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Copyright Notice
• These slides are distributed under the Creative Commons 

Attribution 3.0 License 

• You are free:

• to share—to copy, distribute and transmit the work

• to remix—to adapt the work 

• under the following conditions: 

• Attribution: You must attribute the work (but not in any way that 
suggests that the author endorses you or your use of the work) as 
follows:   “Courtesy of Mark P. Jones, Portland State University”

 
The complete license text can be found at  
http://creativecommons.org/licenses/by/3.0/legalcode
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Introducing “pork”

• pork = the “Portland Oregon Research Kernel”

• An implementation of (a subset of) L4 X.2

• Similar API to Pistachio, but specific to IA32 platform

• Written around the start of 2007

• “I have almost all the pieces that I need to build an L4 
kernel … perhaps I should try putting them together?”

• Built using the techniques we have seen so far in this 
course …
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Performance Benchmarking:  
Pingpong, Pistachio, and Pork

The pingpong benchmark
• A small L4 benchmark from the Karlsruhe Pistachio 

distribution, written in C++

• A single ipc call transfers contents of n message registers 
(MRs) between threads

• create two threads, “ping” & “pong”: 
for n = 0, 4, 8, …, 60:  

for 128K times:  
send n MRs from “ping” to “pong” 
send n MRs from “pong” to “ping” 

measure cycles & time per ipc call

• Cycles measured using rdtsc, time measured using 
interrupts

Expected Performance Model
t

t = A + Bn
      where A = system call overhead

 B = cost per word

n



Test Platform

• Dell Mini 9 netbook (1.6GHz 
Atom N270 CPU)

• Booting via grub from a 
flashdrive

Pistachio “Output”

Pork “Output” Transcribed Data (Inter-AS)

Inter-AS = “ping” and “pong” in different address spaces

ping pong pistachio Inter-AS IPC pork Inter-AS IPC Ratio, pork/pistachio
#MRs cycles microseconds cycles microseconds cycles microseconds

0 1240.67 0.77 1519.59 0.95 1.22 1.23
4 1293.58 0.81 1530.14 0.95 1.18 1.17
8 1301.64 0.81 1556.71 0.99 1.20 1.22
12 1306.29 0.81 1579.67 0.99 1.21 1.22
16 1317.96 0.82 1607.34 1.02 1.22 1.24
20 1325.16 0.83 1634.98 1.02 1.23 1.23
24 1333.26 0.83 1664.64 1.02 1.25 1.23
28 1342.28 0.84 1687.47 1.02 1.26 1.21
32 1350.34 0.84 1702.89 1.06 1.26 1.26
36 1358.46 0.85 1721.46 1.06 1.27 1.25
40 1362.08 0.85 1745.56 1.10 1.28 1.29
44 1374.64 0.86 1787.86 1.14 1.30 1.33
48 1382.80 0.86 1804.40 1.14 1.30 1.33
52 1390.88 0.87 1818.78 1.14 1.31 1.31
56 1398.02 0.87 1842.79 1.14 1.32 1.31
60 1406.13 0.88 1875.66 1.18 1.33 1.34

Cycles (Inter-AS)

pistachio = 1274.66 + 2.27n         (least squares)
pork = 1512.57 + 6n 

Microseconds (Inter-AS)



Pork :  Pistachio   (Inter-AS) Transcribed Data (Intra-AS)

Intra-AS = “ping” and “pong” in same address space

ping pong pistachio Intra-AS IPC pork Intra-AS IPC Ratio, pork/pistachio
#MRs cycles microseconds cycles microseconds cycles microseconds

0 729.19 0.45 1078.71 0.68 1.48 1.51
4 774.74 0.48 1097.90 0.68 1.42 1.42
8 778.49 0.48 1115.55 0.72 1.43 1.50
12 790.04 0.49 1143.99 0.72 1.45 1.47
16 795.65 0.49 1171.99 0.72 1.47 1.47
20 806.12 0.50 1193.23 0.76 1.48 1.52
24 811.85 0.50 1219.75 0.76 1.50 1.52
28 822.54 0.51 1247.19 0.76 1.52 1.49
32 827.20 0.51 1271.19 0.80 1.54 1.57
36 838.69 0.52 1295.20 0.80 1.54 1.54
40 843.37 0.52 1319.39 0.83 1.56 1.60
44 855.89 0.53 1343.43 0.83 1.57 1.57
48 859.57 0.53 1363.04 0.87 1.59 1.64
52 871.08 0.54 1391.45 0.87 1.60 1.61
56 875.72 0.54 1415.61 0.91 1.62 1.69
60 887.38 0.55 1439.58 0.91 1.62 1.65

Cycles (Intra-AS)

pistachio =   756.54 + 2.21n         (least squares)
pork = 1073.54 + 6.11n 

Microseconds (Intra-AS)

Pork :  Pistachio   (Intra-AS) Estimating Clock Frequency

cycles/microsecond
pistachio pork

1611.26 1599.57
1597.01 1610.67
1606.96 1572.43
1612.70 1595.63
1607.27 1575.82
1596.58 1602.92
1606.34 1632.00
1597.95 1654.38
1607.55 1606.50
1598.19 1624.02
1602.45 1586.87
1598.42 1568.30
1607.91 1582.81
1598.71 1595.42
1606.92 1616.48
1597.88 1589.54

Intra-ASInter-AS

cycles/microsecond
pistachio pork

1620.42 1586.34
1614.04 1614.56
1621.85 1549.38
1612.33 1588.88
1623.78 1627.76
1612.24 1570.04
1623.70 1604.93
1612.82 1641.04
1621.96 1588.99
1612.87 1619.00
1621.87 1589.63
1614.89 1618.59
1621.83 1566.71
1613.11 1599.37
1621.70 1555.62
1613.42 1581.96

Pretty consistent with 1.6GHz processor 
frequency,  but estimates from pork are typically a 

little lower than those for Pistachio



Summary

• IPC in Pork is slower than Pistachio (17-65%)
• Overhead for crossing address spaces is higher in 

pork than Pistachio (65% vs 35%)

Comparison Range

Pork/Pistachio (Inter-AS) 1.17 – 1.35

Pork/Pistachio (Intra-AS) 1.42 – 1.65

Inter-AS/Intra-AS (Pork) 1.58 – 1.70

Inter-AS/Intra-AS (Pistachio) 1.30 – 1.40

Performance Tuning Opportunities?

