CS 410/510

Languages & Low-Level Programming

11001010
0011010
101111
01010

Mark P Jones
Portland State University

Fall 2018

Week 7: Capabilities

Copyright Notice

* These slides are distributed under the Creative Commons
Attribution 3.0 License

* You are free:
* to share—to copy, distribute and transmit the work
* to remix—to adapt the work

* under the following conditions:

* Attribution:You must attribute the work (but not in any way that
suggests that the author endorses you or your use of the work) as
follows: “Courtesy of Mark P. Jones, Portland State University”

The complete license text can be found at
http://creativecommons.org/licenses/by/3.0/legalcode

Introduction

Capabilities

* A capability is a “token” that grants certain rights to the
holder [Dennis and Van Horn, 1966]

* Aligns with the “principle of least privilege” in computer
security

* Supports fine grained access control and resource control

* Used in prior OSes and microkernels, including KeyKOS,
Mach, EROS, OKL4V2.1,and selL4

* Goals for today:
* introduce the concepts in a simple example/framework

* prepare for lab exercises to explore these ideas in practice

struct Process

user-level registers
struct Process {
struct Context ctxt;

LI
struct Pdirx*

pdir;
}i \

A user process:

page directory / vspace

* can only access an address in

physical memory if there is a page tables
corresponding mapping in its ‘ ‘ ‘ ‘
page directory/page tables e
* accesses memory via virtual superpages
addresses, and doesn’t know the pages

underlying physical address

* has no direct ability to change
the page directory/page tables

Can we replicate this idea?
user-level registers
struct Context ctxt;

LI
struct Pdirx*

pdir;
}i \

struct Process {

page directory / vspace
et Trff]

capability space / cspace

/

L - L -

(-

protected resources

Can we replicate this idea? Can we replicate this idea?

user-level registers user-level registers
struct Process { struct Process {
struct Context ctxt; /" ‘ ‘ ‘ ‘ ‘ ‘ ‘ struct Context ctxt; /" ‘ ‘ ‘ ‘ ‘ ‘ ‘
struct Pdir* pdir; . struct Pdir* pdir; .
struct Cspace* cspace;\ page dlrectory/vspace struct Cspace* cspace;\ page dlrectory/vspace
; HEEEEE LLLLTy T HEEEEE [L]
capability space / cspace A user process: capability space / cspace Some questions:

‘ ‘ ‘ ‘ ‘ ‘ ‘ * can only access a resource if
there is a corresponding
mapping in its cspace

‘ ‘ ‘ ‘ ‘ ‘ ‘ * what kinds of resource might
be protected in this way?

» what benefits might this

~ / < * accesses resources via cspace - / < provide?
lj| indexes, and doesn’t know the lj| « how would we implement a

underlying resource location system like this?

protected resources « has no direct ability to change N protected resources

the protected resources

» what would the interface from
user level programs look like?

struct Cap and the Null Capability

struct Cap { type
enum Captype type;
unsigned data[3]; 4 words/
}i data | 6 bytes
“Qi ” H enum Captype
A “Simple” Implementation hrsene 2!

. (If necessary, we could “pack” multiple data items into a
}: single word; e.g., a Captype could fit in ~5 bits; a pointer
to a page directory only requires 20 bits; etc...)

static inline unsigned isNullCap(struct Cap* cap) {

return cap->type==NullCap; test
}
static inline void nullCap(struct Cap* cap) {

cap->type = NullCap; set
}

Moving a capability Capability spaces (struct Cspace)
static inline #define CSPACEBITS 8
void moveCap(struct Cap* src, struct Cap* dst, unsigned copy) { #define CSPACESIZE (1 << CSPACEBITS)
dst->type = src->type;
dst->data[0] = src->data[0]; ,J transfer components] struct Cspace { All entries
dst->data[l] = src->data[l]; struct Cap caps[CSPACESIZE]; lized
dst->data[2] = src->data[2]; }i initialized to
+f (copy==0) { 256 entries NullCap
nullCap(src); — . R
) if this is a move, then \
[T T T T T T T T T T T T T T T T T T]
> clear the source EEE] . EEE R
src dst —
256 x |6 bytes = 4KB (| page)
type
% typedef unsigned Cptr; // identifies a slot in a cspace
ignore
| Yy static inline Cptr cptr(unsigned w) {
(or clear) return maskTo(w, CSPACEBITS);
z }
" 12

