
Mark P Jones 
Portland State University

Languages & Low-Level Programming

CS 410/510

Week 8: seL4 - capabilities in practice

Fall 2018

�1

Copyright Notice
• These slides are distributed under the Creative Commons

Attribution 3.0 License

• You are free:

• to share—to copy, distribute and transmit the work

• to remix—to adapt the work

• under the following conditions:

• Attribution: You must attribute the work (but not in any way that
suggests that the author endorses you or your use of the work) as
follows: “Courtesy of Mark P. Jones, Portland State University”

 
The complete license text can be found at  
http://creativecommons.org/licenses/by/3.0/legalcode

 2

Primary focus
• Review main features of the seL4 microkernel

• With some implementation hints: not exactly what you’ll
find in the seL4 source code … but representative

• Based on publicly distributed descriptions:

• seL4 documentation and code from http://sel4.systems

• Gernot Heiser's presentation on an "Introduction to seL4" 
[http://www.cse.unsw.edu.au/~cs9242/14/lectures/01-intro.pdf]

• Dhamika Elkaduwe’s PhD dissertation on "A Principled
Approach to Kernel Memory Management" 
[https://ts.data61.csiro.au/publications/papers/Elkaduwe:phd.pdf]

 3

• A microkernel that uses capabilities throughout for access
control and resource management

• latest versions even use capabilities to manage allocation
of CPU time and scheduling

• seL4 was designed with formal verification in mind, and
intended to serve as a foundation for building secure systems

• Runs on ARM and IA32 platforms, among others; only the
ARM version is formally verified at this time

• In practice, managing lots of capabilities by hand is painful:

• seL4 programmers can take advantage of user-level
libraries that simplify the task of working with capabilities

seL4 from 30,000 feet

 4

• Types of kernel objects include:

• Untyped memory

• TCB objects for representing threads

• Endpoint and Notification objects for IPC

• Memory objects (PageDirectory, PageTable, Frame) for
building address spaces

• CNode objects for building capability spaces

• and more ...

• Capabilities are used to manage user-level access to all of
these different types of object

Kernel objects in seL4

 5

• Conceptually, seL4 has an "object-oriented" API with just
three system calls:

• Send a message to an object (via a capability)

• Wait for a message from an object (via a capability)

• Yield (does not require an object/capability)

• For example:

• send a message to an Endpoint object to communicate
with another thread

• send a message to a TCB object to configure the thread

• In practice, there are other variants of Send/Wait to support
combined send and receive, RPC, and other patterns

System calls in seL4

 6

Threads

 7

• Threads are represented in the kernel by TCB objects

• Each TCB contains:

• A context (stores CPU register values for the thread)

• A pointer to the virtual address space (page directory)

• A pointer to the capability space (cspace)

• Scheduling parameters (priority, timeslice, etc.)

• A pointer to the IPC buffer (MRs) for the thread

• A capability to a fault handler endpoint for the thread

• ..

• Unlike L4: no a priori limit on the number of threads in an
address space, no global thread ids, ...

Thread Control Blocks (TCBs) in seL4

 8

• Allocate TCBs (from untyped memory)

• Configure a TCB

• set registers, vspace, cspace, fault handler, priority, etc...

• [If two threads run in the same address space, they
should be configured to use different locations in
memory for data areas, stacks, etc.]

• Resume/pause a thread

• resume will add the thread to the run queue

• pause will remove the thread from the run queue

Operations involving TCBs

 9

• The run queue data structure is an array of circular linked
lists of TCBs for runnable threads, one for each priority:

• Every TCB includes space for the two pointers that are used
to store it in the run queue (no extra storage is required)

• At a context switch, the scheduler:
• moves the current thread to the back of its list
• switches to the first thread in the highest priority non-

empty list

The run queue

 10

area idleTCB :: TCBRef -- TODO: how to set appropriate context?

9.2 Runqueues and Waitqueues

The next and prev fields in each TCB object are used to organize thread control blocks into doubly-linked
lists or queues; the doubly-linked structure allow us to insert or remove elements in O(1) time. These queue
structures are used in two different ways in HAL4:

• Runqueues: All Runnable threads with a given priority are linked together into a (circular) queue. This
data structure makes it very easy and efficient for a round-robin scheduler to iterate through each of
the threads at the highest-priority level. There is one queue for each priority level, and the kernel
maintains an array called runqueue that holds a pointer to the first TCB in each case.

area runqueue <- nullInit :: Ref (Array NumPrio (Stored TCBPtr))

The nullInit initializer here ensures that each runqueue entry is empty when the kernel begins.
The diagram in Figure 18, for example, illustrates a possible configuration with five runnable threads:
A, B, and C all have priority p; and D and E, which share the higher priority, q.

runqueue

0

· · ·
p

· · ·
q

· · ·
255

A

B

C

these TCBs have
status Runnable

D

E

Figure 18: Queue structures for runnable threads.

The runqueue data structures are used to support round-robin scheduling of threads, cycling through
the threads in the highest priority runqueue and giving each thread a timeslice to execute before ad-
vancing to the next entry in the queue. Because each runqueue is implemented as a circular list, this
last step just requires a single pointer update:

advanceRunqueue :: RW k => Priority -> k ()
advanceRunqueue prio = case<- get (runqueue @@ prio) of

Ref head -> next <- get head.next
set (runqueue @@ prio) (Ref next)

Null -> ignore -- TODO: should not occur/be needed

• Waitqueues: Every thread has the potential to communicate with other threads by sending and receiv-
ing IPC messages. Rather than connecting a single sender and single receiver directly, HAL4 requires
threads to communicate via endpoint objects (including both synchronous and aynchronous varieties,
as we will describe in Sections 10 and 11, respectively). This provides design flexibility for user-level

64

IPC and Endpoints

 11

• How can interprocess communication (IPC) be controlled
and protected using capabilities?

• One option would be to use capabilities to TCB objects

• These are useful for other purposes anyway (e.g.,
reading/modifying thread status, starting, suspending, …)

• Could use send / receive permissions on TCB capabilities
to determine which IPC actions are allowed

• But this is also inflexible:

• Single thread to single thread communication is limiting

• Lacks fine-grained control: if you can contact a thread for
one purpose, you can contact it for any purpose

How to support capability-based IPC?

 12

receiversender
message

• Interprocess communication (IPC) in seL4 passes messages
between threads using (capabilities to) an endpoint object:

• Allows flexible communication patterns

• multiple senders and/or receivers on a single endpoint

• multiple endpoints between communication partners

• Messages are transferred synchronously when both sender
and receiver are ready ("rendez-vous")

• Multiple senders or receivers can be queued at each endpoint

IPC via endpoints

 13

receiver1

receiver2

receiver3

endpoint1

sender1

sender2 endpoint2

• Each thread can have a region of memory in its address space
that is designated as its “IPC buffer”

• The IPC buffer holds “Message Registers” (MRs)

• Each thread can read or write values directly in its IPC buffer

• Each MR holds a single 32 bit word

• Some of the slots in the IPC buffer are reserved for sending
or receiving capabilities via IPC

IPC messages

 14

MR0 MR1 MR2 MR3 MR4 MR5 MR6 …

message tag

• Sending thread writes message into its IPC buffer and invokes
a Send system call using a capability to an endpoint

• Receiving thread invokes a Wait system call using a capability
to the same endpoint

• When both parties are ready, the kernel copies the message
from the sender’s MRs to the receiver’s MRs

• A small number of MRs are passed in CPU registers, which is
fast and avoids the need for an IPC buffer

Typical IPC process

 15

Endpoints are thread queues
• An endpoint just provides a place to collect a queue of

threads that are all waiting either to send or to receive

• No thread can be both runnable and blocked (waiting to send
or receive a message), so one pair of TCB pointers suffices

• An endpoint doesn’t require all 16 bytes of storage: that’s just
the smallest size allowed for any kernel object

 16

set tcb.timeleft (timeleft + timeslice)
else if quantleft > timeslice then -- Take from quantum.

set tcb.timeleft (timeleft + timeslice)
set tcb.quantleft (quantleft - timeslice)

else -- Enter final timeslice.
set tcb.timeleft (timeleft + quantleft)
set tcb.quantleft (not 0) -- TODO: support prefix notation for unary minus?

(Note that we set the value of quantleft to not 0 once the quantum has been exhausted, and check for this
as a special case on the next refill call; this allows the thread to have its final timeslice, instead of being
expired immediately.)

10 Endpoints for Synchronous IPC (EPs)

The kernel uses endpoint objects (abbreviated as EPs) to support synchronous communication between
threads.

ep
- - -

waitqueue sending=1EPStatus word

A

B

C

these TCBs have status
EPSend[ep|...] and
hold a sender badge

ep’
- - -

waitqueue sending=0EPStatus word

A’

B’

C’

these TCBs have
status EPWait[ep’]

Figure 20: Queue structures for threads waiting to send (on the left) or receive (on the right) via an EP. The
shading in these diagrams indicates that we are zooming in to show the contents of the relevant status word
in more detail.

10.1 EP Data Structures

Every EP structure takes 16 bytes (4 words) of memory and should be 16-byte aligned:

type EPPtr = KPtr EP -- Pointer to an endpoint
type EPRef = KRef EP -- Reference to an endpoint

The layout of each EP is described by the following structure. In fact, only one word of storage is used to
store data, but the structure is padded with an additional three words so that it meets the minimum size
requirements for a kernel object:

74

• Practical systems often use a client-server architecture in
which one "server" thread performs work for many "clients"

• What if the client needs a reply? How will the server know
where to send it?

• The client could send a capability to a "reply" endpoint as
part of its request. But this makes extra work for the client,
and could be abused by a malicious (or buggy) server.

Client-server communication

 17

serverendpoint1

client1

client2

rep1

rep2

• seL4 tackles this problem by introducing a special "Reply"
capability type:

• The Call system call combines a Send and a Wait
• The kernel gives a new "reply capability" to the receiver

• The receiver can move but not copy the reply capability

• The receiver can send a message to the reply capability

• The reply capability is deleted after its first (hence only) use

rep1

Reply capabilities

 18

serverendpoint1

client1

client2

• seL4 also supports (limited) asynchronous/non-blocking IPC
via "notification objects" (aka "Asynchronous Endpoints/AEPs)

• How is this possible without an unbounded buffer to store all
messages that have been sent but not yet received?