• Are there opportunities for performance-tuning 
pork to reduce the gap?

• Inter-AS:

• Intra-AS:

• Example: pork takes ~6 cycles to transfer a 
machine word, where Pistachio uses around ~2

pistachio =   756.54 + 2.21n         (least squares)
pork = 1073.54 + 6.11n 

pistachio = 1274.66 + 2.27n         (least squares)
pork = 1512.57 + 6n 

loop

initialization

Transfer Message in pork
Source:

for (i=1; i<=u; i++) {
    rutcb->mr[i] = sutcb->mr[i];
}

Machine Code:
 209: ba 01 00 00 00          mov    $0x1,%edx

 20e: 8b 84 97 00 01 00 00    mov    0x100(%edi,%edx,4),%eax
 215: 89 84 91 00 01 00 00    mov    %eax,0x100(%ecx,%edx,4)
 21c: 83 c2 01                add    $0x1,%edx
 21f: 39 d3                   cmp    %edx,%ebx
 221: 73 eb                   jae    20e

Transfer Message in Pistachio
Source:

INLINE void tcb_t::copy_mrs(tcb_t * dest, word_t start, word_t count)
{
    ASSERT(start + count <= IPC_NUM_MR);
    ASSERT(count > 0);
    word_t dummy;

#if defined(CONFIG_X86_SMALL_SPACES)
    asm volatile ("mov %0, %%es" : : "r" (X86_KDS));
#endif

    /* use optimized IA32 copy loop -- uses complete cacheline
       transfers */
    __asm__ __volatile__ (
        "cld\n"
        "rep  movsl (%0), (%1)\n"
        : /* output */
        "=S"(dummy), "=D"(dummy), "=c"(dummy)
        : /* input */
        "c"(count), "S"(&get_utcb()->mr[start]),
        "D"(&dest->get_utcb()->mr[start]));

#if defined(CONFIG_X86_SMALL_SPACES)
    asm volatile ("mov %0, %%es" : : "r" (X86_UDS));
#endif
}

loop

initialization

Transfer Message in Pistachio
Machine Code:

b15: 31 c9                   xor    %ecx,%ecx
b17: 8b 73 0c                mov    0xc(%ebx),%esi
b1a: 8b 7d 0c                mov    0xc(%ebp),%edi
b1d: 88 d1                   mov    %dl,%cl
b1f: 81 c6 04 01 00 00       add    $0x104,%esi
b25: 81 c7 04 01 00 00       add    $0x104,%edi
b2b: fc                      cld    

b2c: f3 a5                   rep movsl %ds:(%esi), %es:(%edi)

Reflections
• In this case, the performance differences between pork and 

Pistachio can be understood and (likely) addressed

• Could be handled by a compiler intrinsic (looks like a 
function, but treated specially by the compiler)

• Familiar in C (memcpy)

• How easily can other performance gaps be closed?

• Other opportunities for intrinsics?  Special handling for 
fast paths? Algorithmic tweaks?  Refined choice of data 
structures? etc.  



Implementing pork
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Introducing “pork”

• pork = the “Portland Oregon Research Kernel”

• An implementation of (a subset of) L4 X.2

• Similar API to Pistachio, but specific to IA32 platform

• Written around the start of 2007

• “I have almost all the pieces that I need to build an L4 
kernel … perhaps I should try putting them together?”

• Built using the techniques we have seen so far in this 
course …

• … let’s take a tour!
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Boot
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boot.S should look very familiar …
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        .global entry
entry:  cli                             # Turn off interrupts

        #------------------------------------------------------------------
        # Create initial page directory:
        ...
        #------------------------------------------------------------------
        # Turn on paging/protected mode execution:
        ...
        #------------------------------------------------------------------
        # Initialize GDT:
        ...
        #------------------------------------------------------------------
        # Initialize IDT:
        ...
        #------------------------------------------------------------------
        # Initialize PIC:
        ...
        jmp    init             # Jump off into kernel, no return!

        #------------------------------------------------------------------
        # Halt processor: Also used as code for the idle thread.
        .global halt
halt:   hlt
        jmp     halt

        #------------------------------------------------------------------
        # Data areas:
        .data
        ...

