101111 .
01010 Languages & Low-Level Programming

x;g;’igig CS 410/510

Mark P Jones
Portland State University

Fall 2018

Week 8: selL4 - capabilities in practice

Copyright Notice

* These slides are distributed under the Creative Commons
Attribution 3.0 License

* You are free:
* to share—to copy, distribute and transmit the work
* to remix—to adapt the work

* under the following conditions:

* Attribution:You must attribute the work (but not in any way that
suggests that the author endorses you or your use of the work) as
follows: “Courtesy of Mark P. Jones, Portland State University”

The complete license text can be found at
http://creativecommons.org/licenses/by/3.0/legalcode

Primary focus
* Review main features of the seL4 microkernel

* With some implementation hints: not exactly what you'll
find in the selL4 source code ... but representative

* Based on publicly distributed descriptions:
* seL4 documentation and code from http://sel4.systems

* Gernot Heiser's presentation on an "Introduction to seL4"
[http://www.cse.unsw.edu.au/~cs9242/14/lectures/0 | -intro.pdf]

* Dhamika Elkaduwe’s PhD dissertation on "A Principled
Approach to Kernel Memory Management"
[https://ts.dataé | .csiro.au/publications/papers/Elkaduwe:phd.pdf]

selL4 from 30,000 feet

* A microkernel that uses capabilities throughout for access
control and resource management
* latest versions even use capabilities to manage allocation
of CPU time and scheduling

* selL4 was designed with formal verification in mind, and
intended to serve as a foundation for building secure systems

* Runs on ARM and 1A32 platforms, among others; only the
ARM version is formally verified at this time
* In practice, managing lots of capabilities by hand is painful:

* seL4 programmers can take advantage of user-level
libraries that simplify the task of working with capabilities

Kernel objects in seL4

* Types of kernel objects include:

* Untyped memory
* TCB objects for representing threads
* Endpoint and Notification objects for IPC

* Memory objects (PageDirectory, PageTable, Frame) for
building address spaces

* CNode objects for building capability spaces
* and more ...

* Capabilities are used to manage user-level access to all of
these different types of object

System calls in seL4

* Conceptually, seL4 has an "object-oriented" API with just
three system calls:

* Send a message to an object (via a capability)
* Wait for a message from an object (via a capability)

* Yield (does not require an object/capability)

* For example:

* send a message to an Endpoint object to communicate
with another thread

* send a message to a TCB object to configure the thread

* In practice, there are other variants of Send/Wait to support
combined send and receive, RPC, and other patterns

Threads

Thread Control Blocks (TCBs) in selL4

* Threads are represented in the kernel by TCB objects

* Each TCB contains:
* A context (stores CPU register values for the thread)
* A pointer to the virtual address space (page directory)
* A pointer to the capability space (cspace)
* Scheduling parameters (priority, timeslice, etc.)
* A pointer to the IPC buffer (MRs) for the thread
* A capability to a fault handler endpoint for the thread

* Unlike L4: no a priori limit on the number of threads in an
address space, no global thread ids, ...

Operations involving TCBs
* Allocate TCBs (from untyped memory)
* Configure a TCB
* set registers, vspace, cspace, fault handler, priority, etc...

* [If two threads run in the same address space, they
should be configured to use different locations in
memory for data areas, stacks, etc.]

* Resume/pause a thread
* resume will add the thread to the run queue

* pause will remove the thread from the run queue

The run queue

* The run queue data structure is an array of circular linked
lists of TCBs for runnable threads, one for each priority:

runqueue

[L] [T]
0 PJ ql 255

[| [»

] i

(= | (= |

* Every TCB includes space for the two pointers that are used
to store it in the run queue (no extra storage is required)

* At a context switch, the scheduler:
* moves the current thread to the back of its list
* switches to the first thread in the highest priority non-
empty list

IPC and Endpoints

How to support capability-based IPC?

message ;
sender receiver

* How can interprocess communication (IPC) be controlled
and protected using capabilities?

* One option would be to use capabilities to TCB objects

* These are useful for other purposes anyway (e.g.,
reading/modifying thread status, starting, suspending, ...)