Capability spaces, in practice

* Capabilities and capability spaces are stored in kernel
memory, and must not be accessible from user-level code

* In practice:
* We may not need 256 slots for simple applications
* We may need a lot more than 256 slots for complex
applications

* We could use variable-length nodes and a multi-level tree
structure to represent a cspace as a sparse array (much
like a page directory/page table structure)

e . 8 entri
* To simplify this presentation: entries

* I'll typically draw a cspace as: ===

A First Application

What shall we protect today!?

upperRight

CI3fffff] =
HEEELT => 0-17¢1
=> [1800000-1bff

console | 000-c1ff££££1 => [1cO0000-1fFf

timer?

lowerRight

The (unprotected) kputc system call

void kputc_imp() { { .)
struct Context* ctxt = ¤t->ctxt; —— ﬂﬁd regsters

putchar(ctxt->regs.eax); __ (outan.characternl

ctxt->regs.eax = 0; console window

switchToUser (ctxt);

' A\

return to
caller Any user program can write to the

console window by calling kputc()

set return code

Can we limit access to programs that
have been given an explicit capability
for console access!?

Steps to implement a new capability type
|. Define a new capability type

* pick a new capability type code, determine structure, and
add test/set methods (in kernel/caps.h)

* for debugging purposes, update showCap() to display
capability (in kernel/caps.c)

2. Rewrite system call(s) to use the new capabilities (in kernel/
syscalls.c)

3. Install capabilities in the appropriate user-level capability
spaces (in kernel/kernel.c)

4. Add user-level interface/system calls (in user/syscalls.h, user/
userlib.s)

|. Define a console access capability type
_ capability type]

enum Captype { .., ConsoleCap = 1, .. };

struct ConsoleCap {
enum Captype type;
unsigned unused[3];

}i [capability test J

J/ — .
// ConsoleCap == capability structure |

V
static inline struct ConsoleCap* isConsoleCap(struct Cap* cap) {
return (cap->type==ConsoleCap) ? (struct ConsoleCap*)cap : 0;

}

static inline void consoleCap(struct Cap* cap) {

struct ConsoleCap* ccap = (struct ConsoleCap*)cap;
printf("Setting console cap at %x\n", ccap);
ccap->type = ConsoleCap; \

} —\

{ capability set]

2. A capability-protected version of kputc

Output:
* eax: "thread id"

Inputs:
* eax: character to output

* ecx: console capability
for illustration only: not really
appropriate for kputc :-)

void kputc_imp() {
>struct Context* ctxt = ¤t->ctxt;

struct ConsoleCap* cap = isConsoleCap(current->cspace->caps +
cptr(ctxt->regs.ecx));

if (cap) { /Jrequires capability]
putchar (ctxt->regs.eax);
ctxt->regs.eax = (unsigned)current;
else {

ctxt->regs.eax = 0;

[capability lookup }

-~

switchToUser (ctxt); current provides a unique token for
} the process, but there is no user-
level access to that address

3. Install capabilities

// Configure proc[0]:
initProcess(proc+0, hdrs[7], hdrs[8], hdrs[9]);

consoleCap(proc[0].cspace->caps + 1); — J
showCspace (proc[0].cspace); ‘\\1 console access

Capability space at c040b000
0x01 ==> ConsoleCap
1 slot(s) in use

B B

// Configure proc[l]:
initProcess(proc+l, hdrs[7], hdrs[8], hdrs[9]);
showCspace(proc[1l].cspace);

Capability space at c0109000
0 slot(s) in use

[no console access]

4. User level access to the console

#define CONSOLE 1
extern unsigned kputc(unsigned cap, unsigned ch);

user/syscalls.h

void kputs(unsigned cap, char* s) {
while (*s) {
kputc(cap, *s++);

)
user/user.c

void cmain() {
unsigned myid = kputc(CONSOLE, '!');
printf("My process id is %x\n", myid);
kputs (CONSOLE, "hello, kernel console\n”);

System call to print a character in the
kernel’s window:

#
| retn | cap | ch |
#ole a4 le] user/userlib.s
.globl kputc
kputc: movl 4(%esp), %ecx
movl 8(%esp), %eax
int $128

ret

Protected access to the console

* A console access capability is a “token” that grants the holder
the ability to write output on the console window

* User level processes have access to the console ... but only if
they have an appropriate capability installed in their cspace

* The kernel can add or remove access at any time
* No capability, no access ...