Exception handlers
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        # Descriptors and handlers for exceptions: ------------------------
        intr    0, divideError
        intr    1, debug
        intr    2, nmiInterrupt
        intr    3, breakpoint
        intr    4, overflow

        intr    5, boundRangeExceeded
        intr    6, invalidOpcode
        intr    7, deviceNotAvailable
        intr    8, doubleFault,         err=HWERR
        intr    9, coprocessorSegmentOverrun

        intr    10, invalidTSS,         err=HWERR
        intr    11, segmentNotPresent,  err=HWERR
        intr    12, stackSegmentFault,  err=HWERR
        intr    13, generalProtection,  err=HWERR
        intr    14, pageFault,          err=HWERR

        // Slot 15 is Intel Reserved
        intr    16, floatingPointError
        intr    17, alignmentCheck,     err=HWERR
        intr    18, machineCheck
        intr    19, simdFloatingPointException

        // Slots 20-31 are Intel Reserved

Hardware interrupt handlers
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        # Add descriptors for hardware irqs: ------------------------------
        .equ    IRQ_BASE,   0x20        # lowest hw irq number

        .irp    num,        0x21,0x22,0x23, 0x24,0x25,0x26,0x27, \
                            0x28,0x29,0x2a,0x2b, 0x2c,0x2d,0x2e,0x2f
        intr    \num, service=hardwareIRQ, err=(\num-IRQ_BASE)
        .endr

        intr    0x20, timerInterrupt



System call entry points
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        # Add descriptors for system calls: -------------------------------
        # These are the only idt entries that we will allow to be called
        # from user mode without generating a general protection fault,
        # so they will be tagged with dpl=3.
        intr    INT_THREADCONTROL, threadControl,     err=NOERR, dpl=3
        intr    INT_SPACECONTROL,  spaceControl,      err=NOERR, dpl=3
        intr    INT_IPC,           ipc,               err=NOERR, dpl=3
        intr    INT_EXCHANGEREGS,  exchangeRegisters, err=NOERR, dpl=3
        intr    INT_SCHEDULE,      schedule,          err=NOERR, dpl=3
        intr    INT_THREADSWITCH,  threadSwitch,      err=NOERR, dpl=3
        intr    INT_UNMAP,         unmap,             err=NOERR, dpl=3
        intr    INT_PROCCONTROL,   processorControl,  err=NOERR, dpl=3
        intr    INT_MEMCONTROL,    memoryControl,     err=NOERR, dpl=3
        intr    INT_SYSTEMCLOCK,   systemClock,       err=NOERR, dpl=3

Overall kernel structure
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An example exception handler
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ENTRY invalidOpcode() {
  byte* eip = (byte*)current->context.iret.eip;
  if (eip[0]==0xf0 && eip[1]==0x90) { // Check for LOCK NOP instruction
    current->context.iret.eip += 2;   // found => KernelInterface syscall
    KernelInterface_SetBaseAddress = kipStart(current->space);
    KernelInterface_SetAPIVersion  = API_VERSION;
    KernelInterface_SetAPIFlags    = API_FLAGS;
    KernelInterface_SetKernelId    = KERNEL_ID;
    resume();
  }
  handleException(6);
}

The KIP
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What’s in the KIP?
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2 KERNEL INTERFACE PAGE

1.1 Kernel Interface Page [Data Structure]

The kernel-interface page contains API and kernel version data, system descriptors including memory descriptors, and
system-call links. The remainder of the page is undefined.
The page is a microkernel object. It is directly mapped through the microkernel into each address space upon address-

space creation. It is not mapped by a pager, can not be mapped or granted to another address space and can not be
unmapped. The creator of a new address space can specify the address where the kernel interface page has to be mapped.
This address will remain constant through the lifetime of that address space. Any thread can obtain the address of the
kernel interface page through the KERNELINTERFACE system call (see page 7).

L4 version parts

Supplier KernelVer KernelGenDate KernelId KernDescPtr

InternalFreq ExternalFreq ProcDescPtr

MemoryDesc MemDescPtr

⇠ SCHEDULE SC THREADSWITCH SC Reserved +F0 / +1E0

EXCHANGEREGISTERS SC UNMAP SC LIPC SC IPC SC +E0 / +1C0

MEMORYCONTROL pSC PROCESSORCONTROL pSC THREADCONTROL pSC SPACECONTROL pSC +D0 / +1A0

ProcessorInfo PageInfo ThreadInfo ClockInfo +C0 / +180

ProcDescPtr BootInfo ⇠ +B0 / +160

KipAreaInfo UtcbInfo VirtualRegInfo ⇠ +A0 / +140

⇠ +90 / +120

⇠ +80 / +100

⇠ +70 / +E0

⇠ +60 / +C0

⇠ MemoryInfo ⇠ +50 / +A0

⇠ +40 / +80

⇠ +30 / +60

⇠ +20 / +40

⇠ +10 / +20

KernDescPtr API Flags APIVersion 0(0/32) ’K’ 230 ’4’ ’L’ +0

+C / +18 +8 / +10 +4 / +8 +0

kip.S
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                .data
                .align  (1<<PAGESIZE)
                .global Kip, KipEnd
Kip:            .byte   'L', '4', 230, 'K'
                .long   API_VERSION,  API_FLAGS, (KernelDesc - Kip)

                .global Sigma0Server, Sigma1Server, RootServer
Kdebug:         .long   0, 0, 0, 0              # Kernel debugger information
Sigma0Server:   .long   0, 0, 0, 0              # Sigma0 information
Sigma1Server:   .long   0, 0, 0, 0              # Sigma1 information
RootServer:     .long   0, 0, 0, 0              # Rootserver information
                .long   RESERVED

                .global MemoryInfo
                .macro memoryInfo offset, number
                .long   ((\offset<<16) | \number)
                .endm
MemoryInfo:      memoryInfo offset=(MemDesc-Kip), number=0

KdebugConfig:   .long   0, 0

                .long   RESERVED, RESERVED, RESERVED, RESERVED
                .long   RESERVED, RESERVED, RESERVED, RESERVED
                .long   RESERVED, RESERVED, RESERVED, RESERVED
                .long   RESERVED, RESERVED, RESERVED, RESERVED
                .long   RESERVED

VirtRegInfo:    .long   NUMMRS-1                # virtual register information
                ...