* Could use send / receive permissions on TCB capabilities
to determine which IPC actions are allowed

* But this is also inflexible:
* Single thread to single thread communication is limiting

* Lacks fine-grained control: if you can contact a thread for
one purpose, you can contact it for any purpose

IPC via endpoints

* Interprocess communication (IPC) in selL4 passes messages
between threads using (capabilities to) an endpoint object:

receiver|

receiver; |
receivers

* multiple senders and/or receivers on a single endpoint

sender

sender;

* Allows flexible communication patterns

* multiple endpoints between communication partners

* Messages are transferred synchronously when both sender
and receiver are ready ("rendez-vous")

* Multiple senders or receivers can be queued at each endpoint

13

IPC messages

* Each thread can have a region of memory in its address space
that is designated as its “IPC buffer”

* The IPC buffer holds “Message Registers” (MRs)

| MRO | MRI | MR2 | MR3 | MR4 | MR5 | MR6 | ... |

message tag

* Each thread can read or write values directly in its IPC buffer
* Each MR holds a single 32 bit word

* Some of the slots in the IPC buffer are reserved for sending
or receiving capabilities via IPC

Typical IPC process

* Sending thread writes message into its IPC buffer and invokes
a Send system call using a capability to an endpoint

* Receiving thread invokes a Wait system call using a capability
to the same endpoint

* When both parties are ready, the kernel copies the message
from the sender’s MRs to the receiver’s MRs

* A small number of MRs are passed in CPU registers, which is
fast and avoids the need for an IPC buffer

Endpoints are thread queues

* An endpoint just provides a place to collect a queue of
threads that are all waiting either to send or to receive

P ep’

* No thread can be both runnable and blocked (waiting to send
or receive a message), so one pair of TCB pointers suffices

* An endpoint doesn’t require all 16 bytes of storage: that’s just
the smallest size allowed for any kernel object

Client-server communication

* Practical systems often use a client-server architecture in
which one "server" thread performs work for many "clients"

client)

clientz

* What if the client needs a reply? How will the server know
where to send it?

* The client could send a capability to a "reply" endpoint as
part of its request. But this makes extra work for the client,
and could be abused by a malicious (or buggy) server.

Reply capabilities

* selL4 tackles this problem by introducing a special "Reply"

capability type:
endpoint||—>| server |

client)

clienty

* The Call system call combines a Send and a Wait

* The kernel gives a new "reply capability” to the receiver
* The receiver can move but not copy the reply capability
* The receiver can send a message to the reply capability

* The reply capability is deleted after its first (hence only) use

Asynchronous (non-blocking) IPC

* seL4 also supports (limited) asynchronous/non-blocking IPC
via "notification objects" (aka "Asynchronous Endpoints/AEPs)

* How is this possible without an unbounded buffer to store all
messages that have been sent but not yet received?

* Each notification object holds a single data word

* When you Send to a notification object:
* you provide a single word of data that is ORed with
the data in the notification
* the sender can resume immediately

* A receiver can:
* Poll a notification to read the current data word
* Wait on a notification, reading and clearing the data
word when data becomes available

Notifications (asynchronous endpoints)

* A notification object (asynchronous endpoint) provides a
place to collect a queue of threads that are waiting to receive

aep

[TeTvT-]

* No blocking on threads that send: the endpoint just collects
the badge (b) and value (v) bits of any sender until a receiver
collects them

Handling hardware interrupts in seL4

IRQControl 4. when an
interrupt occurs,

I.request a handler for the kernel sets

the interrupt number used the relevant bit

by the device in question 1 in the AEP
IRQHandl AEP
Ea& 2. Specify a [
notification 3. configure an

object/AEP to interrupt handler
associate with the thread to wait for
interrupt notifications

TCB
5.the handler thread responds as

necessary and then signals IRQHandler to re-enable interrupt

21

Data Representation

Kernel objects

The kernel deals with a range of different kernel objects:

* Platform independent:

* Untyped memory, TCBs, Endpoints (synchronous and
asynchronous), CNodes, ...