• Each notification object holds a single data word

• When you Send to a notification object:
• you provide a single word of data that is ORed with

the data in the notification
• the sender can resume immediately

• A receiver can:
• Poll a notification to read the current data word
• Wait on a notification, reading and clearing the data

word when data becomes available

Asynchronous (non-blocking) IPC

 19

• A notification object (asynchronous endpoint) provides a
place to collect a queue of threads that are waiting to receive

• No blocking on threads that send: the endpoint just collects
the badge (b) and value (v) bits of any sender until a receiver
collects them

Notifications (asynchronous endpoints)

 20

aep
b v -

1
AEPStatus word:

(ReadyAEP)

aep’
- - -

waitqueue 0
AEPStatus word

(WaitingAEP)

A’

B’

C’

these TCBs have
status AEPWait[aep’]

Figure 21: Queue structures (on the right) for threads waiting to receive a message via an AEP; messages
that arrive without a waiting receiver are handled asynchronously, capturing the badge and value fields (b
and v, respectively) in the AEP, and avoiding the need to queue pending AEP sends (on the left). As before,
the shading in these diagrams indicates that we are zooming in to show the contents of the relevant status
word in more detail.

struct AEP /16
[status <- initStored ReadyAEP[] :: Stored AEPStatus
| badge <- 0 :: Stored Unsigned
| value <- 0 :: Stored Unsigned
| Pad 1 (Stored Unsigned)]

At any given point, an AEP will either contain data—in the form of a message word and a badge—that is
ready to be delivered to the first thread that requests it, or else it will contain a queue of zero or more threads
that are waiting for data to arrive. We capture these two choices with the following bitdata definition:

bitdata AEPStatus /WordSize
= ReadyAEP [1]
| WaitingAEP [waitqueue :: TCBPtr | 0]

We refer to an AEP that is inactive (contains no data) and has no waiting receivers as being idle:

idleAEPStatus :: AEPStatus
idleAEPStatus = WaitingAEP [waitqueue = Null]

... insert code to provide initialization for AEPStatus and AEP ...

{-
instance Initable AEP where

initialize = AEP [] -- TODO: necessary, given inits above?
-}

{-

78

Handling hardware interrupts in seL4

 21

IRQControl

IRQHandler AEP

TCB

1. request a handler for
the interrupt number used
by the device in question

2. specify a
notification
object/AEP to
associate with the
interrupt

3. configure an
interrupt handler
thread to wait for
notifications

4. when an
interrupt occurs,
the kernel sets
the relevant bit
in the AEP

5. the handler thread responds as 
necessary and then signals IRQHandler to re-enable interrupt

Data Representation

 22

Kernel objects
The kernel deals with a range of different kernel objects:

• Platform independent:
• Untyped memory, TCBs, Endpoints (synchronous and

asynchronous), CNodes, …

• Architecture specific:
• Page table, Page directory, Page, Superpage
• IOPort range
• ASID (address space identifier) table
• IRQ Handler and Control objects
• …

 23

Kernel object size and alignment
• Every kernel object takes 2s bytes for some s

• All kernel objects must be size aligned:

• If the kernel object has size 2s, then its address must be
some number of the form 2sn

• So every kernel address has a bit-level representation/layout
of the form:

• In practice, we can use the least significant bits to store
additional information:

 24

type in Section 6.1.1. Specifically, to make testing for CNode objects as fast as possible, the representation for
the CNodeObj constructor requires only a 1 as the least significant bit (all other constructors use 0 in their least
significant bit). An additional 5 bits are required to store the value for the parameter n, which determines
the total size, 2(4+n) bytes, for the full CNode. As shown in the following diagram, this leaves a maximum of
26 bits for pointing to the start of the underlying array of Caps.

objptr

pointer to object

objptr 0 0 0 0 0 0

pointer to object s

objptr

pointer to object tag bits

objptr 1

pointer to array log size of array

This requires a minimum alignment, and thus a minimum object size, of 2(32�26)=64 bytes. At first glance,
this encoding appears to require a dependent type: the type of the pointer depends on the value of the size
field. Because there are only a limited number of cases to consider, however, we could define a CNodeRef
type—corresponding to the top 31 bits in the objptr layout pictured above—using a bitdata type of the
following form:

bitdata CNodeRef = CNodeRef2 [ptr :: KRef (Array 4 Cap) | 0 | B00010] -- DISPLAY
| CNodeRef3 [ptr :: KRef (Array 8 Cap) | 0 | B00011]
| CNodeRef4 [ptr :: KRef (Array 16 Cap) | 0 | B00100]
| CNodeRef5 [ptr :: KRef (Array 32 Cap) | 0 | B00101]
| ... and so on ...
| CNodeRef28 [ptr :: KRef (Array (2^28) Cap) | B11100]

However, even with the modest convenience of allowing the compiler to infer appropriate types for each
of the 0 fields shown here, working with this definition—with 27 different cases—would be very awkward
in practice. There are two specific places in the HAL4 implementation where we will need to work with
CNodeRef values. One of these is in the code for capability lookup (see Section 7.4), where performance
is critical; indeed, for this reason, the corresponding functionality in seL4 is implemented in assembly
language. The other is in the implementation of retyping (see Section ??), which requires the use of an
inherently unsafe primitive that is again implemented as a primitive in C, assembly, or some other external
language. For this reason, we will not attempt to give a full implementation for the CNodeRef type here,
choosing instead to introduce it as an abstract bitdata type with equality:

primitive type CNodeRef :: * -- Combining an array pointer and length information
instance BitSize CNodeRef = WordSize - 1 -- in a 31-bit value

49

type in Section 6.1.1. Specifically, to make testing for CNode objects as fast as possible, the representation for
the CNodeObj constructor requires only a 1 as the least significant bit (all other constructors use 0 in their least
significant bit). An additional 5 bits are required to store the value for the parameter n, which determines
the total size, 2(4+n) bytes, for the full CNode. As shown in the following diagram, this leaves a maximum of
26 bits for pointing to the start of the underlying array of Caps.

objptr

pointer to object

objptr 0 0 0 0 0 0

pointer to object s

objptr

pointer to object tag bits

objptr 1

pointer to array log size of array

This requires a minimum alignment, and thus a minimum object size, of 2(32�26)=64 bytes. At first glance,
this encoding appears to require a dependent type: the type of the pointer depends on the value of the size
field. Because there are only a limited number of cases to consider, however, we could define a CNodeRef
type—corresponding to the top 31 bits in the objptr layout pictured above—using a bitdata type of the
following form:

bitdata CNodeRef = CNodeRef2 [ptr :: KRef (Array 4 Cap) | 0 | B00010] -- DISPLAY
| CNodeRef3 [ptr :: KRef (Array 8 Cap) | 0 | B00011]
| CNodeRef4 [ptr :: KRef (Array 16 Cap) | 0 | B00100]
| CNodeRef5 [ptr :: KRef (Array 32 Cap) | 0 | B00101]
| ... and so on ...
| CNodeRef28 [ptr :: KRef (Array (2^28) Cap) | B11100]

However, even with the modest convenience of allowing the compiler to infer appropriate types for each
of the 0 fields shown here, working with this definition—with 27 different cases—would be very awkward
in practice. There are two specific places in the HAL4 implementation where we will need to work with
CNodeRef values. One of these is in the code for capability lookup (see Section 7.4), where performance
is critical; indeed, for this reason, the corresponding functionality in seL4 is implemented in assembly
language. The other is in the implementation of retyping (see Section ??), which requires the use of an
inherently unsafe primitive that is again implemented as a primitive in C, assembly, or some other external
language. For this reason, we will not attempt to give a full implementation for the CNodeRef type here,
choosing instead to introduce it as an abstract bitdata type with equality:

primitive type CNodeRef :: * -- Combining an array pointer and length information
instance BitSize CNodeRef = WordSize - 1 -- in a 31-bit value

49

Kernel object pointers
• The entries in each cspace table are object pointers

• We can use the low order bits to encode the type of the
object that is pointed to by the high order bits

• An empty slot can be represented by a null pointer

• Different objects have different sizes; these can be integrated
by using carefully designed bit-level encodings. Examples:

 25

type in Section 6.1.1. Specifically, to make testing for CNode objects as fast as possible, the representation for
the CNodeObj constructor requires only a 1 as the least significant bit (all other constructors use 0 in their least
significant bit). An additional 5 bits are required to store the value for the parameter n, which determines
the total size, 2(4+n) bytes, for the full CNode. As shown in the following diagram, this leaves a maximum of
26 bits for pointing to the start of the underlying array of Caps.

objptr

pointer to object

objptr 0 0 0 0 0 0

pointer to object s

objptr

pointer to object tag bits

objptr 0

pointer to object tag bits

objptr 1

pointer to object tag bits

objptr 1

pointer to array log size of array

This requires a minimum alignment, and thus a minimum object size, of 2(32�26)=64 bytes. At first glance,
this encoding appears to require a dependent type: the type of the pointer depends on the value of the size
field. Because there are only a limited number of cases to consider, however, we could define a CNodeRef
type—corresponding to the top 31 bits in the objptr layout pictured above—using a bitdata type of the
following form:

bitdata CNodeRef = CNodeRef2 [ptr :: KRef (Array 4 Cap) | 0 | B00010] -- DISPLAY
| CNodeRef3 [ptr :: KRef (Array 8 Cap) | 0 | B00011]
| CNodeRef4 [ptr :: KRef (Array 16 Cap) | 0 | B00100]
| CNodeRef5 [ptr :: KRef (Array 32 Cap) | 0 | B00101]
| ... and so on ...
| CNodeRef28 [ptr :: KRef (Array (2^28) Cap) | B11100]

However, even with the modest convenience of allowing the compiler to infer appropriate types for each
of the 0 fields shown here, working with this definition—with 27 different cases—would be very awkward
in practice. There are two specific places in the HAL4 implementation where we will need to work with

49

Kernel object sizes

• No variable size objects

• Reserve extra fields in data structures to avoid the need for
“dynamic” allocation

• No room for metadata … where can it be stored?