Onetime macros
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KernelDesc:     .long   KERNEL_ID               # Kernel Descriptor

                .macro  kernelGenDate day, month, year
                .long   (\year-2000)<<9 | (\month<<5) | \day
                .endm
                kernelGenDate day=4, month=2, year=2007

                .macro  kernelVer ver, subver, subsubver
                .long   (((\ver<<8) | \subver)<<16) | \subsubver
                .endm
                kernelVer ver=1, subver=2, subsubver=0

Kernel entry points
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SystemCalls:    .long   (spaceControlEntry      - Kip)
                .long   (threadControlEntry     - Kip)
                .long   (ipcEntry               - Kip)
                ...
                .long   (exchangeRegistersEntry - Kip)
                .long   (threadSwitchEntry      - Kip)
                ...

                #-- Privileged system call entry points: ------------------
                .align  128
spaceControlEntry:
                int     $INT_SPACECONTROL
                ret
threadControlEntry:
                int     $INT_THREADCONTROL
                ret
                ...  

                #-- System call entry points: -----------------------------
ipcEntry:       int     $INT_IPC
                ret

threadSwitchEntry:
                int     $INT_THREADSWITCH
                ret
                ...

Thread Ids
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• User programs can reference other threads using thread ids

Thread Ids
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14 THREADID

2.1 ThreadId [Data Type]

Thread IDs identify threads and hardware interrupts. A thread ID can be global or local. Global thread IDs are unique
through the entire system. They identify threads independently of the address space in which they are used. Local thread
IDs exist per address space; the scope of a thread’s local ID is only the thread’s own address space. In different address
spaces, the same local thread ID may identify different and unrelated threads.
Note that any thread has a global and a local thread ID. Both global and local thread IDs are encoded in a single word.

Global Thread ID
A global thread ID consists of a word, where 18 bits (32-bit processor) or 32 bits (64-bit processor) determine the thread
number and 14 bits (32-bit processor) or 32 bits (64-bit processor) are available for a version number. At least one of the
lowermost 6 version bits must be 1 to differentiate a global from a local thread ID.
User-thread numbers can be freely allocated within the interval [UserBase , 2t), where t denotes the upper limit of

thread IDs. The thread-number interval [SystemBase ,UserBase) is reserved for L4-internal threads. Hardware interrupts
are regarded as hardware-implemented threads. Consequently, they are identified by thread IDs. Their corresponding
thread numbers are within the interval [0 , SystemBase). The values SystemBase, UserBase, and t are published in the
kernel interface page (see page 4).

global thread ID
thread no (18/32) version(14/32) 6= 0 (mod 64)

global interrupt ID
intr no (18/32) 1 (14/32)

Global thread IDs have a version field whose content can be freely set by those threads that can create and delete threads.
However, the lowermost 6 bits of the version must not all be 0, i.e. v mod 64 6= 0 must hold for every version v. For
hardware interrupts, the version field is always 1.
The microkernel checks version fields whenever a thread is accessed through its global thread ID. However, the se-

mantics of the version field are not defined by the microkernel. OS personalities are free to use this field for any purpose.
For example, they may use it to make thread IDs unique in time.

Local Thread ID
Local thread IDs identify threads within the same address space. They are identified by the 6 lowermost bits being 0.

local thread ID local id/64 (26/58) 0 0 0 0 0 0

Special Thread IDs
Special IDs exist for nilthread and two wild cards. The thread ID anythread matches with any given thread ID, including
all interrupt IDs. The ID anylocalthread matches all threads that reside in the same address space.

nilthread 0 (32/64)

anythread
�1 (32/64)

anylocalthread
�1 (26/58) 0 0 0 0 0 0
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anythread
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/*-------------------------------------------------------------------------
 * Thread Ids:
 *-----------------------------------------------------------------------*/
typedef unsigned       ThreadId;                    // Global thread id
#define nilthread      0
#define anythread      (-1)
#define anylocalthread ((-1)<<6)
#define threadId(t,v)  ((t<<VERSIONBITS)|v)
#define threadNo(tid)  mask((tid)>>VERSIONBITS, THREADBITS)
#define isGlobal(tid)  (mask(tid,6))

Flexpages
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Flexpages (fpages)
• A generalized form of “page” that can vary in size:

• Includes both 4KB pages and 4MB superpages as special cases

• Also includes special cases to represent the full address space 
(complete) and the empty address space (nilpage):

• Can be represented, in practice, using collections of 4KB and 
4MB pages
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36 FPAGE

4.1 Fpage [Data Type]

Fpages (Flexpages) are regions of the virtual address space. An fpage consists of all pages mapped actually in this region
sans kernel mapped objects, i.e., kernel interface page and UTCBs. Fpages have a size of at least 1 K. For specific
processors, the minimal fpage size may be larger; e.g., a Pentium processor offers a minimal page size of 4 K while the
Alpha processor offers smallest pages of 8 K. Fpages smaller than the minimal page size are treated as nilpages. The
kernel interface page (see page 3) specifies which page sizes are supported by the hardware/kernel. An fpage of size 2s

has a 2s-aligned base address b, i.e., b ⌘ 0 (mod 2s), where s�10 for all architectures.
Mapped fpages are considered inseparable objects. That is, if an fpage is mapped, the mapper can not later partially

unmap the mapped page; the whole fpage must be unmapped in a single operation. The mappee can, however, separate
the fpage and map fpages (objects) of smaller size. Partially unmapping an fpage might or might not work on some
systems. The kernel will give no indication as to whether such an operation succeeded or not.