* Architecture specific:
* Page table, Page directory, Page, Superpage
* |OPort range
* ASID (address space identifier) table
* IRQ Handler and Control objects

Kernel object size and alighment

* Every kernel object takes 2s bytes for some s

* All kernel objects must be size aligned:

* If the kernel object has size 2s, then its address must be
some number of the form 2sn

* So every kernel address has a bit-level representation/layout

of the form: pointer to object s

g >
‘000000

Objptl“ I |

* In practice, we can use the least significant bits to store

additional information:
pointer to object tag bits

bjpt
OJpr‘\\\\\\\\\\\\\\\\\\\\\\\\\‘\\\\\

Kernel object pointers

* The entries in each cspace table are object pointers

* We can use the low order bits to encode the type of the
object that is pointed to by the high order bits

* An empty slot can be represented by a null pointer
* Different objects have different sizes; these can be integrated

by using carefully designed bit-level encodings. Examples:

pointer to object tag bits
; . ,
} g |

| | 9
T T Y B

pointer to object tag bits

Y
Sy o v

Kernel object sizes

Object Size
Untyped Memory 20 bytes,n>2
CNode 16 x 2" bytes,n> |
Endpoint 16 bytes
IRQ Handler -
Thread Control Block (TCB) 1KB
1A32 4K Frame (page) 4KB
1A32 4M Frame (superpage) 4MB
|IA32 Page Directory 4KB
1A32 Page Table 4KB
1A32 ASID Table -

1A32 Port

* No variable size objects

* Reserve extra fields in data structures to avoid the need for
“dynamic” allocation

* No room for metadata ... where can it be stored?

Capability Metadata

Storing metadata in capabilities

* The same endpoint may be accessed via multiple capability
entries, with different access permissions

sender cspace receiver cspace

write only read only

[ep |

* The obvious place to store the permission settings is in the
individual capability objects

cap

objptr

v

capdata

Metadata for untyped memory

* In early designs, there was no metadata for untyped memory
UntypedCap untyped

objptr 4" ‘

* At some point, somebody realized that the metadata could be
used to store a next pointer

UntypedCap untyped
objptr 4" allocated ‘ ‘
next I

» Complication: we cannot have multiple capability objects
pointing to the same untyped memory with different next
pointers

System calls for managing paging structures

* Map a page in to an address space

seL4 IA32 Page Map(pgcap, pdcap, vaddr, rights, attrs)

how do we find the
page directory where
this mapping is stored?

* Unmap a page from an address space

selL4 TA32 Page_ Unmap(pgcap)

* Map a page table in to an address space
seL4_IA32_ PageTable Map(ptcap, pdcap, vaddr, attrs)
* Unmap a page table from an address space (and zero it out)

seL4 IA32 PageTable Unmap(ptcap)

* User level code must map a page table into an address space
before it can map a 4KB page

Paging structures

asids asidTable
‘ ASIDTableObj }» - *‘
pdcap pdir
PageDir0bj } --- a{ KPDEs

spcap sp
SuperPageObj } --- +{

Paging structures, with metadata

asids asidTable lo hi
‘ ASIDTableObj }» --- »‘ ‘ ‘ ‘
1o hi
pdcap pdir
‘ PageDir0bj }» --- a{ KPDEs

Unmapped

spcap sp
‘ SuperPageObj } --- +{

[vmnappea |

Paging structures, with metadata

asids asidTable lo hi
‘ ASIDTableObj }» --- +‘ ‘ ‘ 2 ‘ ‘ ‘
1o hi
pdcap pdir
‘ PageDir0bj }» --- a{ ‘ i ‘ KPDEs

Unmapped

spcap sp
‘ SuperPageObj } --- +{ ‘

Unmapped

Suppose we want to associate pdir with address space a, and
then map sp atindex i in pdir

Paging structures

asids asidTable 1o hi
‘ ASIDTableObj }»f - »{ ‘ ‘ 2 ‘ ‘ ‘
lo hi !

,,,,,,,,,,,,,,,,,,,,,,,,,, ! first mapping

,
|
|
|
i
i
[Pagepizon; | -- - [1] KPDEs

pdcap pdir
:> MappedPD(a)
spcap sp

‘ SuperPageObj } --- +{ ‘

[Uonapeea |

Suppose we want to associate pdir with address space a, and
then map sp atindex i in pdir

Paging structures

asids asidTable 1o hi
‘ ASIDTableObj }»f - »{ ‘ ‘ 2 ‘ ‘ ‘
lo hi !

,,,,,,,,,,,,,,,,,,,,,,,,,, ! first mapping

pdcap

,
|
|
|
|
i
[Pagepizon; | -- - [1] KPDEs

:> MappedPD (a) ! i
,,,,,,,,,,,,, second mapping

speap l

‘SuperPageUbj },,, —a{ ‘
:> Mapped (i,a)

Suppose we want to associate pdir with address space a, and

then map sp at index i in pdir

Paging structures

asids asidTable 1o hi
‘ ASIDTableObj }»f - »{ ‘ ‘ 2 ‘ ‘ ‘
lo hi !

