs[]

Cons(y,ys)—> ba[f,y,ys]
bs[] = Nil()
ba[£,V,VS] =z + fQy Intuition: arguments are like

registers that have been
m ¢ ma f .

p @ loaded with values on entry
zs <~ m @ ys to a basic block of code

Cons(z,zs)

... to Optimized MIL Programs

map < ka{}

ke{} £ = ks{f}

ks{f} xs = by[f,xs]
b[£,xs] = case xs of

Nil()— Dbs[]
Cons(y,ys)— ba[f,y,ys]
Ez{é,y,ys] ; I:l}_()f Ry /(unknown function call]
m < map @ f
ZzZs ¢« m @ ys
Cons(z,zs)

ﬁ known function call]

... to Optimized MIL Programs

map < ka{}

ka{} £ = ks{f}

ks{f} xs = by[f,xs]
b[£,xs] = case xs of

Nil()— bs[]
Cons(y,ys)— ba[f,y,ys]
b3[] = Nil()
bs[£,y,ys] =z < f @y
m < map @ £
zs &« m @ ys
Cons(z,zs)

ﬁ known function call]

87

... to Optimized MIL Programs

map “ ka{}
ke{} £ = ks{f}

ks{f} xs = by[f,xs]
b[£,xs] = case xs of

Nil()— bs[]
Cons(y,ys)— bua[f,y,yS]

bs[] = Nil()
b4[fIYIYS] = z « f @ Yy
m « ks{f}

zs &< m @ ys
Cons(z,zs)

ﬁ known function call]

88

... to Optimized MIL Programs

map — ks{}

keo{} £ = ks{f}

ks{f} xs = by[f,xs]
b[£,xs] = case xs of

Nil()— bs[]
Cons(y,ys)— bu[f,y,yS]

bs[] = Nil()
b4[fIYIYS] = z « f @ Yy
m « ks{f}

zs &< m @ ys
Cons(z,zs)

ﬁ known function call]

89

... to Optimized MIL Programs

map — ks{}

ka{} £ = ks{f}

ks{f} xs = ba[f,xs]
b[£,xs] = case xs of

Nil()— bs[]
Cons(y,ys)— bua[f,y,yS]
bs[] = Nil()

bis(f,y,ys] =z < f @y
' m — ks{f} Z(pure, dead code]

zs « bo[f,ys]
Cons(z,zs)

90

... to Optimized MIL Programs

map < ka{}

ke{} £ = ks{f}
ks{f} xs = by[f,xs]
b[£,xs] = case xs of

Nil()— Dbs[]
Cons(y,ys)— b4[fIYIyS]
bs[] = Nil()
bs[f,y,ys] = 2z « f @y
zs « by[f,ys]
Cons(z,zs)

91

MIL Optimization

* Basic strategy:
* many small rewrites

e combined in large numbers
* Sources of rewrites:

* algebraic laws

* simple data flow

* specialization and derived blocks

92