fpage (b, 2s)
b/210

(22/54) s (6) 0 r w x

Special fpage encodings describe the complete user address space and the nilpage, an fpage which has no base address
and a size of 0:

complete
0 (22/54) s = 1 (6) 0 r w x

nilpage
0 (32/64)

Access Rights

rwx The rwx bits define the accessibility of the fpage:

r readable
w writable
x executable

A bit set to one permits the corresponding access to the newly-mapped/granted page provided
that the mapper itself possesses that access right. If the mapper does not have the access right
itself or if the bit is set to zero the mapped/granted page will not get the corresponding access
right.
Note that processor architectures may impose restrictions on the access-right combinations.
However, read-only (including execute), rwx = 101, and read/write/execute, rwx = 111,
should be valid for any processor architecture. The kernel interface page (see page 3) specifies
which access rights are supported in the processor architecture.

Generic Programming Interface

#include <l4/space.h>

struct FPAGE {Word raw }

Word Readable

Word Writable

36 FPAGE

4.1 Fpage [Data Type]

Fpages (Flexpages) are regions of the virtual address space. An fpage consists of all pages mapped actually in this region
sans kernel mapped objects, i.e., kernel interface page and UTCBs. Fpages have a size of at least 1 K. For specific
processors, the minimal fpage size may be larger; e.g., a Pentium processor offers a minimal page size of 4 K while the
Alpha processor offers smallest pages of 8 K. Fpages smaller than the minimal page size are treated as nilpages. The
kernel interface page (see page 3) specifies which page sizes are supported by the hardware/kernel. An fpage of size 2s

has a 2s-aligned base address b, i.e., b ⌘ 0 (mod 2s), where s�10 for all architectures.
Mapped fpages are considered inseparable objects. That is, if an fpage is mapped, the mapper can not later partially

unmap the mapped page; the whole fpage must be unmapped in a single operation. The mappee can, however, separate
the fpage and map fpages (objects) of smaller size. Partially unmapping an fpage might or might not work on some
systems. The kernel will give no indication as to whether such an operation succeeded or not.

fpage (b, 2s)
b/210

(22/54) s (6) 0 r w x

Special fpage encodings describe the complete user address space and the nilpage, an fpage which has no base address
and a size of 0:

complete
0 (22/54) s = 1 (6) 0 r w x

nilpage
0 (32/64)

Access Rights

rwx The rwx bits define the accessibility of the fpage:

r readable
w writable
x executable

A bit set to one permits the corresponding access to the newly-mapped/granted page provided
that the mapper itself possesses that access right. If the mapper does not have the access right
itself or if the bit is set to zero the mapped/granted page will not get the corresponding access
right.
Note that processor architectures may impose restrictions on the access-right combinations.
However, read-only (including execute), rwx = 101, and read/write/execute, rwx = 111,
should be valid for any processor architecture. The kernel interface page (see page 3) specifies
which access rights are supported in the processor architecture.

Generic Programming Interface

#include <l4/space.h>

struct FPAGE {Word raw }

Word Readable

Word Writable
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Example

The first 128KB of an address space can be represented by:

128K1 x 128KB

64K 64K2 x 64KB

32K 32K 32K 32K4 x 32KB

16K 16K 16K 16K 16K 16K 16K 16K8 x 16KB

8K 8K 8K 8K 8K 8K 8K 8K 8K 8K 8K 8K 8K 8K 8K 8K16 x 8KB

4K4K4K 4K4K 4K4K4K4K 4K4K4K 4K4K 4K4K4K 4K4K4K 4K4K4K 4K4K4K4K 4K4K 4K4K 4K32 x 4KB

If two flexpages overlap, then one includes the other

Flexpage implementation
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/*-------------------------------------------------------------------------
 * The Flexpage datatype:
 *-----------------------------------------------------------------------*/
typedef unsigned Fpage;

static inline Fpage fpage(unsigned base, unsigned size) {
  return align(base, size) | (size<<4);
}

static inline Fpage completeFpage(void) { // [0::Bit 22 | 1::Bit 6 |0|r|w|x]
  return (1<<4);
}

extern unsigned fpsize[];
// initialized to 0 -> 0, 1 -> 32, 2 -> 0, ..., 11 -> 0,
// 12 -> 12, 13 -> 13, ..., 32 -> 32, 33 -> 0, ...
extern unsigned fpmask[];
// initialized to 0 -> 0, 1 -> ~0, 2 -> 0, ..., 11 -> 0, 
// 12 -> 0xfff, 13 -> 0x1fff, ..., 32 -> 0xffffffff, 33 -> 0, ...

static inline unsigned fpageMask(Fpage fp)  { return fpmask[(fp>>4)&0x3f]; }
static inline unsigned fpageSize(Fpage fp)  { return fpsize[(fp>>4)&0x3f]; }
static inline bool     isComplete(Fpage fp) { return ~fpageMask(fp) == 0; }
static inline bool     isNilpage(Fpage fp)  { return fpageMask(fp) == 0;  }
static inline unsigned fpageStart(Fpage fp) { return fp & ~fpageMask(fp); }
static inline unsigned fpageEnd(Fpage fp)   { return fp | fpageMask(fp);  }

Initialization of fpsize and fpmask arrays  
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void initSpaces() {
  // Basic consistency checks:
  ASSERT(mask((unsigned)Kip,PAGESIZE) == 0, "KIP alignment error");
  ASSERT((KipEnd-Kip) <= (1<<KIPAREASIZE),  "KIP size error");
  ASSERT(KIPAREASIZE <= PAGESIZE,           "KIP area size error");
  ASSERT(UTCBSIZE <= PAGESIZE,              "UTCB area size error");

  // Initialize fpage mask and size arrays.
  unsigned i;
  for (i=0; i<64; i++) {
    fpsize[i] = fpmask[i] = 0;
  }
  unsigned k = 0xfff;
  for (i=12; i<=32; i++) {
    fpsize[i] = i;
    fpmask[i] = k;
    k         = (k<<1)|1;
  }
  fpsize[1] = 32;
  fpmask[1] = ~0;

  ...
}

Memory Management
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Kernel Memory Allocator

• void initMemory(void);  
The kernel reserves a pool of 4K pages as part of the 
initialization process.