*... and no way for a user-level process to “fake” a capability

* But how can a user distinguish kernel output in the console
window from output produced by a capability-holding user-
level process?

Badged Capabilities:
|ldentity and Permissions

A badged capability type for console access

struct ConsoleCap {
enum Captype type;
unsigned attr;
unsigned unused[2];

[video attribute]

// ConsoleCap
// attribute for display

Yi

static inline void consoleCap(struct Cap* cap, unsigned attr) {
struct ConsoleCap* ccap = (struct ConsoleCap*)cap;
printf("Setting console cap at %x\n", ccap);
ccap->type = ConsoleCap;
ccap->attr = attr;

Using the attribute badge

void kputc_imp() {
>struct Context* ctxt = ¤t->ctxt;
struct ConsoleCap* cap = isConsoleCap(current->cspace->caps +
cptr(ctxt->regs.ecx));
if (cap) { (.)
setAttr(cap->attr); ; set video at‘mbuteJ
putchar (ctxt->regs.eax); [. . 3
SetAttr(7); ———————— restore video attribute J

ctxt->regs.eax = (unsigned)current;
} else {

ctxt->regs.eax = 0;
}
switchToUser (ctxt);

Setting the video attribute

// Configure proc[0]:
initProcess(proc+0, hdrs[7], hdrs[8], hdrs[9]);.

consoleCap(proc[0].cspace->caps + 1, 0x2e); _ PSLJ(;FGGH)
showCspace (proc[0].cspace);

Capability space at c040b00o
0x01 ==> ConsoleCap, attr=2e
1 slot(s) in use

// Configure proc[1l]:

initProcess(proc+l, hdrs[7], hdrs[8], hdrs[9]);

consoleCap(proc[l].cspace->caps + 6, 4); __ —————

showCspace(proc[1l].cspace); [{ed ‘
-/

B &

Capability space at c0109000
0x06 ==> ConsoleCap, attr=4
1 slot(s) in use

Prevents user code from "spoofing" kernel output!

Badged capabilities
* A badged capability stores extra information in the capability
* Different capabilities for an object may have different badges

* There is no (a priori) way for the holder of a capability to
determine or change the value of its “badge”

* A common practical application scenario:

* Server process receives requests from clients via a read-
only capability to a communication channel

* Clients hold write-only capabilities to the same
communication channel, each “badged” with a unique
identifier so that the server can distinguish between them

Capability permissions/rights

QEMU upperRight

13f££££1 => [1000000-13ff

£EEFE1 => [1400000-17ff
CIBfFEFf] => [1800000-1bff

CIffff££1 => [1c00000-1fff

lowerRight

Capabilities to Windows

enum Captype { .., WindowCap = 2, .. };

L protected resource

struct WindowCap {

enum Captype type; // WindowCap /
struct Window* window; // Pointer to the window
unsigned perms; Perms (CAN_{cls,setAttr,putchar})
unsigned unused[1]; N
}i — | permissions (badge) J
| permission flags |
#define CAN_cls 0x4 // confers permission to clear screen

#define CAN_setAttr 0x2
#define CAN_putchar 0x1

// confers permission to set attribute
// confers permission to putchar

Installing a capability to a Window

// Configure proc[0]:

initProcess(proc+0, hdrs[7], hdrs[8], hdrs[9]);

consoleCap(proc[0].cspace->caps + 1, 4);

windowCap(proc[0].cspace->caps + 2,
&upperRight,
/*CAN_cls|*/CAN_setAttr|CAN_putchar);

showCspace (proc[0].cspace);

Capability space at c040b00o

0x01 ==> ConsoleCap, attr=4

0x02 ==> WindowCap, window=c01069c@, perms=3
2 slot(s) in use

System calls using Window capabilities
. , \ lookup

struct WindowCap* getWindowCap() {

return isWindowCap(current->cspace->caps

+ cptr(current->ctxt.regs.ecx));

}

void capputchar_imp() {
struct WindowCap* wcap = getWindowCap();

_J protected object

if (wcap &&) "
(wcap->perms & CAN_putchar)) {<3—J permission CheCkJ

wputchar (wcap->window, current->ctxt.regs.eax);
A

} [underlying operation]

switchToUser (¤t->ctxt);

}

The capio library

/%
* capio.h: A version of the simpleio library using capabilities.