 26

Object Size
Untyped Memory 2n bytes, n≥2
CNode 16 x 2n bytes, n≥1
Endpoint 16 bytes

IRQ Handler -
Thread Control Block (TCB) 1KB

IA32 4K Frame (page) 4KB

IA32 4M Frame (superpage) 4MB
IA32 Page Directory 4KB

IA32 Page Table 4KB
IA32 ASID Table -

IA32 Port -

Capability Metadata

 27

Storing metadata in capabilities
• The same endpoint may be accessed via multiple capability

entries, with different access permissions

• The obvious place to store the permission settings is in the
individual capability objects

 28

read only

• Untyped memory areas, which represent blocks of (initially unused) memory that can be allocated
and used to provide storage for other kernel objects as the system runs.

5.2 Capabilities

Kernel pointers and references are only used within the kernel and are not exported to user-level. Instead,
every user-level thread has an associated capability space, or cspace, that acts as a table of pointers to kernel
objects. The only way for a system call from a user-level thread to identify the kernel objects that it wants
to work with is by passing numeric codes that are used as indexes to that thread’s cspace. As such, while
it is possible for user-level code to generate arbitrary index values, there is no way for a thread to gain
direct access to a specific kernel object unless there is a pointer to that object in its cspace. In the diagram
in Figure 8, the large shaded block represents the area of memory (or, more precisely, the portion of every
address space) that is reserved for kernel-only access. In particular, all of the kernel objects are allocated
within this region. The diagram shows two cspace tables. Objects A and B are only accessible to threads
using cspace1, while object D is limited to threads using cspace2. Object C, on the other hand, is available in
both cspace1 and cspace2, albeit through different index values in each case. As the figure also illustrates,

kernel memory

cspace1 cspace2

A

B

C D

E

Figure 8: Using capability spaces to control user-level access to kernel objects

the fact that there is no direct link from a thread’s cspace to a particular object, does not necessarily rule out
the possibility for that thread to have some impact on that object. For example, although there is no way
for a thread using cspace2 to reference object B in a system call, it is still possible for there to be some visible
effect on B if operations on D result in actions on E that, in turn, lead to changes in B.

The individual entries in a cspace are referred to as capabilities because the presence of a particular capa-
bility in its cspace gives a thread the ability to access and use a kernel object in ways that might otherwise
not be possible. For this same reason, we will sometimes refer to a thread as being a holder for each of
the capabilities in its associated cspace. Capabilities are themselves kernel objects, although we will only
ever access them as components of enclosing kernel objects (specifically, as components of CNode and TCB
objects; see Sections 7 and ??, respectively). As we will see shortly (Section 6.1), individual capabilities con-
tain more than just a pointer to a kernel object, although the details vary depending on the type of object
that the capability is pointing at. For example, endpoint capabilities include some additional read/write
permission information that determine whether the thread that holds the capability is allowed to receive or
send messages using that endpoint.

30

• Untyped memory areas, which represent blocks of (initially unused) memory that can be allocated
and used to provide storage for other kernel objects as the system runs.

5.2 Capabilities

Kernel pointers and references are only used within the kernel and are not exported to user-level. Instead,
every user-level thread has an associated capability space, or cspace, that acts as a table of pointers to kernel
objects. The only way for a system call from a user-level thread to identify the kernel objects that it wants
to work with is by passing numeric codes that are used as indexes to that thread’s cspace. As such, while
it is possible for user-level code to generate arbitrary index values, there is no way for a thread to gain
direct access to a specific kernel object unless there is a pointer to that object in its cspace. In the diagram
in Figure 8, the large shaded block represents the area of memory (or, more precisely, the portion of every
address space) that is reserved for kernel-only access. In particular, all of the kernel objects are allocated
within this region. The diagram shows two cspace tables. Objects A and B are only accessible to threads
using cspace1, while object D is limited to threads using cspace2. Object C, on the other hand, is available in
both cspace1 and cspace2, albeit through different index values in each case. As the figure also illustrates,

kernel memory

cspace1 cspace2

A

B

C D

E

Figure 8: Using capability spaces to control user-level access to kernel objects

the fact that there is no direct link from a thread’s cspace to a particular object, does not necessarily rule out
the possibility for that thread to have some impact on that object. For example, although there is no way
for a thread using cspace2 to reference object B in a system call, it is still possible for there to be some visible
effect on B if operations on D result in actions on E that, in turn, lead to changes in B.

The individual entries in a cspace are referred to as capabilities because the presence of a particular capa-
bility in its cspace gives a thread the ability to access and use a kernel object in ways that might otherwise
not be possible. For this same reason, we will sometimes refer to a thread as being a holder for each of
the capabilities in its associated cspace. Capabilities are themselves kernel objects, although we will only
ever access them as components of enclosing kernel objects (specifically, as components of CNode and TCB
objects; see Sections 7 and ??, respectively). As we will see shortly (Section 6.1), individual capabilities con-
tain more than just a pointer to a kernel object, although the details vary depending on the type of object
that the capability is pointing at. For example, endpoint capabilities include some additional read/write
permission information that determine whether the thread that holds the capability is allowed to receive or
send messages using that endpoint.

30

ep

write only

receiver cspacesender cspace

cated and propagated around the system. The diagram in Figure 10, shows four additional capabilities—
labeled as o1a, o1b, o1c, and o1d—all of which are essentially just copies of o1 that point to obj1. These
capabilities may differ, however, by having different permissions or other settings, and by being located in
different capability spaces. The HAL4 kernel provides system calls for creating both CDT siblings (like o1a
and o1b) of an original capability o1, as well as CDT children (like o1c and o1d, both of which have o1b as
their parent). The distinction between siblings and children is important because the holder of a capability
has the ability to delete it (that is, to remove the capability from its cspace and from the associated CDT): this
requires the simultaneous deletion of all of the original capability’s children, but not of any of its siblings.

As an example, we can imagine how the holder of o1b might create the two children capabilities o1c and
o1d, placing the first in the cspace of a thread C, and the second in the cspace of a thread D. If obj1 is a
communication endpoint, and if the permissions of o1c and o1d are set to allow write access only, and read
access only, respectively, then this can create a one way communication channel from C to D via the object
obj1. Furthermore, as a result of the way in which the CDT structures have been constructed, the holder
of o1b can tear down this communication channel at any point—and without any interference from either
C or D—simply by deleting the o1b capability (or by revoking o1b, which deletes all of the children but not
the capability itself). Note, on the other hand, that the o1 and o1a capabilities will remain intact—and the
threads that hold those capabilities will continue to have access to obj1—even if o1b and its descendants are
deleted. As the tree structure suggests, this creates a hierarchical approach to resource management that
gives the holder of the original u capability to revoke all of the children in a single system call that then
frees up the original untyped memory area for other use.

For this to work correctly, the kernel must also–in the terminology of Elkaduwe [6]—destroy the underlying
kernel object when the last capability for that object is removed from a CDT. This may require some ad-
ditional finalization steps to ensure that there are no remaining pointers to the object anywhere else in the
kernel’s data structures. For example, if the u capability in Figure 10 is revoked, then all of the other objects
that are pointed to from within the tree must also be deleted. In particular, if obj1 is an endpoint with a
a nonempty queue of waiting threads, then all of those threads will need to be restarted in an appropriate
way, removing their dependence on obj1, once all of the capabilities to obj1 have been removed.

6 Capability Objects

Following the general overview in the previous section, we will now begin a more focussed tour of HAL4
kernel objects with a description of the Cap type—which is used to represent capabilities—and the associ-
ated set of basic operations. We begin with details about the layout of Cap structures, and the encoding
of kernel object pointers using the types ObjPtr (Section 6.1.1) and CapData (Section 6.1.2). We also show
how individual Cap objects can be linked together to form capability derivation trees, or CDTs (Section 6.1.3),
which track the heritage of capabilities as they are moved (Section 6.2.1), copied (Sections 6.2.2 and 6.2.3),
initialized (Section 6.2.4), and revoked (Section ??).

6.1 The Cap Data Structure

The layout of Cap objects is described by the following group of definitions, which also provides the syn-
onyms that we use for pointers and references to capability objects, as well as a default method for initial-
izing a new (i.e., empty) Cap structure:

cap

objptr

capdata

prev lo

next hi

struct Cap /16 -- Capability object
[objptr :: Stored ObjPtr -- Pointer to an object
| capdata :: Stored CapData -- Associated data
| prevlo :: Stored CapLink -- Doubly linked list of

33

Metadata for untyped memory
• In early designs, there was no metadata for untyped memory

• At some point, somebody realized that the metadata could be
used to store a next pointer

• Complication: we cannot have multiple capability objects
pointing to the same untyped memory with different next
pointers

 29

objptr
-

UntypedCap untyped

objptr
next

UntypedCap untyped
allocated

System calls for managing paging structures
• Map a page in to an address space

seL4_IA32_Page_Map(pgcap, pdcap, vaddr, rights, attrs)

• Unmap a page from an address space

seL4_IA32_Page_Unmap(pgcap)

• Map a page table in to an address space

seL4_IA32_PageTable_Map(ptcap, pdcap, vaddr, attrs)

• Unmap a page table from an address space (and zero it out)

seL4_IA32_PageTable_Unmap(ptcap)

• User level code must map a page table into an address space
before it can map a 4KB page

 30

how do we find the
page directory where
this mapping is stored?

ditto

Paging structures

 31

asids

ASIDTableObj

- -

- -

lo hi

lo

a

hiasidTable

pdcap

PageDirObj

Unmapped

- -

- -

KPDEsi

pdir

spcap

SuperPageObj

Unmapped

- -

- -

sp

Figure 16: Capabilities and objects for constructing a simple address space

asids

ASIDTableObj

- -

- -

lo hi

lo

a

hiasidTable

first mapping

pdcap

PageDirObj

MappedPD(a)

- -

- -

KPDEsi

pdir

second mapping

spcap

SuperPageObj

Mapped(i,a)

- -

- -

sp

Figure 17: Updated capabilities and objects with completed mappings

59

Paging structures, with metadata

 32

asids

ASIDTableObj

- -

- -

lo hi

lo

a

hiasidTable

pdcap

PageDirObj

Unmapped

- -

- -

KPDEsi

pdir

spcap

SuperPageObj

Unmapped

- -

- -

sp

Figure 16: Capabilities and objects for constructing a simple address space

asids

ASIDTableObj

- -

- -

lo hi

lo

a

hiasidTable

first mapping

pdcap

PageDirObj

MappedPD(a)

- -

- -

KPDEsi

pdir

second mapping

spcap

SuperPageObj

Mapped(i,a)