• void* allocPage1(void);  
Allocates a single page from the kernel pool

• void freePage(void* p);  
Returns a single page to the kernel pool

• bool availPages(unsigned n);  
Checks to see if there are (at least) n free pages

• Around ~150 lines of code, most in initMemory()

• No automatic GC in pork …

!47

Why alloc1()?

• A function f that requires the allocation of up to N pages (but 
never more) has a name of the form fN

• A function that calls fN() will either:

• Call availPages(N) beforehand

• Have a name of the form gM, where M is N plus the number of 
additional pages that gM might require …

• Goal: minimize number of checks for free pages

• Reduce code size

• Improve performance

• Fewer places to write error handling code

!48



Alas, this could fail!

• Consider the following function:

void g1() {    // 1 suffix because this function  
                // allocates a page  
      f();  
      void* p = allocPage1();  
      ...  
    }

• But now suppose f() takes the form:

void f() {  
  if (availPages(1)) { … allocPage1(); … }  
}

• Pork still uses this naming convention, but relies on “disciplined use”

• Maybe a type system could do better … ?

!49

Thread Control Blocks

 50

Thread control blocks (TCBs)
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struct TCB {
  ThreadId       tid;           // this thread's id and version number
  byte           status;        // thread status
  byte           prio;          // thread priority
  byte           padding;
  byte           count;         // for gc of TCBs in kernel memory
  struct UTCB*   utcb;          // pointer to this thread's utcb
  unsigned       vutcb;         // virtual address of utcb

  struct TCB*    sendqueue;     // list of threads waiting to send
  struct TCB*    receiver;      // pointer to owner of sendqueue
  struct TCB*    prev;
  struct TCB*    next;

  struct Space*  space;         // pointer to this thread's addr space
  unsigned       faultCode;     // exception number or page fault addr
  struct Context context;       // context of user level process

  ThreadId       scheduler;     // scheduling parameters
  unsigned       timeslice;
  unsigned       timeleft;
  unsigned       quantleft;
};

version140 idx5tableidx12

ThreadId

TCBTable* tcbDir[4096]

typedef struct TCB TCBTable[32]

!52

Thread control blocks (TCBs)

struct TCB* existsTCB(unsigned threadNo) {
  TCBTable* tab = tcbDir[threadNo>>TCBDIRBITS];
  if (tab) {
    struct TCB* tcb = ((struct TCB*)tab) + mask(threadNo, TCBDIRBITS);
    if (tcb->space) {
      return tcb;
    }
  }
  return 0;
}

struct TCB* findTCB(ThreadId tid) {
  struct TCB* tcb = existsTCB(threadNo(tid));
  return (tcb && tcb->tid==tid) ? tcb : 0;
}

version140 idx5tableidx12

Contextscheduling paramsqueue dataid

ThreadId

struct TCB

!53

Thread control blocks (TCBs)

TCBTable* tcbDir[4096]

typedef struct TCB TCBTable[32]

Allocating and initializing TCBs
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struct TCB* allocTCB1(ThreadId tid, struct Space* space, ThreadId scheduler) {
  unsigned    threadNo = threadNo(tid);
  TCBTable*   tab      = tcbDir[threadNo>>TCBDIRBITS];
  if (!tab) {
    tab = tcbDir[threadNo>>TCBDIRBITS] = (TCBTable*)allocPage1();
  }
  ++tab[0]->count;  // Count an additional TCB in this page
  struct TCB* tcb = ((struct TCB*)tab) + mask(threadNo, TCBDIRBITS);
  tcb->tid        = tid;
  tcb->status     = Halted;
  tcb->space      = space;
  tcb->utcb       = 0;
  tcb->vutcb      = 0xffffffff;
  tcb->sendqueue  = 0;
  tcb->next       = tcb;
  tcb->prev       = tcb;
  tcb->prio       = 128;       // Default is unspecified
  tcb->scheduler  = scheduler;
  tcb->timeslice  =
  tcb->timeleft   = 10000;     // Default timeslice is 10ms
  tcb->quantleft  = 0;         // Default quantum is infinite
  initUserContext(&(tcb->context));
  enterSpace(space);           // Register the thread in this space
  return tcb;
}



Thread Control Blocks (TCBs)
version140 idx5tableidx12

Contextscheduling paramsqueue dataid

ThreadId

struct TCB*  runqueue[256]
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struct TCB

TCBTable* tcbDir[4096]

typedef struct TCB TCBTable[32]