* Mark P Jones, Portland State University

* */

#ifndef CAPIO_H A~ . .)
Yaetine CAPIOH == C idiom to avoid repeated includes |

// General operations that allow us to specify a window capability.
extern void capsetAttr(unsigned cap, int a); (N
extern void capcls(unsigned cap); <ﬁ gemer\a‘ form J
extern void capputchar(unsigned cap, int c);

extern void capputs(unsigned cap, char* s);

extern void capprintf(unsigned cap, const char *format, ...);

// By default, we assume that our window capability is in slot 2.
#define DEFAULT_WINDOW_CAP 2 —
“ "
capsetAttr (DEFAULT WINDOW_CAP, a) <(easy
capcls (DEFAULT WINDOW_CAP) defaults
#define putchar(c) capputchar (DEFAULT_WINDOW_CAP, c)
#define puts(s) capputs (DEFAULT_WINDOW_CAP, s)
#define printf(args...) capprintf (DEFAULT_WINDOW_CAP, args)

#define setAttr(a)
#define cls()

#endif
/* */

You have no “right” to clear the screen!

upperRight

c0600000
, [c050 —cOSELELf]
| e
console -dCap, [cO180000-cO1fFFrf]
c0480000-cO4f 1
0140000-cO17£ 111
c0440000-cO4?ffff1

©0120000-c¢

» [c0110000-cO11f£{f]

, [e £EE£1 (si

lowerRight

Organizing Capability Spaces

Capability space layout
*We're used to having certain memory regions at known
addresses:
*Video RAM at 0xb8000
* KERNEL_SPACE at 0xc000_0000

* We're developing a “default” layout for capability spaces:
* Console access in slot |

*Window access in slot 2

* Should user level programs have the ability to rearrange/
remap their capability space?

A move/copy capability system call

void capmove_imp() {
struct Context* ctxt = ¤t->ctxt;
struct Cap* caps = current->cspace->caps;
struct Cap* src = caps + cptr(ctxt->regs.esi);
struct Cap* dst = caps + cptr(ctxt->regs.edi);
if (isNullCap(dst) && !isNullCap(src)) {

X

({ debugging outputj

moveCap(src, dst, ctxt->regs.eax);

|
ctxt->regs.eax = 1;

} else { \

printf(" 1Invalid capmove\n"); = I I =E] —
ctxt->regs.eax = 0; 11—
}
switchToUser (ctxt);
} Wait a minute! Shouldn’t this kind of

operation be protected using capabilities?

Capabilities to capability spaces

This should be looking
quite familiar by now!

enum Captype { .., CspaceCap = 3, .. };

struct CspaceCap {

enum Captype type;
struct Cspace* cspace;
unsigned unused[2];

Yi

// CspaceCap
// Pointer to the cspace

[capability test]

static inline struct Cspace* isCspaceCap(struct Cap* cap) {
return (cap->type==CspaceCap) ? ((struct CspaceCap*)cap)->cspace : 0;

}

static inline
struct CspaceCap* cspaceCap(struct Cap* cap, struct Cspace* cspace) {

struct CspaceCap* ccap = (struct CspaceCap*)cap;
ccap->type = CspaceCap; x\
ccap->cspace = cspace;

return ccap;

[capability set]

Capability slot references

* The src and dest arguments contain 4 bytes each
\ - \ - \ index ‘ cptr ‘

index to a CspaceCap in the/

cspace of the calling process offset within

that cspace
* Example: move from 0x00_02 to 0x04_03:

\ Process \

1

Capability slot lookup

static inline Cptr index(unsigned w) {
return maskTo(w >> CSPACEBITS, CSPACEBITS);

}

struct Cap* getCap(unsigned slot) {
struct Cspace* cspace = isCspaceCap(current->cspace->caps
+ index(slot));
return cspace ? (cspace->caps + cptr(slot)) : 0;
}

void capmove_imp() {

struct Context* ctxt ¤t->ctxt;

struct Cap¥* src = getCap(ctxt->regs.esi);
struct Cap* dst = getCap(ctxt->regs.edi);
if ((dst && src && isNullCap(dst) && !isNullCap(src))) {

moveCap(src, dst, ctxt->regs.eax);
ctxt->regs.eax = 1;
else {

ctxt->regs.eax = 0;