- -

- -

sp

Figure 17: Updated capabilities and objects with completed mappings

59

Paging structures, with metadata

 33

asids

ASIDTableObj

- -

- -

lo hi

lo

a

hiasidTable

pdcap

PageDirObj

Unmapped

- -

- -

KPDEsi

pdir

spcap

SuperPageObj

Unmapped

- -

- -

sp

Figure 16: Capabilities and objects for constructing a simple address space

asids

ASIDTableObj

- -

- -

lo hi

lo

a

hiasidTable

first mapping

pdcap

PageDirObj

MappedPD(a)

- -

- -

KPDEsi

pdir

second mapping

spcap

SuperPageObj

Mapped(i,a)

- -

- -

sp

Figure 17: Updated capabilities and objects with completed mappings

59

Suppose we want to associate pdir with address space a, and
then map sp at index i in pdir

asids

ASIDTableObj

- -

- -

lo hi

lo

a

hiasidTable

pdcap

PageDirObj

Unmapped

- -

- -

KPDEsi

pdir

spcap

SuperPageObj

Unmapped

- -

- -

sp

Figure 16: Capabilities and objects for constructing a simple address space

asids

ASIDTableObj

- -

- -

lo hi

lo

a

hiasidTable

first mapping

pdcap

PageDirObj

MappedPD(a)

- -

- -

KPDEsi

pdir

second mapping

spcap

SuperPageObj

Mapped(i,a)

- -

- -

sp

Figure 17: Updated capabilities and objects with completed mappings

59

asids

ASIDTableObj

- -

- -

lo hi

lo

a

hiasidTable

pdcap

PageDirObj

Unmapped

- -

- -

KPDEsi

pdir

spcap

SuperPageObj

Unmapped

- -

- -

sp

Figure 16: Capabilities and objects for constructing a simple address space

asids

ASIDTableObj

- -

- -

lo hi

lo

a

hiasidTable

first mapping

pdcap

PageDirObj

MappedPD(a)

- -

- -

KPDEsi

pdir

second mapping

spcap

SuperPageObj

Mapped(i,a)

- -

- -

sp

Figure 17: Updated capabilities and objects with completed mappings

59

Paging structures

 34

Suppose we want to associate pdir with address space a, and
then map sp at index i in pdir

asids

ASIDTableObj

- -

- -

lo hi

lo

a

hiasidTable

pdcap

PageDirObj

Unmapped

- -

- -

KPDEsi

pdir

spcap

SuperPageObj

Unmapped

- -

- -

sp

Figure 16: Capabilities and objects for constructing a simple address space

asids

ASIDTableObj

- -

- -

lo hi

lo

a

hiasidTable

first mapping

pdcap

PageDirObj

MappedPD(a)

- -

- -

KPDEsi

pdir

second mapping

spcap

SuperPageObj

Mapped(i,a)

- -

- -

sp

Figure 17: Updated capabilities and objects with completed mappings

59

Paging structures

 35

Suppose we want to associate pdir with address space a, and
then map sp at index i in pdir

asids

ASIDTableObj

- -

- -

lo hi

lo

a

hiasidTable

pdcap

PageDirObj

Unmapped

- -

- -

KPDEsi

pdir

spcap

SuperPageObj

Unmapped

- -

- -

sp

Figure 16: Capabilities and objects for constructing a simple address space

asids

ASIDTableObj

- -

- -

lo hi

lo

a

hiasidTable

first mapping

pdcap

PageDirObj

MappedPD(a)

- -

- -

KPDEsi

pdir

second mapping

spcap

SuperPageObj

Mapped(i,a)

- -

- -

sp

Figure 17: Updated capabilities and objects with completed mappings

59

Paging structures

 36

The metadata in spcap can be used to locate the appropriate
page directory if the user subsequently unmaps spcap

asids

ASIDTableObj

- -

- -

lo hi

lo

a

hiasidTable

pdcap

PageDirObj

Unmapped

- -

- -

KPDEsi

pdir

spcap

SuperPageObj

Unmapped

- -

- -

sp

Figure 16: Capabilities and objects for constructing a simple address space

asids

ASIDTableObj

- -

- -

lo hi

lo

a

hiasidTable

first mapping

pdcap

PageDirObj

MappedPD(a)

- -

- -

KPDEsi

pdir

second mapping

spcap

SuperPageObj

Mapped(i,a)

- -

- -

sp

Figure 17: Updated capabilities and objects with completed mappings

59

Paging structures

 37

Multiple copies of spcap are needed to map sp in multiple
places (likely increasing complexity of user level code)

• A single word of metadata goes a long way …

Metadata summary

 38

Object Size Metadata

Untyped Memory 2n bytes, n≥2 "next" pointer
CNode 16 x 2n bytes, n≥1 guard

Endpoint 16 bytes permissions, badge
IRQ Handler - IRQ number

Thread Control Block
(TCB)

1KB permissions
IA32 4K Frame (page) 4KB

ASID and virtual address
for where this object is

mapped, if any

IA32 4M Frame
(superpage)

4MB
IA32 Page Directory 4KB

IA32 Page Table 4KB
IA32 ASID Table - lo and hi range

IA32 Port - port number

Capability Spaces

 39

Capability spaces
• Every thread has a “capability space”, which is a table mapping

capability indexes to kernel objects

• If a thread doesn’t have a capability to an object in its
capability space, then it cannot directly access that object

• (cf. if there is no mapping to a particular physical address in a
thread’s address space, then it cannot access that location)

 40

• Untyped memory areas, which represent blocks of (initially unused) memory that can be allocated
and used to provide storage for other kernel objects as the system runs.

5.2 Capabilities

Kernel pointers and references are only used within the kernel and are not exported to user-level. Instead,
every user-level thread has an associated capability space, or cspace, that acts as a table of pointers to kernel
objects. The only way for a system call from a user-level thread to identify the kernel objects that it wants
to work with is by passing numeric codes that are used as indexes to that thread’s cspace. As such, while
it is possible for user-level code to generate arbitrary index values, there is no way for a thread to gain
direct access to a specific kernel object unless there is a pointer to that object in its cspace. In the diagram
in Figure 8, the large shaded block represents the area of memory (or, more precisely, the portion of every
address space) that is reserved for kernel-only access. In particular, all of the kernel objects are allocated
within this region. The diagram shows two cspace tables. Objects A and B are only accessible to threads
using cspace1, while object D is limited to threads using cspace2. Object C, on the other hand, is available in
both cspace1 and cspace2, albeit through different index values in each case. As the figure also illustrates,

kernel memory

cspace1 cspace2

A

B

C D

E

Figure 8: Using capability spaces to control user-level access to kernel objects

the fact that there is no direct link from a thread’s cspace to a particular object, does not necessarily rule out
the possibility for that thread to have some impact on that object. For example, although there is no way
for a thread using cspace2 to reference object B in a system call, it is still possible for there to be some visible
effect on B if operations on D result in actions on E that, in turn, lead to changes in B.

The individual entries in a cspace are referred to as capabilities because the presence of a particular capa-
bility in its cspace gives a thread the ability to access and use a kernel object in ways that might otherwise
not be possible. For this same reason, we will sometimes refer to a thread as being a holder for each of
the capabilities in its associated cspace. Capabilities are themselves kernel objects, although we will only
ever access them as components of enclosing kernel objects (specifically, as components of CNode and TCB
objects; see Sections 7 and ??, respectively). As we will see shortly (Section 6.1), individual capabilities con-
tain more than just a pointer to a kernel object, although the details vary depending on the type of object
that the capability is pointing at. For example, endpoint capabilities include some additional read/write
permission information that determine whether the thread that holds the capability is allowed to receive or
send messages using that endpoint.

30

 41

4k Page

10 bits 10 bits 12 bits

0x000

0x002

0x3FF

0x000

0x006

0x3FF

0x00806231

0x002 0x006 0x231

Page tables

(Diagram credit: seL4 documentation) 42

0x0000

0x0020

0x3FFF

0x000

0x062

0x3FF

0x00806231

0x0020 0x062 0x31

0x00

0x31

0xFF

14 bits 10 bits 8 bits

“Page tables” for capabilities

(Diagram credit: seL4 documentation)

 43

0x00

0x20

0x40

0x00

0x02

0x20

0x00806231

0x0020 0x062 0x31

0x00

0x31

0xFF

14 bits 10 bits 8 bits

8 bit guard value 0x00 5 bit guard value 0x03 No guard

“Guarded page tables” for capabilities

CNodes

where should we
store the guards?

0x1f

0x3f

(Diagram credit: seL4 documentation)

• An object pointer to a CNode includes the size of the CNode
as part of the pointer representation

• The capdata for a CNode specifies a guard

• (This is not the exact representation used in seL4, but is
sufficient to illustrate the key concepts)

Representing CNodes

 44

The diagram in Figure 8 suggested a simple way of implementing a mapping from CapIdx to CapRef values
by representing individual capability spaces as a simple array of capability objects. We will refer to such
arrays here as capability nodes, or CNode objects.

[TODO: finish intro, explaining multiple sizes (Section 7.1), organization in to tree structures (Section 7.2),
the use of guards (Section 7.3), and capability lookup (Section 7.4).]

7.1 Supporting Multiple CNode Sizes

The decision to represent capability spaces using arrays leads to an obvious question: how big should these
arrays be? In practice, of course, some programs will only require a very small number of capabilities to do
their work, while others—particularly if they are charged with managing details of many other threads—
may need space for much larger collections. One way to accommodate these differences is to allow multiple
different sizes of CNode objects with sizes that are—like all other kernel objects—powers of two. More
specifically, because individual Cap objects take 24=16 bytes each, we will allow CNode objects to range in
size from a minimum of 64 bytes (containing 22=4 individual Caps) to a single CNode that contains 228 Caps.

This upper bound is hypothetical: it will never be achieved in practice because that would require a CNode
that spans the full 4GB address space, leaving no room for any other use of memory! As such, we can
typically expect to work with CNode objects that contain 2n Cap objects (with a total size of 2(4+n) bytes) for
some value of n that is between 2 and 28 and typically much closer to the former than to the latter.