!56

Scheduling data structures: runqueue

Doubly-linked list of 
runnable threads 
with priority p

Doubly-linked list of 
runnable threads 
with priority q

!57

Scheduling data structures: runqueue

Doubly-linked list of 
blocked threads waiting 
to communicate with C

Switching to a new thread (w/o debugging)
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static void inline switchTo(struct TCB* tcb) {
  struct Context* ctxt = &(tcb->context);
  current  = tcb;                  // Change current thread
  *utcbptr = tcb->vutcb            // Change UTCB address
             + (unsigned)&(((struct UTCB*)0)->mr[0]);
  esp0     = (unsigned)(ctxt + 1); // Change esp0
  switchSpace(tcb->space);         // Change address space
  returnToContext(ctxt);
}

...

void switchSpace(struct Space* space) {
  if (space->pdir) {               // No switch for kernel/inactive threads
    if (currentSpace!=space) {
      currentSpace = space;
      setPdir(currentSpace->pdir);
      currentSpace->loaded = 1;
    } else {
      refreshSpace();
    }
  }
}

!59

Scheduling data structures: prioset

/*-------------------------------------------------------------------------
 * Select a new thread to execute.  We pick the next runnable thread with
 * the highest priority.
 */
void reschedule() {
  switchTo(holder = priosetSize ? runqueue[prioset[0]] : idleTCB);
}

Address Spaces

 60



0 4GB

virtual address space

Address space layout
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3GB

user space kernel space

KIP

Kernel  
Information 
Page

(mapped in to every address space)

UTCB area

User 
Thread 
Control  
Block

One UTCB for each (possible) thread in the 
address space

Representing address spaces
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struct Space {                  // Structure known only in this module
  unsigned        pdir;         // Physical address of page directory
  struct Mapping* mem;          // Memory map
  Fpage           kipArea;      // Location of kernel interface page
  Fpage           utcbArea;     // Location of UCTBs
  unsigned        count;        // Count of threads in this space
  unsigned        active;       // Count of active threads in this space
  unsigned        loaded;       // 1 => already loaded in cr3
};

...

void enterSpace(struct Space* space) {
  space->count++;   // increment reference count;
}

...

void configureSpace(struct Space* space, Fpage kipArea, Fpage utcbArea) {
  ASSERT(!activeSpace(space), "configuring active space");
  space->kipArea  = kipArea;
  space->utcbArea = utcbArea;
}

A typical system call
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ENTRY spaceControl() {
  if (!privileged(current->space)) {    /* check for privileged thread   */
    retError(SpaceControl_Result, NO_PRIVILEGE);
  } else {
    struct TCB* dest = findTCB(SpaceControl_SpaceSpecifier);
    if (!dest) {
      retError(SpaceControl_Result, INVALID_SPACE);
    } else if (!activeSpace(dest->space)) { /* ignore if active threads  */
      Fpage kipArea  = SpaceControl_KipArea;
      Fpage utcbArea = SpaceControl_UtcbArea;
      unsigned kipEnd, utcbEnd;
      if (isNilpage(utcbArea)           /* validate utcb area            */
       || fpageSize(utcbArea)<MIN_UTCBAREASIZE
       || (utcbEnd=fpageEnd(utcbArea))>=KERNEL_SPACE) {
        retError(SpaceControl_Result, INVALID_UTCB);
      } else if (isNilpage(kipArea)     /* validate KIP area             */
       || fpageSize(kipArea)!=KIPAREASIZE
       || (kipEnd=fpageEnd(kipArea))>=KERNEL_SPACE
       || (kipEnd>=fpageStart(utcbArea) && utcbEnd>=fpageStart(kipArea))) {
        retError(SpaceControl_Result, INVALID_KIPAREA);
      } else {
        configureSpace(dest->space, kipArea, utcbArea);
      }
    }
    SpaceControl_Result      = 1;
    SpaceControl_Control     = 0;   /* control parameter is not used */
    resume();
  }
}

Spaces and mappings
version140 idx5tableidx12

Contextscheduling paramsqueue dataid

ThreadId

struct Space

struct Mapping
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struct TCB*  runqueue[256]

struct TCB

TCBTable* tcbDir[4096]

typedef struct TCB TCBTable[32]

Representing mappings
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struct Mapping {
  struct Space*   space;        // Which address space is this in?
  struct Mapping* next;
  struct Mapping* prev;
  unsigned        level;
  Fpage           vfp;          // Virtual fpage
  unsigned        phys;         // Physical address
  struct Mapping* left;
  struct Mapping* right;
};

• A binary search tree of memory regions within a single 
address space

• A mapping data base that documents the way that memory 
regions have been mapped between address spaces

Small Objects

• Pork uses only two “small” object types (≤32 bytes):

• Address space descriptors (Space)

• Mapping descriptors (Mapping)

• Kernel allocates/frees pages to store small objects (each 
page can store up to 127 objects)

• Pages with free slots are linked together

0 0
header

object

free space

!66



Page Directories and Page Tables
version140 idx5tableidx12

…

Contextscheduling paramsqueue dataid

ThreadId

struct PTab struct PTab

struct PDir

!67

struct Space

struct Mapping

struct TCB*  runqueue[256]

struct TCB

TCBTable* tcbDir[4096]

typedef struct TCB TCBTable[32]

User TCBs (UTCBs)
version140 idx5tableidx12

…

UTCB

Contextscheduling paramsqueue dataid

ThreadId
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struct PTab struct PTab

struct PDir

struct Space

struct Mapping

struct TCB*  runqueue[256]

struct TCB

TCBTable* tcbDir[4096]

typedef struct TCB TCBTable[32]