~

But now: how can a process change
the capabilities in its own cspace?

switchToUser (ctxt);

Slot zero

* A process can have access to its own cspace if, and only if it
has a capability to its cspace

*Slot zero is a convenient place to store this capability
* Example: move from 0x00_02 to 0x00_07 (same as 2 to 7):

(=

* The kernel can create a loop like this using:
static inline
void cspaceLoop(struct Cspace* cspace, unsigned w) {
cspaceCap(cspace->caps + w, cspace);

} }
What have we accomplished?
* Controlled access to cspace objects
* For processes that have the slot zero capability:

+ the ability to reorganize the entries in the process’ cspace Memory Allocation:

using simple slot numbers . o
_ Using Capabilities for Resource

* For all processes:

* the ability to manipulate and move entries between Management

multiple cspaces, given the necessary capabilities

* the ability to access and use more than 256 capabilities at a
time by using multiple cspaces

*But how can a process ever get access to multiple cspaces?

A system call to extend an address space

* Problem: a user level process needs more memory

* Solution: the process decides where it wants the memory
to be added, and then asks the kernel to map an unused page
of memory at that address

* Implementation:

void kmapPage_imp() {
»struct Context* ctxt = ¤t->ctxt;
unsigned addr = ctxt->regs.esi;
unsigned* page;
if (!isMapped(current->pdir, addr) && (page=allocPage())) {
mapPage (current->pdir, addr, toPhys(page));
ctxt->regs.eax = 1;

} else {

) ctxt->regs.eax = 0; This isn't actually correct:
l

switchToUser (ctxt); we'll see why soon ...

Example use:

. Program: unsigned stomp = 0x700000;
for (int j=0; j<8; j++) {
kmapPage (stomp) ;

((unsigned)stomp) = stomp; {write to new locationJ
stomp += (1<<12);

}
* Resulting: page directory/page table structure:

Page directory at c040c000

[400000-7fffff] => page table at c040e000 (physical 40e000):

0: [400000-400fff] => [40d000-40dfff] page

1: [401000-401fff] => [40f000-40ffff] page

2: [402000-402fff] => [108000-108fff] page

00: [700000-700Fff] => [10d000-10dfff] page

301: [701000-701fff] => [10e000-10efff] page

302: [702000-702fff] => [10f000-10ffff] page

303: [703000-703fff] => [410000-410fff] page

304: [704000-704fff] => [411000-411fff] page

305: [705000-705fff] => [412000-412fff] page

306: [706000-706Fff] => [41b000-41bfff] page

307: [707000-707fff] => [41c000-41cfff] page
300: [c0000000-co3fffff] => [0-3fffff], superpage
301: [c0400000-co7fffff] => [400000-7fffff], superpage
302: [c0800000-cObfffff] => [800000-bfffff], superpage
303: [c0c00000-cOffffff] => [cO000Q-ffffff]l, superpage
304: [c1000000-c13fffff] => [1000000-13fffff], superpage
305: [c1400000-c17fffff] => [1400000-17fffff], superpage
306: [c1800000-clbfffff] => [1800000-1bfffff], superpage
307: [c1c00000-c1ffffff] => [1co0000-1ffffffl, superpage

What’s wrong with this?

*No protection against “denial of service” attacks (intentional
or otherwise):
* There is nothing to prevent one process from allocating all
of the available memory, or even just enough memory to
prevent another process from doing useful work

* Requires a kernel-based memory allocator:
* Complicates the kernel ...

* Works against the microkernel philosophy of providing
mechanisms but otherwise remaining “policy free”

*Ideally, the kernel would perform initial allocation of memory
at boot time, but then delegate all subsequent allocation to
user-level processes

Back to boot time ...

— |

(installed physical memory)

hers [HC |

(programs/data that we're using)

Example Headers:
header[0]: [1000-3fff]l, entry ffffffff
header[1]: [100000-104d63], entry 100000
header[2]: [400000-40210b], entry 4010b5
Memory map:
mmap [0] : [0-9fbff]
mmap[1]: [9fc@O-9ffff]
mmap [2]: [fo0@o-fffff]
mmap[3]: [100000-1ffdfff]
mmap [4]: [1ffe000-1ffffff]
mmap [5]: [fffcoooo-ffffffff]

Back to boot time ...