,,,,,,,,,,,,,,,,,,,,,,,,,, ! first mapping

pdcap

,
|
|
|
|
i
[Pagepizon; |- - [1] KPDEs

:> MappedPD (a) ! i
,,,,,,,,,,,,, second mapping

speap l

‘SuperPageUbj },,, —a{ ‘
:> Mapped (i,a)

The metadata in spcap can be used to locate the appropriate

page directory if the user subsequently unmaps spcap

Paging structures

asids asidTable 1o hi
[astoTableb; | - - - of ‘ ‘ s ‘ ‘ ‘
1o | ni |
e » first mapping
i
i
i
pdcap | pdir
‘ PageDirObj } --- +{

‘ i ‘ KPDEs

:> MappedPD (a) ! i
,,,,,,,,,,,,, » second mapping

speap l

‘SuperPageﬂbj }»777*{ ‘
:> Mapped (i,a)

Multiple copies of spcap are needed to map sp in multiple

places (likely increasing complexity of user level code)

Metadata summary

Object Size Metadata
Untyped Memory 20 bytes, n>2 "next" pointer
CNode 16 x 2n bytes, n> | guard
Endpoint 16 bytes permissions, badge
IRQ Handler - IRQ number
Thread Control Block IKB permissions
1A32 4K Frame (page) 4KB

ASID and virtual address

1A32 4M Frame 4MB T
- for where this object is

IA32 Page Directory 4KB mapped, if any

IA32 Page Table 4KB

IA32 ASID Table - lo and hi range

IA32 Port - port number

* A single word of metadata goes a long way ...

Capability Spaces

Capability spaces

* Every thread has a “capability space”, which is a table mapping
capability indexes to kernel objects

¢ If a thread doesn’t have a capability to an object in its
capability space, then it cannot directly access that object

* (cf. if there is no mapping to a particular physical address in a
thread’s address space, then it cannot access that location)

Page tables

0x00806231

0x002 0x006 0x231

10 bits 10 bits. 12 bits

0x000

0x002

0x000

0008 4k Page

0x3FF

0x3FF

(Diagram credit: seL4 documentation) “

“Page tables” for capabilities

0x00806231

0x0020 0x062 031

8 bits

14 bits 10 bits

0x0000

0x0020

0x000

0x062 l

0%00

0x3FFF

0x31

0x3FF

OxEF

(Diagram credit: seL4 documentation) 2

“Guarded page tables” for capabilities

0x00806231

0x0020 0x062 0x31
14 bits 10 bits

8 bits,

8 bit guard value 0x00 5 bit guard value 0x03 No guard

where should we
store the guards?

0x00

0x20

0xEF

(Diagram credit: seL4 documentation) s

Representing CNodes

* An object pointer to a CNode includes the size of the CNode
as part of the pointer representation

pointer to array log size of array
\ y

Objptr‘\\\\\\\\\\\\\\\\\\\\\\\\\‘\\\\‘1‘

* The capdata for a CNode specifies a guard

captata [01100 . footot
| L1
L .

guard gﬁard lengéh

* (This is not the exact representation used in sel4, but is
sufficient to illustrate the key concepts)

General capability addressing

G‘m;dm Cap Address (hex)
007 | 12 CNode Cap ¢
A 0_60_XXXXX,depth 32
Guard — j
0x00 [L3 CNode Cap ¢ B 0_OF_0_60_XX,depth 32
0x60 CapA
Guard [0bis] C 0_OF_0_00_60,depth 32
0x00
0x60 Cap B C-G 0_OF_0_00_60, window size 5
0x60
CapC,D,EF, G L2 CNode 0_OF_XXXXX, depth 12
OXFF
0x64
oxEE L3 CNode 0_O0F_0_00_XX,depth 24
0xFF

* General form of capability address uses:
*a 32 bit “root” CPtr to a CNode in the caller’s cspace
* An index, relative to that root
* A depth (number of bits to decode, required for CNode)
* A window size (to specify a range of capabilities)

(Diagram credit: seL4 documentation) s

Performance critical?