The lower bound, on the other hand, is a consequence of the bit-level encoding that we chose for the ObjPtr
type in Section 6.1.1. Specifically, to make testing for CNode objects as fast as possible, the representation for
the CNodeObj constructor requires only a 1 as the least significant bit (all other constructors use 0 in their least
significant bit). An additional 5 bits are required to store the value for the parameter n, which determines
the total size, 2(4+n) bytes, for the full CNode. As shown in the following diagram, this leaves a maximum of
26 bits for pointing to the start of the underlying array of Caps.

objptr 1

pointer to array log size of array

This requires a minimum alignment, and thus a minimum object size, of 2(32�26)=64 bytes. At first glance,
this encoding appears to require a dependent type: the type of the pointer depends on the value of the size
field. Because there are only a limited number of cases to consider, however, we could define a CNodeRef
type—corresponding to the top 31 bits in the objptr layout pictured above—using a bitdata type of the
following form:

bitdata CNodeRef = CNodeRef2 [ptr :: KRef (Array 4 Cap) | 0 | B00010] -- DISPLAY
| CNodeRef3 [ptr :: KRef (Array 8 Cap) | 0 | B00011]
| CNodeRef4 [ptr :: KRef (Array 16 Cap) | 0 | B00100]
| CNodeRef5 [ptr :: KRef (Array 32 Cap) | 0 | B00101]
| ... and so on ...
| CNodeRef28 [ptr :: KRef (Array (2^28) Cap) | B11100]

However, even with the modest convenience of allowing the compiler to infer appropriate types for each
of the 0 fields shown here, working with this definition—with 27 different cases—would be very awkward
in practice. There are two specific places in the HAL4 implementation where we will need to work with
CNodeRef values. One of these is in the code for capability lookup (see Section 7.4), where performance
is critical; indeed, for this reason, the corresponding functionality in seL4 is implemented in assembly

49

01100

root
3 1 -

-
0

000

cnode1 cap0

11

001

2 1 -
-

0

010

· · ·

· · ·

cap1

-
0

110

obj1

-
-

0

111

-
-

0

00

cnode2
NullObj
-

0

01

cap2

-
0

10

obj2

-
-

0

11

CapIdx values; each . is a one bit wildcard Refers to:
01100 110 The capability, cap1, to object obj1
00001 110 Invalid: prefix does not match the guard in root
01100 001 11 01 The NullObj capability in the 01 slot of cnode2
01100 001 11 10 The capability, cap2, to object obj2
01100 001/8 A capability to cnode2
01100 110/7 Invalid: not enough bits to index into cnode1

Figure 15: Using CNodes to map CapIdx values to CapRef references

To illustrate this, the diagram in Figure 15 shows a simple configuration with a root capability pointing to
a capability space that is described by two CNode objects, labeled here as cnode1 and cnode2. Note that root
and cap0 in this diagram are both CNodeObj capabilities, with an objptr field that includes: a pointer to a
CNode (i.e., an array of Cap objects); a length (3 for root because it points to an array with 23 entries, and 2 for
cap0 because its points to an array with 22 elements); and a 1 in the least significant bit that identifies these
object pointers as a CNodeObjs. The associated table shows how some specific CapIdx values can be used as
references to the capability objects within this cspace (i.e., when a reference to root is passed as the first
argument in a call to lookupCap). Note, in particular, that all valid capabilities in this cspace begin with the
01100 prefix that is stored in root and that accessing any of the items in cnode2 requires not only a two bit
index into the cnode2 array, but also the two bit guard 11 that is specified by cap0.

As before, we need both a bit pattern and a length to represent an arbitrary guard. In this case, however, the
combination of these two values must fit within a single capdata word, which leads us to adopt the follow-
ing representation, instantiated here with the data for the 01100 guard in the root capability of Figure 15:

capdata

guard guard length

0 0 0 0 0 01 1 1 1. .

This type pairs a length (a number between 0 and 27) in the lower 5 bits of the capdata word with the actual
bit vector for the guard in the most significant portion of the remaining 27 bits. Switching to Habit syntax,
this can be defined as follows (repeating the previous definition from Section 6.1.2).

53

 45

General capability addressing
L1 CNode Cap

0x0 (4 bits)

L2 CNode Cap

Cap A

Guard

0x00

0x0F

0x60

0xFF

0x0 (4 bits)

L3 CNode Cap

Cap B

Guard

0x00

0x60

0xFF

Cap C, D, E, F, G

Guard 0 bits
0x00

0x60

0x64

0xFF

Cap Address (hex)

A 0_60_XXXXX, depth 32

B 0_0F_0_60_XX, depth 32

C 0_0F_0_00_60, depth 32

C-G 0_0F_0_00_60, window size 5

L2 CNode 0_0F_XXXXX, depth 12

L3 CNode 0_0F_0_00_XX, depth 24

• General form of capability address uses:
• a 32 bit “root” CPtr to a CNode in the caller’s cspace
• An index, relative to that root
• A depth (number of bits to decode, required for CNode)
• A window size (to specify a range of capabilities)

(Diagram credit: seL4 documentation)

• Efficient capability lookup is important because every system
call (except Yield) requires at least one lookup operation

• Wouldn’t it be nice if the hardware could do this for us?  
(an exercise in appreciating the role of a traditional MMU!)

• Is assembly language required to obtain good performance?

• If so, then representation transparency is also important!

Performance critical?

 46

Derived Capabilities

 47

Derived capabilities
• In some situations, we might want to create derived versions

of a capability with restricted permissions

• Another example: root task creates a new endpoint and then
hands out two copies of that capability to child threads, one
with write permission and one with read permission, to
implement a form of “pipe”

• The resulting structure is called the capability derivation tree
or CDT

 48

preemptively claim all of the available asidTable slots, and so interfere with other programs that are running
at the same time by preventing them from being able to create new address spaces.

In HAL4, of course, the natural way to avoid this kind of problem is to export the asidTable structure to
user programs in a controlled manner by using capabilities, which is precisely the role of the ASIDTableObj
capability type that was introduced in Section 6.1.1. Conceptually, each such capability provides a pointer to
a contiguous range of slots within the asidTable. Because the table is a global data structure, there is actually
no need to store its address inside each capability, but we will use the capdata field to store an ASIDRange
value, as defined by the following type (a reprise of the definition given previously in Section 6.1.2):

bitdata ASIDRange /WordSize -- for ASIDTableObj -- REPEAT
= ASIDRange [0 | lo :: ASID | hi :: ASID]

deriving (ToBits, FromBits)

To use a particular slot within the asidTable, a user program must provide an ASIDTableObj capability that
includes the requested slot, relative to the lo and hi values in the associated ASIDRange. In other words, use
of slot i will only be permitted if lo  (lo + i)  hi. We will also allow the holders of ASIDTableObj
capabilities to create ASIDTableObj children, but only for subranges of the original capability’s range. The
following diagram shows a fragment of a CDT that might have been created by the initial process in a HAL4
system with a capability called asids that provides access to the full asidTable.

asids

ASIDTableObj

- -

- -

0 255

l

ASIDTableObj

- -

- -

0 191

r

ASIDTableObj

- -

- -

64 255

In this diagram, there are also two child capabilities, l and r, each of which spans a distinct subrange of the
full asidTable. For the purposes of this example, we have chosen two subranges that overlap, but of course
it would also be possible, and perhaps more useful, to use disjoint ranges. Note also that a reference to slot
64 via either the asids or l capability would actually map to the same entry in the global asidTable as a
reference to slot 0 via the r capability.

8.2 Address Space Mappings

As described in Section 4.6, once a page directory is in place, we can begin to populate the associated
address space by adding page directory entries for SuperPages or by inserting references to PageTable objects.
These PageTables can then, in turn, be used to host pointers to individual Pages. We refer to the links that are
created in the process of adding items to an address space as mappings, and to processes that remove these
links as unmapping. The set of active mappings can be tracked by storing a value of the following MapData
type within the capdata field of the PageDirObj, PageTableObj, SuperPageObj, and PageObj capabilities. (This

57

preemptively claim all of the available asidTable slots, and so interfere with other programs that are running
at the same time by preventing them from being able to create new address spaces.

In HAL4, of course, the natural way to avoid this kind of problem is to export the asidTable structure to
user programs in a controlled manner by using capabilities, which is precisely the role of the ASIDTableObj
capability type that was introduced in Section 6.1.1. Conceptually, each such capability provides a pointer to
a contiguous range of slots within the asidTable. Because the table is a global data structure, there is actually
no need to store its address inside each capability, but we will use the capdata field to store an ASIDRange
value, as defined by the following type (a reprise of the definition given previously in Section 6.1.2):

bitdata ASIDRange /WordSize -- for ASIDTableObj -- REPEAT
= ASIDRange [0 | lo :: ASID | hi :: ASID]

deriving (ToBits, FromBits)

To use a particular slot within the asidTable, a user program must provide an ASIDTableObj capability that
includes the requested slot, relative to the lo and hi values in the associated ASIDRange. In other words, use
of slot i will only be permitted if lo  (lo + i)  hi. We will also allow the holders of ASIDTableObj
capabilities to create ASIDTableObj children, but only for subranges of the original capability’s range. The
following diagram shows a fragment of a CDT that might have been created by the initial process in a HAL4
system with a capability called asids that provides access to the full asidTable.

asids

ASIDTableObj

- -

- -

0 255

l

ASIDTableObj

- -

- -

0 191

r

ASIDTableObj

- -

- -

64 255

In this diagram, there are also two child capabilities, l and r, each of which spans a distinct subrange of the
full asidTable. For the purposes of this example, we have chosen two subranges that overlap, but of course
it would also be possible, and perhaps more useful, to use disjoint ranges. Note also that a reference to slot
64 via either the asids or l capability would actually map to the same entry in the global asidTable as a
reference to slot 0 via the r capability.

8.2 Address Space Mappings

As described in Section 4.6, once a page directory is in place, we can begin to populate the associated
address space by adding page directory entries for SuperPages or by inserting references to PageTable objects.
These PageTables can then, in turn, be used to host pointers to individual Pages. We refer to the links that are
created in the process of adding items to an address space as mappings, and to processes that remove these
links as unmapping. The set of active mappings can be tracked by storing a value of the following MapData
type within the capdata field of the PageDirObj, PageTableObj, SuperPageObj, and PageObj capabilities. (This

57

Representing the capability derivation tree

 49

root
-
-
- -
- -

a
-
-
- -
- -

b
-
-
- -
- -

c
-
-
- -
- -

d
-
-
- -
- -

e
-
-
- -
- -

f
-
-
- -
- -

root
-
-
- 0
- 0

a
-
-
- 1
- 0

b
-
-
- 1
- 0

c
-
-
- 1
- 0

d
-
-
- 2
- 0

e
-
-
- 2
- 0

f
-
-
- 2
- 0

. . .