— |

(installed physical memory)

hers [HC |

(programs/data that we're using)

(unused memory)

cow [|

- kernel (allocatable memory)
Is there a flexible

way to manage this
memory?

Example [108000-3fffff] size=3040K
[403000-17fffff] size=28660K

Splitting memory into flexpages

[108000-3fffff] size=3040K
[403000-1ffffff] size=28660K

Flexpages for [0x00108000-0x003fffff]:
0108000 (15, 32K)
0110000 (16, 64K)
0120000 (17, 128K)
0140000 (18, 256K)
0180000 (19, 512K)
0200000 (21, 2M)

Flexpages for [0x00403000-0xQ1ffffff]:
0403000 (12, 4K)
0404000 (14, 16K)
0408000 (15, 32K)
0410000 (16, 64K)
0420000 (17, 128K)
0440000 (18, 256K)
0480000 (19, 512K)
0500000 (20, 1M)
0600000 (21, 2M)
0800000 (23, 8M)
c1000000 (24, 16M)

Splitting memory into flexpages

[108000-3fffff] size=3040K
[403000-1ffffff] size=28660K

Available untyped(s) [17]
00: [c1000000-c1ffffff] (size=16M)
01: [c0800000-COFFFFff] (size=8M)
02: [c0200000-CO3FFFFf] (size=2M)
03: [C0600000-CO7FFFFf] (size=2M)
04: {c0500000-c05fffff} gsize=lM))
05: [c0180000-cO1fffff] (size=512K
sorted (largest os: [cossopno-coatfrrr] (sizesiok)
07: [c0140000-cO17fff] (size=256K)
flexpages first) 04: 1S0a40000-coar il (sisecznak)
09: [c0120000-cO13fFff] (size=128K)
0a: [c0420000-c043ffff] (size=128K)
ob: [c0110000-cO11fFf] (size=64K)
0c: [c0410000-cOA1FFFf] (size=64K)
0d: [c0108000-CO10FFf] (size=32K)
Oe: [c0408000-c040ffff] (size=32K)
0f: [c0404000-c0407fff] (size=16K)
10: [c0403000-c0403fff] (size=4K)

Capabilities to Untyped memory

enum Captype { .., UntypedCap = 4, .. };

struct UntypedCap {
enum Captype type; // UntypedCap

void* memory;// pointer to an fpage of size bits

unsigned bits; // log2 of size in bytes

unsigned next; // offset to next free location within fpage
Yi

* Untyped memory
objects represent pools
of allocatable memory

memory (m x 2bits) | |size (2bits)

‘fu\l address space .yped‘
- ability to allocate from
that area

* A capability to untyped
memory confers the

Allocating from untyped memory

Strict left to right allocation, flexpages only, padding as necessary:

128K |

64K | 64K |
K| 3K 32K

16K | 16Kk I8 16K | 16K | Tek [16K | 16K |

sk [BK] k[sK[sK 8K sk[8K[8K]8K]8K[8K[8K]8K[BK] 8K]

TR R R

Allocating from untyped memory

void* alloc(struct UntypedCap* ucap, unsigned bits) find addresses
> unsigned len = 1<<bits; of first and last

unsigned mask len-1; b f
unsigned first (ucap->next + mask) & ~mask; yTeS ol hew
object

unsigned last = first + mask;

if (ucap->next<=first && last<=((l<<ucap->bits)-1)) {

unsigned* object = (unsigned¥*)(ucap->memory + first);
for (unsigned i=0; i<bytesToWords(len); ++i) {
object[i] = 0; —— Zero
' update memory
ucap->next = last+l; capability for new

object

return (void*)object; — return pointel”
to new object

return 0; // Allocation failed: not enough room

Complication: restrictions on copying

void capmove_imp() {
struct Context* ctxt = ¤t->ctxt;
struct Cap* src = getCap(ctxt->regs.esi);
struct Cap* dst = getCap(ctxt->regs.edi);
unsigned copy = ctxt->regs.eax;
if ((dst && src && isNullCap(dst) && !isNullCap(src)) &&
(!copy || src->type!=UntypedCap)) {
moveCap(src, dst, ctxt->regs.eax);
ctxt->regs.eax = 1;
else {
printf(" Invalid capmove\n");
ctxt->regs.eax = 0;
}
switchToUser(ctxt);

}

-~

Complication: restrictions on copying

(!copy || src->type!=UntypedCap)) ¢

N

we MUST NOT

allow duplication of a

capability to untyped
memory!