« Efficient capability lookup is important because every system
call (exceptYield) requires at least one lookup operation

* Wouldn't it be nice if the hardware could do this for us?
(an exercise in appreciating the role of a traditional MMU!)

* Is assembly language required to obtain good performance?

* If so, then representation transparency is also important!

Derived Capabilities

Derived capabilities

* In some situations, we might want to create derived versions
of a capability with restricted permissions

asids

ASIDTableObj

o [|

‘ ASIDTableObj ‘ ‘ ASIDTableObj ‘

‘0‘191‘ ‘64‘255‘

* Another example: root task creates a new endpoint and then
hands out two copies of that capability to child threads, one
with write permission and one with read permission, to
implement a form of “pipe”

* The resulting structure is called the capability derivation tree
or CDT

Representing the capability derivation tree

root

w
\\llu“ll\\‘

o Ve |
vl]e

* CDT nodes can have arbitrarily many children
* A conventional implementation would require:
* unbounded storage per node
* unbounded recursion (stack) to traverse all children

Representing the capability derivation tree

root root

e e = [o

w
il je]|
o | |
vl]e
o
o
[o
o

I
|
£ d L e £
z - L 12 B P e)

E S 3 O —To S R .

* A clever implementation represents the tree as a doubly
linked list with “depth” information at each node

* Fixed storage (two pointers + depth) per node
¢ (Limited) traversal of tree structure without recursion

General form

cap
objptr
capdata
<«— prev lo [«—
— next hi —

* Every capability holds:
* a pointer to a kernel object + bits giving the object type
* some metadata
* doubly linked list pointers
* depth information (hi and lo bits)
* Total size: 4 words, |16 bytes
* This is why a CNode with 2" entries requires |6 x 2" bytes

Moving capabilities

src

objptr
capdata

bef bef [lo aft
oatt |ni
« dst
NullObj

Before

Inserting a sibling

sibling

Inserting a child

child

NullObj

cap

Before

objptr

capdata

bef [lok

next |hi

cap

NullObj

aft

Before obiptr

capdata

«prev_[lo

»laft

[ni

Visiting a subtree

bef root aft
all capabilities in this list/subtree

objptr have a greater depth than root

N
< [k < <

[— - N

* Pattern for traversing the descendants of a capability:

visitChildren(root) {
curr = root.next;
while (curr#null && curr.depth>root.depth) {
. curr is a child of root ..

curr = curr.next;

}

* Typical uses: revoking or deleting a capability

Application: implementing reply capabilities

L T]
ReplyCap

0 0

* Reply capabilities are a new capability type that store a
pointer to the sending TCB
* Every TCB contains two capability slots:
* a “replyroot” capability that holds a ReplyCap
* a “reply” slot that is initially empty

Application: implementing reply capabilities

send recv
E I N 52 B
ReplyCap ; ReplyCap
0 0
0 0 (]

send.replyroot recv.reply

¢ If one thread makes a “Call” to another, the kernel will insert
a child of the sender’s master capability in receiver’s reply slot

* The receiver can use a “Reply” system call to send a message
back to the sender, without knowing its identity

* The kernel can revoke the master reply capability, to remove
the child, even if the receiver has moved it to a different slot

Application: allocating from untyped memory

* Retyping is a fundamental operation that user-level threads
can use to repurpose an untyped memory area

| — |

retype

" N
‘ untypedl ‘ untyped2 ‘ untyped3 ‘ untyped4

retype

v 4
‘ untyped1 ‘obji ‘obj2 ‘ untyped3 ‘ untyped4

* Kernel tracks use via the “capability derivation tree” (CDT)

* Cannot retype an untyped memory area if it is already in use
(i.e., if it has children in the CDT)

The retype system call

seL4 Untyped Retype(

CPtr service, } Capability to untyped memory

int type,)

int size bits, Type of object to create
CPtr root,

int node index, CNode where new capabilities
. - should be stored

int node_depth,

int node_offset, | Window in CNode where new
int num objects) | capabilities should be stored

Retype, in pictures

user space | kernel space current

cspace

TCB

service L

node

offset, A

num
size
type align 7]
o |
next

Summary

* seL4 represents nearly two decades of experience and
evolution in L4 microkernel development

* Fundamental abstractions: threads, address spaces, IPC, and
physical memory

* Fine-grained access control via capabilities
* Novel approach to resource management

* no dynamic memory allocation in the kernel; shifts
responsibility to user level