. . .

Figure 11: Conceptual view of a CDT (left), and its representation as a doubly linked list (right)

includes insertion, deletion, and linear time traversal over all of the descendants of a given node. Indeed,
this is a well-known technique that has been used previously in other L4 systems, particularly to implement
mapping database structures, which can be seen as a variant—albeit more specific because they are restricted
to describing virtual memory mappings—of the CDTs that we use here.

Depths: As previously, each of the capability objects shown in the figure is drawn as a box that contains
four rows. The first two rows in each of these boxes represent the objptr and capdata fields of the capa-
bilities that we have described previously. The third and fourth rows, however, contain pointers to the
predecessor and successor entries in the list. These last two rows also contain some depth information,
which distinguishes the root node (at depth 0), the children of the root (at depth 1), the grandchildren of
the root (at depth 2), and so on. These depth values are particularly useful as we move along the list: by
comparing the depths of adjacent nodes, we can determine whether we are moving down to a child node,
across to a sibling, or up towards the root.

Capability links: More specifically, the third and fourth components of each capability structure are val-
ues of the following CapLink type:

bitdata CapLink /WordSize -- Link to an adjacent capability object
= CapLink [cap :: CapPtr | val :: Bit 4]

nullCapLink :: CapLink
nullCapLink = CapLink [cap=Null | val=0]

Capability objects are 16 bytes long (and hence 16-byte aligned), so each capability pointer requires 28 bits,
which leaves only enough space for a four bit val field in each CapLink. By combining the two val fields in
each of the CapLinks, however, we can construct an eight bit depth value:

type Depth = Bit 8

depthOf :: CapLink -> CapLink -> Depth

38

• CDT nodes can have arbitrarily many children
• A conventional implementation would require:

• unbounded storage per node
• unbounded recursion (stack) to traverse all children

Representing the capability derivation tree

 50

root
-
-
- -
- -

a
-
-
- -
- -

b
-
-
- -
- -

c
-
-
- -
- -

d
-
-
- -
- -

e
-
-
- -
- -

f
-
-
- -
- -

root
-
-
- 0
- 0

a
-
-
- 1
- 0

b
-
-
- 1
- 0

c
-
-
- 1
- 0

d
-
-
- 2
- 0

e
-
-
- 2
- 0

f
-
-
- 2
- 0

. . .

. . .

Figure 11: Conceptual view of a CDT (left), and its representation as a doubly linked list (right)

includes insertion, deletion, and linear time traversal over all of the descendants of a given node. Indeed,
this is a well-known technique that has been used previously in other L4 systems, particularly to implement
mapping database structures, which can be seen as a variant—albeit more specific because they are restricted
to describing virtual memory mappings—of the CDTs that we use here.

Depths: As previously, each of the capability objects shown in the figure is drawn as a box that contains
four rows. The first two rows in each of these boxes represent the objptr and capdata fields of the capa-
bilities that we have described previously. The third and fourth rows, however, contain pointers to the
predecessor and successor entries in the list. These last two rows also contain some depth information,
which distinguishes the root node (at depth 0), the children of the root (at depth 1), the grandchildren of
the root (at depth 2), and so on. These depth values are particularly useful as we move along the list: by
comparing the depths of adjacent nodes, we can determine whether we are moving down to a child node,
across to a sibling, or up towards the root.

Capability links: More specifically, the third and fourth components of each capability structure are val-
ues of the following CapLink type:

bitdata CapLink /WordSize -- Link to an adjacent capability object
= CapLink [cap :: CapPtr | val :: Bit 4]

nullCapLink :: CapLink
nullCapLink = CapLink [cap=Null | val=0]

Capability objects are 16 bytes long (and hence 16-byte aligned), so each capability pointer requires 28 bits,
which leaves only enough space for a four bit val field in each CapLink. By combining the two val fields in
each of the CapLinks, however, we can construct an eight bit depth value:

type Depth = Bit 8

depthOf :: CapLink -> CapLink -> Depth

38

• A clever implementation represents the tree as a doubly
linked list with “depth” information at each node

• Fixed storage (two pointers + depth) per node
• (Limited) traversal of tree structure without recursion

General form

 51

• Every capability holds:
• a pointer to a kernel object + bits giving the object type
• some metadata
• doubly linked list pointers
• depth information (hi and lo bits)

• Total size: 4 words, 16 bytes
• This is why a CNode with 2n entries requires 16 x 2n bytes

cated and propagated around the system. The diagram in Figure 10, shows four additional capabilities—
labeled as o1a, o1b, o1c, and o1d—all of which are essentially just copies of o1 that point to obj1. These
capabilities may differ, however, by having different permissions or other settings, and by being located in
different capability spaces. The HAL4 kernel provides system calls for creating both CDT siblings (like o1a
and o1b) of an original capability o1, as well as CDT children (like o1c and o1d, both of which have o1b as
their parent). The distinction between siblings and children is important because the holder of a capability
has the ability to delete it (that is, to remove the capability from its cspace and from the associated CDT): this
requires the simultaneous deletion of all of the original capability’s children, but not of any of its siblings.

As an example, we can imagine how the holder of o1b might create the two children capabilities o1c and
o1d, placing the first in the cspace of a thread C, and the second in the cspace of a thread D. If obj1 is a
communication endpoint, and if the permissions of o1c and o1d are set to allow write access only, and read
access only, respectively, then this can create a one way communication channel from C to D via the object
obj1. Furthermore, as a result of the way in which the CDT structures have been constructed, the holder
of o1b can tear down this communication channel at any point—and without any interference from either
C or D—simply by deleting the o1b capability (or by revoking o1b, which deletes all of the children but not
the capability itself). Note, on the other hand, that the o1 and o1a capabilities will remain intact—and the
threads that hold those capabilities will continue to have access to obj1—even if o1b and its descendants are
deleted. As the tree structure suggests, this creates a hierarchical approach to resource management that
gives the holder of the original u capability to revoke all of the children in a single system call that then
frees up the original untyped memory area for other use.

For this to work correctly, the kernel must also–in the terminology of Elkaduwe [6]—destroy the underlying
kernel object when the last capability for that object is removed from a CDT. This may require some ad-
ditional finalization steps to ensure that there are no remaining pointers to the object anywhere else in the
kernel’s data structures. For example, if the u capability in Figure 10 is revoked, then all of the other objects
that are pointed to from within the tree must also be deleted. In particular, if obj1 is an endpoint with a
a nonempty queue of waiting threads, then all of those threads will need to be restarted in an appropriate
way, removing their dependence on obj1, once all of the capabilities to obj1 have been removed.

6 Capability Objects

Following the general overview in the previous section, we will now begin a more focussed tour of HAL4
kernel objects with a description of the Cap type—which is used to represent capabilities—and the associ-
ated set of basic operations. We begin with details about the layout of Cap structures, and the encoding
of kernel object pointers using the types ObjPtr (Section 6.1.1) and CapData (Section 6.1.2). We also show
how individual Cap objects can be linked together to form capability derivation trees, or CDTs (Section 6.1.3),
which track the heritage of capabilities as they are moved (Section 6.2.1), copied (Sections 6.2.2 and 6.2.3),
initialized (Section 6.2.4), and revoked (Section ??).

6.1 The Cap Data Structure

The layout of Cap objects is described by the following group of definitions, which also provides the syn-
onyms that we use for pointers and references to capability objects, as well as a default method for initial-
izing a new (i.e., empty) Cap structure:

cap

objptr

capdata

prev lo

next hi

struct Cap /16 -- Capability object
[objptr :: Stored ObjPtr -- Pointer to an object
| capdata :: Stored CapData -- Associated data
| prevlo :: Stored CapLink -- Doubly linked list of

33

Moving capabilities

 52

instance SetCapLink CapLink where
setCapLink link f dst = setCapLink link.cap f dst

↵
We will see several concrete examples to illustrate the use of setCapLink in the following sections.

6.2 Basic Operations on Capabilities

In this section, we describe some general operations for moving capability values from one slot to another
(Section 6.2.1), for creating a new copy of a capability, either as a sibling (Section 6.2.2) or a child (Sec-
tion 6.2.3), and for initializing multiple (initially empty) capabilities as the children of a capability to an
untyped memory object (Section 6.2.4). This last operation, in particular, will play a central role in the
implementation of retyping that was described in Section 5.4.

6.2.1 Moving Capabilities

As a simple example of manipulating capabilities, consider the task of moving a capability from a source
slot, src, to an empty destination slot, dst. The following diagram shows the system state before the move
begins, including the CDT predecessor and successor capabilities of src, represented here by bef and aft,
respectively. (Note that aft and bef are drawn with dotted lines to reflect the fact that these objects are only
present when the corresponding pointers in src are not Null.)

bef

src
objptr
capdata
bef lo
aft hi

dst
NullObj
-
- -
- -

aft

To complete the move, we need to: copy the objptr and capdata fields of src in to the corresponding fields
of dst; overwrite the objptr field in the src with NullObj; and update the next pointer in bef and the prev
pointer in aft to point to dst, as shown in the following diagram.