Overall strategy

Available untyped(s) [17]
@0: [c1000000-c1ffFfff] (size=16M) —
. 01: [c0800000-cOffffff] (size=8M)
* partition unallocated 02: [c0200000-cO3FfTff] (size=2M)—
. . 03: [c0600000-cO7TTFff] (size=2M)
memory into a collection of ~ e4: [cosee000-cosfffff] (size=1M)
05: [c0180000-cO1ffff] (size=512K)
untyped memory areas 06: [c0480000-cQ4TTFff] (size=512K)
07: [c0140000-cO17FFff] (size=256K)

* At boot time:

v 08: [c0440000-c047FFFF] (size=256K)

* allocate individual pages 09: [C0120080-cO13FFFf] (size=128K)
: 0a: [C0420000-CO43TFFT] (size=128K)

from the end of the list of ob: [c0110000-cO11FFFF] (size=64K)

Oc: [c8410800-COAITTT] (size=64K)

untyped memory areas od: [c0108000-cO10FFFf] (size=32K)

.. Oe: [c0408000-cO40Tfff] (size=32K)
e donate remaining untyped 0f: [c0404000-c0407fff] (size=16K)

10: [c0403000-c0403fff] (size=4K)
memory to user-level
processes

——

* User-level processes are
responsible for all subsequent

allocation decisions console window 16MB 2MB

Example: system call to allocate a cspace

ecx holds cap for
untyped memory

void allocCspace_imp() {

struct Context* ctxt = ¤t->ctxt;

struct UntypedCap* ucap = getUntypedCap(

struct Cap* cap = getCap(ctxt->regs.edi);
void* obj;

if (ucap && // valid untyped capability

cap && isNullCap(cap) && // empty destination slot

(obj=alloc(ucap, PAGESIZE))) { // object allocation succeeds
cspaceCap(cap, (struct Cspace*)obj);

ctxt->regs.eax = 1;
} else {

ctxt->regs.eax = 0;
}

switchToUser (ctxt);

Example: allocating untyped memory

void allocUntyped imp() {

struct Context* ctxt = ¤t->ctxt;

struct UntypedCap* ucap = getUntypedCap();

struct Cap* cap = getCap(ctxt->regs.edi);
unsigned bits = ctxt->regs.eax;

void* obj;

printf("allocUntyped: bits %d from ucap=%x, slot=%x\n",
bits, ucap, cap);
if (ucap && // valid untyped capability
cap && isNullCap(cap) && // empty destination slot
validUntypedSize(bits) && // bit size in legal range
(obj=alloc(ucap, bits))) { // object allocation succeeds
untypedCap(cap, obj, bits);
ctxt->regs.eax = 1;
} else {
ctxt->regs.eax = 0; |t would be nice if there was a single
}
switchToUser (ctxt); system call that could allocate

} multiple types of objects ... (retype)

No dynamic allocation in the kernel

* Once it has been initialized, the kernel must not allocate any
memory on behalf of user level processes

* This is a key feature of sel4: it simplifies the kernel and also
prevents memory allocation denial of service attacks

*Instead, any system call that might need memory for a new
kernel data structure will require a capability to untyped
memory as an input

* Concretely, there must not be any calls to allocPage() in
code that is used after the kernel is initialized

* This includes anything that depends on allocPage():
allocPdir(),mapPage(),initProcess(), etc.

* This applies to all interrupt and system call handlers

Can we enforce this requirement!?

* If we are disciplined, understand the restriction, and keep it in
mind at all times, then perhaps our code will be ok

* |t we don't trust ourselves, we can insert code to check for
violations at runtime

* This has a (small) impact on performance
* Worse: we might not discover bugs until code is shipped
* Can we use a programming language that:

* Uses types to indicate that certain procedures/functions
cannot be used after initialization?

* Allows us to check for violations at compile time?

* Examples like this are not uncommon in low-level code (e.g.,
we must not sleep or block in an interrupt handler)

But how can we implement kmapPage()?