40

bef

src
NullObj
-
- -
- -

dst
objptr
capdata
bef lo
aft hi

aft

As we have already suggested, one complication here is that, in general, there may not be a predecessor bef
or a successor aft if the corresponding prev or next pointers in the src capability are Null. Another twist
is that we only need to update the pointer portion of each CapLink field, not the val component, and so we
need to read and update the old link value in each case, rather than just writing a pointer. The following
implementation abstracts the handling of both of these details into a fixlink function that is parameterized
by the labels of the links out and back between the src/dst and the adjacent capability, if it exists.

capMove :: RW p => CapRef -> CapRef -> p ()
capMove src dst
= do src.objptr >-> dst.objptr -- Copy object pointer

src.capdata >-> dst.capdata -- Copy capdata
fixlink #"prevlo" #"nexthi" -- Fix links to predecessor, bef
fixlink #"nexthi" #"prevlo" -- Fix links to successor, aft
set src.objptr NullObj -- Null out the src capability

where fixlink out back
= do outlink <- get (select src out) -- Find link out of the src

set (select dst out) outlink -- Copy link in to the dst
setCapLink outlink back (Ref dst) -- Update the back link, if necessary

↵

6.2.2 Creating a Sibling Copy of a Capability

It is also useful to add a copy of an existing capability as a sibling of the original in the CDT. Given the rep-
resentation that we are using, this operation can be implemented by inserting the copy immediately before
the original. Note, in particular, that HAL4 does not allow dynamic memory allocation within the kernel,
and hence the space for the new sibling capability must be provided explicitly as an input to this process.
The following diagram shows the state of the system immediately before the copy is made, with an empty
sibling capability that is ready to be inserted immediately between the original cap and its predecessor, bef.

bef

sibling
NullObj
-
- -
- -

cap
objptr
capdata
bef lo
next hi

41

Before

After

Inserting a sibling

 53

Before

After

bef

src
NullObj
-
- -
- -

dst
objptr
capdata
bef lo
aft hi

aft

As we have already suggested, one complication here is that, in general, there may not be a predecessor bef
or a successor aft if the corresponding prev or next pointers in the src capability are Null. Another twist
is that we only need to update the pointer portion of each CapLink field, not the val component, and so we
need to read and update the old link value in each case, rather than just writing a pointer. The following
implementation abstracts the handling of both of these details into a fixlink function that is parameterized
by the labels of the links out and back between the src/dst and the adjacent capability, if it exists.

capMove :: RW p => CapRef -> CapRef -> p ()
capMove src dst
= do src.objptr >-> dst.objptr -- Copy object pointer

src.capdata >-> dst.capdata -- Copy capdata
fixlink #"prevlo" #"nexthi" -- Fix links to predecessor, bef
fixlink #"nexthi" #"prevlo" -- Fix links to successor, aft
set src.objptr NullObj -- Null out the src capability

where fixlink out back
= do outlink <- get (select src out) -- Find link out of the src

set (select dst out) outlink -- Copy link in to the dst
setCapLink outlink back (Ref dst) -- Update the back link, if necessary

↵

6.2.2 Creating a Sibling Copy of a Capability

It is also useful to add a copy of an existing capability as a sibling of the original in the CDT. Given the rep-
resentation that we are using, this operation can be implemented by inserting the copy immediately before
the original. Note, in particular, that HAL4 does not allow dynamic memory allocation within the kernel,
and hence the space for the new sibling capability must be provided explicitly as an input to this process.
The following diagram shows the state of the system immediately before the copy is made, with an empty
sibling capability that is ready to be inserted immediately between the original cap and its predecessor, bef.

bef

sibling
NullObj
-
- -
- -

cap
objptr
capdata
bef lo
next hi

41

To link the sibling in to the CDT as a copy of the original cap, we need to copy the objptr and capdata fields
to the sibling and update the various link fields as shown in the following diagram:

bef sibling
objptr
capdata
bef lo
cap hi

cap
objptr
capdata
sibling lo
next hi

The complete implementation is as follows:

capSibling :: RW p => CapRef -> CapData -> CapRef -> p ()
capSibling cap capdata sibling
= do cap.objptr >-> sibling.objptr -- Copy object pointer

set sibling.capdata capdata -- Copy capdata

nexthi <- get cap.nexthi -- Set next link for sibling
set sibling.nexthi nexthi[cap=Ref cap]

prevlo <- get cap.prevlo -- Copy prev link into sibling
set sibling.prevlo prevlo
set cap.prevlo prevlo[cap=Ref sibling] -- Update prev link for cap
setCapLink prevlo #"nexthi" (Ref sibling)

6.2.3 Creating a Child Copy of a Capability

The steps that are required to add a capability in to the CDT as a child of another node are similar except
that we need to insert the new capability immediately after the original and to set an incremented depth. In
addition, because we often use different capability data for a child, we will not just copy across the original
capability’s capdata value, and will instead expect a new capdata’ value to be specified as a parameter.
Beyond these changes, the process for inserting a new child is very similar to the process for inserting a
sibling that we described in the previous section. In particular, we assume an initial configuration of the
form shown in the following diagram with an empty child node that is ready to be inserted:

cap
objptr
capdata
prev lo
aft hi

child
NullObj
-
- -
- -

aft

Once the operation is complete, the child capability will have been initialized with the appropriate fields
and linked in between the original capability and its successor, aft (if there was one):

42

cap
objptr
capdata
prev lo
child hi

child
objptr
capdata’
cap lo’
aft hi’

aft

As with capSibling, the implementation for capChild is a straightforward, following the steps that are sug-
gested by the preceding diagrams:

capChild :: RW p => CapRef -> CapRef -> CapData -> p ()
capChild cap child capdata’
= do nexthi <- get cap.nexthi -- Updates to cap

set cap.nexthi nexthi[cap=Ref child]

cap.objptr >-> child.objptr -- Copy object pointer field
set child.capdata capdata’ -- Install new capdata
prevlo <- get cap.prevlo -- Find lo value for cap
let (hi’ :# lo’) = 1 + depthOf prevlo nexthi -- Compute depth values for child
set child.prevlo CapLink[cap=Ref cap|val=lo’] -- Fill previous ...
set child.nexthi nexthi[val=hi’] -- ... and next links for child

setCapLink nexthi #"prevlo" (Ref child) -- Update back link from aft if necessary

In each of capMove, capSibling, and capChild, we have assumed that one of the two CapRef values that is
passed in as a parameter (dst for capMove, sibling for capSibling, and child for capChild) is empty when
the function is called, and that the other one is non-empty (i.e., that it contains some valid object pointer
other than NullObj). These assumptions also imply that we cannot pass the same capability reference for
both arguments because no capability can have an object pointer that is simultaneously both a NullObj and
not a NullObj. For the special case of capChild, we assume that the input cap is not already at the highest
possible depth because then we would not be able to give a valid depth (hi’ :# lo’) for the new child. As
we use each of these functions in the following sections, it will be our responsibility to ensure that these
assumptions are satisfied before we make the call.

6.2.4 Inserting Multiple Children

As we saw in Section 5.4, an implementation of the retyping system call will require the ability to insert
multiple (initially empty) capabilities, taken from (a segment of) an array, as the children of a capability
for an untyped memory object. Such an operation could potentially be implemented by repeated use of
capChild, but in this section we describe a more direct (and likely more efficient) implementation. The
initial configuration for this operation, which we will call capChildren, is shown in Figure 12. In this setting,
we assume that the root object, pictured in the top left corner, is a capability to an untyped memory object
that can be viewed as an array objs of n smaller objects. The dashed arrow from root to objs represents the
object pointer for root. The dotted lines extending to the right of objs are a hint that the array may not fill all
the space of the untyped memory object (although any unused portion of the untyped memory object will
become inaccessible after the retyping operation until all of the new child capabilities have been deleted).
In addition, we assume an array caps of n empty capability slots. (Again, the faint dotted lines on either end
of the array are hints that caps might have been obtained as a segment of some larger array of capabilities,
such as a CNode, as described in Section 7.) As in previous examples, the aft capability in the top right of
the diagram represents the successor of root in the CDT; this is drawn with dotted lines as a reminder that
there will not be an aft node if the next pointer in root is Null. We assume also that root is a leaf in the CDT

43

To link the sibling in to the CDT as a copy of the original cap, we need to copy the objptr and capdata fields
to the sibling and update the various link fields as shown in the following diagram:

bef sibling
objptr
capdata
bef lo
cap hi

cap
objptr
capdata
sibling lo
next hi

The complete implementation is as follows:

capSibling :: RW p => CapRef -> CapData -> CapRef -> p ()
capSibling cap capdata sibling
= do cap.objptr >-> sibling.objptr -- Copy object pointer

set sibling.capdata capdata -- Copy capdata

nexthi <- get cap.nexthi -- Set next link for sibling
set sibling.nexthi nexthi[cap=Ref cap]

prevlo <- get cap.prevlo -- Copy prev link into sibling
set sibling.prevlo prevlo
set cap.prevlo prevlo[cap=Ref sibling] -- Update prev link for cap
setCapLink prevlo #"nexthi" (Ref sibling)

6.2.3 Creating a Child Copy of a Capability

The steps that are required to add a capability in to the CDT as a child of another node are similar except
that we need to insert the new capability immediately after the original and to set an incremented depth. In
addition, because we often use different capability data for a child, we will not just copy across the original
capability’s capdata value, and will instead expect a new capdata’ value to be specified as a parameter.
Beyond these changes, the process for inserting a new child is very similar to the process for inserting a
sibling that we described in the previous section. In particular, we assume an initial configuration of the
form shown in the following diagram with an empty child node that is ready to be inserted:

cap
objptr
capdata
prev lo
aft hi

child
NullObj
-
- -
- -

aft

Once the operation is complete, the child capability will have been initialized with the appropriate fields
and linked in between the original capability and its successor, aft (if there was one):

42

Inserting a child

 54

Before

After

Visiting a subtree

 55

root
objs
-
- lo
caps@@0 hi

aft
-
-
- -
- -

front
middle

back

caps
objs@@0
capdata
root lo’

hi’
0

objs@@1
capdata

lo’
hi’

1

· · ·

· · ·

objs@@(n-2)
capdata

lo’
hi’

n-2

objs@@(n-1)
capdata

lo’
aft hi’
n-1

objs

0 1 · · · n-2 n-1

Figure 13: Final configuration after inserting an array of capabilities as children of an untyped memory
object

= -- do -- capInit cap (objs @@ i)
case (1 + unsigned i) <=? n of

Just j -> do let next = caps @@ j
set cap.nexthi hilink[cap=Ref next]
set next.prevlo lolink[cap=Ref cap]
middle next j

Nothing -> back cap

back last -- Set links in back portion
= do set last.nexthi hilink

setCapLink afthi #"prevlo" (Ref last)

front (caps @@ 0) -- Build tree

6.3 Deleting and Revoking Capabilities

[TODO .. write some text to explain what is happening here!]

bef root
objptr

all capabilities in this list/subtree
have a greater depth than root

aft

We use clearCap to clear the specified capability slot, returning a pointer to the following capability in the
preorder traversal:

45

• Pattern for traversing the descendants of a capability:
visitChildren(root) {  
 curr = root.next;  
 while (curr≠null && curr.depth>root.depth) {  
 … curr is a child of root …

 curr = curr.next;  
 }  
}

• Typical uses: revoking or deleting a capability
 56

• Reply capabilities are a new capability type that store a
pointer to the sending TCB