* The original kmapPage () system call might require allocation
of as many as two new pages:

* one for the page itself, and another for the page table.
* We must expose this level of detail to user-level programs:
* Two new capability types: PageCap for page objects, and
PageTableCap for page table objects

* Two new allocator system calls

unsigned allocPage(unsigned ucap, unsigned slot);
unsigned allocPageTable(unsigned ucap, unsigned slot);

* Two new mapping system calls

unsigned mapPage(unsigned cap, unsigned addr);
unsigned mapPageTable(unsigned cap, unsigned addr);

Example

allocPage(3,
allocCspace(3,

/*slot*/12);
/*slot*/14);

stomp = 0x80000000; // Let's allocate a page here
allocPageTable(3, /*slot*/21); // allocate a page table
mapPageTable (21, stomp); // map it into the address space

mapPageTable(21, stomp+0x800000); // and again, 8MB further
allocPage(3, /*slot*/20);
mapPage (20, stomp) ;

Page directory at c0406000

[400000-7fffff] => page table at c0408000 (physical 408000):
0: [400000-400fff] => [407000-407fff] page
1: [401000-401fff] => [409000-409fff] page
2: [402000-402FFf] => [40a000-40afff] page

[80000000-803fffff] => page table at c1002000 (physical 1002000):
: fff] => [1003f 1003fff] page

[80800000-80bfffff] => page table at 1002000 (physical 1002000):
0: [80800000-80800Fff] => [1003000-1003fff] page

Capability space at c040b00e
0x0 CspaceCap, cspace=c040b00o
ConsoleCap, attr=4
WindowCap, window=c01069c@, perms=3
UntypedCap, [c1000000-c1ffffff] (size=16M), next=4000
PageCap, page=c1000000
0x0e ==> CspaceCap, cspace=c1001000
0x14 ==> PageCap, page=c1003000
0x15 ==> PageTableCap, ptab=c1002000
8 slot(s) in use 6l

Example

allocPage(3, /*slot*/12);

-allocCspace(3, /*slot*/14);

stomp = 0x80000000; // Let's allocate a page here
allocPageTable(3, /*slot*/21); // allocate a page table
mapPageTable (21, stomp); // map it into the address space
mapPageTable (21, stomp+0x800000); // and again, 8MB further
-allocPage(3, ! /*slot*/20);

mapPage (20, stomp) ;

Page directory at c0406000
[400000-7fffff] => page table at c0408000 (physical 408000):
0: [400000-400fff] => [407000-407fff] page
1: [401000-401fff] => [409000-409fff] page
2: [402000-402fFf] => [40a000-40afff] page

>
>
>
>

Capability space at c040b00e
0x0 CspaceCap, cspace=c040b00o
ConsoleCap, attr=4
0x02 ==> WindowCap, window=c01069c@, perms=3
0x03 ==> UntypedCap, [c1000000-c1ffffff] (size=16M), next: 4000

>
>
>
>

What have we accomplished now?

* User-level code:
* can construct its own address space

* is responsible for allocating any pages and page tables that
it requires for this

* is limited by the amount of memory it has been assigned
via capabilities to untyped memory

e The kernel:

* ensures validity of mapping operations (no mappings in
kernel space, no overlapping mappings, ...)

* updates the underlying page directory and page table
structures as necessary

* does not perform any dynamic memory allocation!

Advanced feature “wish list”

* Capabilities for page directories:
* Allow user level code to manage multiple address spaces
* Capability faults:
* Our system calls report an error code if the requested
capability is invalid/does not exist
* A more flexible strategy is to invoke a “capability fault
handler” (analogous to a page fault handler for virt. mem.)
* Capability delegation and revocation
* How do we find all the copies of a capability if the original
is deleted?
* Object deletion:

* Can we reclaim memory for an object when the last
capability for the object is deleted?

Other kinds of capabilities

* Capabilities for Thread Control Blocks
* likely including system calls to:
* configure address space, scheduling params, etc.
e start/suspend new threads
* read/write thread registers

* Capabilities for "Endpoints":
* threads read from and write to endpoints to support IPC

* each endpoint holds a queue of threads that are blocked,
waiting for a communication partner

* Capabilities for 10 ports (or other hardware features):

* each capability can provide access to a range of 1O ports,
with separate permissions for in and out instructions

Summary
* Capabilities support:

* Fine-grained access control

* A novel approach to resource management: no dynamic
memory allocation in the kernel; shifts responsibility to
user level

* The implementation described here is a “toy”, but is enough
to demonstrate key concepts for a capability-based system

* The seL4 microkernel is a real-world system built around the
use of capabilities

* A very powerful and important abstraction: don’t be put off
by implementation complexities!