• Every TCB contains two capability slots:
• a “replyroot” capability that holds a ReplyCap
• a “reply” slot that is initially empty

value <- getAndClear aep.value -- and value fields here? I think not ...
set aep.status idleAEPStatus
asyncTransfer badge value recv

-}

12 Reply Capabilities

Reply capabilities, using the ReplyObj tag, are special forms of capability object that are generated by the
kernel when a thread performs a Call system call, and then deleted after their first (and hence, only) use.

send
· · · · · ·this TCB has

status ReplyWait[t]

ReplyObj

-

0 0

0

send.replyroot

recv
· · · · · ·

ReplyObj

-

1

0 0

recv.reply

Figure 22: Data structures for a thread that has sent a message to a receiver and requested a one-time reply
capability. In this scenario, the receiver has a CDT child of the sender’s replyroot capability—initially placed
in the receiver’s reply slot—that it can use to send back a reply to the sender. Note that the capabilities
point back to the sender, enabling the receiver to send a reply without divulging the sender’s identity. The
shading in these diagrams indicates that we are zooming in to show the structure of the relevant embedded
capability objects in more detail.

replyRootInit :: TCBRef -> Init Cap
replyRootInit tcb = capInit ReplyObj[tcb]

Install a reply capability in the specified receiver TCB, recv, so that it can send back a reply to the specified
sender TCB, send. If the receiver’s reply slot was already holding a capability, then it must be revoked first
(and hence the receiver will have no way to reply to earlier send; it is the receiving thread’s responsibility
to make a copy of the original reply capability before attempting a subsequent Wait).

{- TODO: this requires "revoke"
replyInstall :: TCBRef -> TCBRef -> K ()
replyInstall send recv
= do case<- get recv.reply.objptr of -- Check for and revoke a previous

ReplyObj[old] -> revoke old.replyroot -- reply capability, if one exists
capSibling send.replyroot recv.reply -- Make a CDT child of sender’s replyroot

-}

Sending a message via a reply capability is straightforward; we simply have to find the TCB of the thread
that owns the reply capability and then transfer the message data. Note that we only transfer message data
between two threads if the original caller’s status (which should be of the form ReplyWait[transfer]) has

80

Application: implementing reply capabilities

ReplyCap

Application: implementing reply capabilities

 57

• If one thread makes a “Call” to another, the kernel will insert
a child of the sender’s master capability in receiver’s reply slot

• The receiver can use a “Reply” system call to send a message
back to the sender, without knowing its identity

• The kernel can revoke the master reply capability, to remove
the child, even if the receiver has moved it to a different slot

value <- getAndClear aep.value -- and value fields here? I think not ...
set aep.status idleAEPStatus
asyncTransfer badge value recv

-}

12 Reply Capabilities

Reply capabilities, using the ReplyObj tag, are special forms of capability object that are generated by the
kernel when a thread performs a Call system call, and then deleted after their first (and hence, only) use.

send
· · · · · ·this TCB has

status ReplyWait[t]

ReplyObj

-

0 0

0

send.replyroot

recv
· · · · · ·

ReplyObj

-

1

0 0

recv.reply

Figure 22: Data structures for a thread that has sent a message to a receiver and requested a one-time reply
capability. In this scenario, the receiver has a CDT child of the sender’s replyroot capability—initially placed
in the receiver’s reply slot—that it can use to send back a reply to the sender. Note that the capabilities
point back to the sender, enabling the receiver to send a reply without divulging the sender’s identity. The
shading in these diagrams indicates that we are zooming in to show the structure of the relevant embedded
capability objects in more detail.

replyRootInit :: TCBRef -> Init Cap
replyRootInit tcb = capInit ReplyObj[tcb]

Install a reply capability in the specified receiver TCB, recv, so that it can send back a reply to the specified
sender TCB, send. If the receiver’s reply slot was already holding a capability, then it must be revoked first
(and hence the receiver will have no way to reply to earlier send; it is the receiving thread’s responsibility
to make a copy of the original reply capability before attempting a subsequent Wait).

{- TODO: this requires "revoke"
replyInstall :: TCBRef -> TCBRef -> K ()
replyInstall send recv
= do case<- get recv.reply.objptr of -- Check for and revoke a previous

ReplyObj[old] -> revoke old.replyroot -- reply capability, if one exists
capSibling send.replyroot recv.reply -- Make a CDT child of sender’s replyroot

-}

Sending a message via a reply capability is straightforward; we simply have to find the TCB of the thread
that owns the reply capability and then transfer the message data. Note that we only transfer message data
between two threads if the original caller’s status (which should be of the form ReplyWait[transfer]) has

80

ReplyCap ReplyCap

Application: allocating from untyped memory
• Retyping is a fundamental operation that user-level threads

can use to repurpose an untyped memory area

• Kernel tracks use via the “capability derivation tree” (CDT)

• Cannot retype an untyped memory area if it is already in use
(i.e., if it has children in the CDT)

 58

5.3 Capability Indexes

In HAL4, we refer to the values that user-level threads use to access individual kernel objects as capability
indexes, which we will represent as values of the following type:

type CapIdx = Unsigned -- User-level capability index values

This CapIdx type corresponds directly to CPtr type that is mentioned in some published descriptions of seL4;
we have chosen not to use the latter term for HAL4 because of the potential for confusion with the other
Ptr types that are used in Habit. We should also recognize that the diagram in Figure 8 is oversimplified
because it shows individual cspace objects as simple tables, indexed by CapIdx values. As we will see in
Section ??, HAL4 actually uses a guarded page table structure [19], involving a tree of CNode objects, to enable
the construction of compact but flexible cspace objects that can still span the potential 32 bit address space
suggested by the CapIdx type.

5.4 Memory Allocation for Kernel Objects

A key feature of the seL4 design, carried over into HAL4, is that the kernel does not include any functions for
dynamic allocation of memory for kernel objects. Instead, any memory that is not in use after initialization
is packaged up as a collection of untyped memory objects and capabilities to these objects are placed in
appropriate slots in the cspace of the initial user-level thread. From that point on, user-level threads are
responsible for managing the allocation of storage for kernel objects with the help of a retype system call,
the only system call in HAL4 that works directly with untyped memory.

The basic function of retype is to change the way that the kernel treats the memory in an untyped object by
splitting it in to an array of smaller kernel objects instead of viewing it as a single block without any internal
structure. The diagram in Figure 9 illustrates this process, with each horizontal bar representing a different
view of the same memory region at different points in time. At the top, perhaps just after kernel initial-
ization, the whole block is represented by a single untyped memory kernel object that is labeled untyped.
By calling retype with appropriate parameters, a user-level thread can specify that the same underlying
region of memory should instead be viewed as a collection of four smaller untyped memory regions that
are labeled untyped1, untyped2, untyped3, and untyped4, as shown in the middle row of the diagram. After a
second retype call, the region of memory previously labeled untyped2 can be further broken down into two
smaller objects labeled obj1 and obj2, as shown at the bottom of the diagram. At each stage in this process,

untyped

retype

untyped1 untyped2 untyped3 untyped4

retype

untyped1 obj1 obj2 untyped3 untyped4

Figure 9: Using retyping to change the view on how untyped memory is used

the kernel adds new capabilities to the cspace of the thread that called retype so that the user-level code
has a way to refer to and access the new kernel objects. In addition, the capability to the original untyped
memory object is updated to reflect the new way in which the underlying memory should now be viewed;

31

this also prevents any attempt to retype that same region of memory in a different way. Indeed, the kernel
will not allow the original untyped memory region to be used again until all of the capabilities to objects
in that region have been revoked; this is the primary mechanism that a user-level thread can use to “free”
previously allocated memory so that it can be used for other purposes.

5.5 Capability Derivation Trees

The preceding discussion suggests that the kernel needs to maintain some additional data structures to
track the use of capabilities, untyped memory blocks, and other objects. This is necessary, for example, to
record the results of retyping an untyped memory area, and hence to ensure that the kernel does not allow
a single region of memory to be used for two conflicting purposes at the same time. Much of the necessary
information can be captured by using capability derivation tree structures, or CDTs, which are tree structures
that have capability objects as nodes.

The diagram in Figure 10 shows one possible CDT corresponding to the final state in Figure 9 after the two
retyping operations have been performed. (The light horizontal rules inside each box hint at the internal
structure of capability objects, which will be described more fully in Section 6.) In the diagram, the root

u

u1 u2 u3 u4

o1a o1b o1 o2

o1c o1d

Figure 10: A possible capability derivation tree for the objects in Figure 9

node, u, is a capability holding a pointer to the original untyped memory area, untyped, and the tree records
the result of the first retyping by showing four children for u, each providing a capability to one of the
four smaller objects: untyped1, untyped2, untyped3, and untyped4. In a similar way, the retyping of untyped2
is reflected by the inclusion of capabilities o1 and o2 (for objects obj1 and obj2, respectively) as children
of u2. Given this structure, we can determine that the original untyped memory area is already in use
because the associated capability, u, has some children in the CDT. On the other hand, the capabilities
for untyped1, untyped3, and untyped4 are all leaf nodes in the CDT, meaning that they have no children,
and hence indicating that each of the corresponding regions of memory is available for further retyping.
(These claims assume that there are no other copies of the capabilities for these untyped objects elsewhere
in the kernel’s internal data structures; this is an invariant that we will need to maintain throughout the
implementation.)

Beyond tracking the results of retyping, a CDT also records the ways in which capability objects are dupli-

32

The retype system call
seL4_Untyped_Retype( 

CPtr service,  
int type,  
int size_bits,  
CPtr root,  
int node_index,  
int node_depth,  
int node_offset,  
int num_objects)

 59

Type of object to create

CNode where new capabilities
should be stored

Window in CNode where new
capabilities should be stored

Capability to untyped memory

CNode

TCB

Retype, in pictures

 60

user space kernel space current

cspace

CNode

CNode

Untyped allocated

next

service

node
offset, 
num

type
size 
align

Summary
• seL4 represents nearly two decades of experience and

evolution in L4 microkernel development

• Fundamental abstractions: threads, address spaces, IPC, and
physical memory

• Fine-grained access control via capabilities

• Novel approach to resource management

• no dynamic memory allocation in the kernel; shifts
responsibility to user level

 61