IPC
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Thread status
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/*-------------------------------------------------------------------------
 * Thread status:
 * A byte field in each TCB specifies the current status of that thread:
 * +----+----+----+---------+
 * | b6 | b5 | b4 | ipctype |
 * +----+----+----+---------+
 * b3-b0: ipctype (4 bits)
 * b4: 1=>halted, or halt requested (i.e., will halt after IPC)
 * b5: 1=>blocked waiting to send an ipc of the specified type
 * b6: 1=>blocked waiting to receive an ipc of the specified type
 * A zero status byte indicates that the thread is Runnable.
 *-----------------------------------------------------------------------*/
#define Runnable         0
#define Halted           0x10
#define Sending(type)    (0x20|(type))
#define Receiving(type)  (0x40|(type))

typedef enum {
  MRs, PageFault, Exception, Interrupt, Preempt, Startup
} IPCType;

static inline IPCType ipctype(struct TCB* tcb) {
  return (IPCType)(tcb->status & 0xf);
}

The ipc system call 
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/*----------------------------------------------------------------
 * The "IPC" System Call:
 *--------------------------------------------------------------*/
ENTRY ipc() {

  ThreadId to = IPC_GetTo;                       // Send Phase
  if (to!=nilthread) {
    if (!sendPhase(MRs, current, to)) {
      reschedule();
    }
  }

  ThreadId fromSpec = IPC_GetFromSpec(current);  // Receive Phase
  if (fromSpec!=nilthread) {
    current->utcb->mr[0] = 0;
    recvPhase(MRs, current, fromSpec);
  }

  reschedule();
}

The send phase (Part 1)
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static bool sendPhase(IPCType sendtype, struct TCB* send, ThreadId recvId) {
  // Find the receiver TCB: -----------------------------------------------
  struct TCB* recv;
  if (recvId==anythread      ||
      recvId==anylocalthread ||
      !(recv=findTCB(recvId))) {
    sendError(sendtype, send, NonExistingPartner);
    return 0;
  }

  // Determine whether we can send the message immediately: ---------------
  if (isReceiving(recv)) {
    IPCType  recvtype = ipctype(recv);
    ThreadId srcId    = recvFromSpec(recvtype, recv);
    if ((srcId==send->tid) ||
        (srcId==anythread) ||
        (srcId==anylocalthread && send->space==recv->space)) {
      // Destination is blocked and ready to receive from send:
      IPCErr err = transferMessage(sendtype, send, recvtype, recv);
      if (err==NoError) {
        resumeThread(recv);
        return 1;
      } else {
        sendError(sendtype, send, err);
        recvError(recvtype, recv, err);
        return 0;
      }
    }
  }
  ...



The send phase (Part 2)
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  ...
  // Destination is not ready to receive a message, so try to block: ------
  if (sendCanBlock(sendtype, send)) {
    if (send->status==Runnable) {
      removeRunnable(send);
    }
    send->status    = Sending(sendtype) | (Halted & send->status);
    send->receiver  = recv;
    recv->sendqueue = insertTCB(recv->sendqueue, send);
  } else {
    sendError(sendtype, send, NoPartner);
  }
  return 0;
}

Transferring messages
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static IPCErr transferMessage(IPCType sendtype, struct TCB* send,  
                              IPCType recvtype, struct TCB* recv) {
  if (recvtype==MRs) {         // Send to MRs (Destination is user ipc)
    ...
    switch (sendtype) {
      case MRs       : ...    // Send between sets of message registers
      case PageFault : ...    // Send pagefault message to pager
      case Exception : ...    // Send message to an exception handler
      case Interrupt : ...    // Send message to an interrupt handler
   }
  } else if (sendtype==MRs) { // Receive from MRs (Source is user ipc)
     ...
     switch (recvtype) {
       case PageFault : ...   // Receive a response from a pager
       case Exception : ...   // Receive a response from an exception handler
       case Interrupt : ...   // Receive a response from an interrupt handler
       case Startup   : ...   // Receive startup message from thread's pager
  }
  return Protocol;            // Protocol error: incompatible types/format
}

Regular IPC:
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struct UTCB* rutcb = recv->utcb;
struct UTCB* sutcb = send->utcb;
unsigned u         = mask(sutcb->mr[0],    6);   // untyped items
unsigned t         = mask(sutcb->mr[0]>>6, 6);   // typed items
if ((u+t>=NUMMRS) || (t&1)) {
    return MessageOverflow;
} else {
    unsigned i;
    rutcb->mr[0] = MsgTag(sutcb->mr[0]>>16, 0, t, u);
    for (i=1; i<=u; i++) {
         rutcb->mr[i] = sutcb->mr[i];
    }
    if (t>0) {
        Fpage acc = rutcb->acceptor;
        do {
            IPCErr err = transferTyped(send, recv, acc,
                               rutcb->mr[i]   = sutcb->mr[i],
                               rutcb->mr[i+1] = sutcb->mr[i+1]);
            if (err!=NoError) {
                return err;
            }
            i += 2;
        } while ((t-=2)>0);
    }
    return NoError;
}

46 MESSAGES AND MESSAGE REGISTERS (MRS)

5.1 Messages And Message Registers (MRs) [Virtual Registers]

Messages can be sent and received through the IPC system call (see page 55). Basically, the sender writes a message into
the sender’s message registers (MRs) and the receiver reads it from the receiver’s MRs. A kernel will always support at
least 8message registers and no more than 64. The actual number of message registers supported is a kernel configuration
option and is indicated in the VirtualRegInfo field of the kernel interface page. A message can use some or all MRs to
transfer untyped words; it can include fpages which are also specified using MRs.
MRs are virtual registers (see page 11), but they are more transient than TCRs. MRs are read-once registers: once

an MR has been read, its value is undefined until the MR is written again. The send phase of an IPC implicitly reads all
MRs; the receive phase writes the received message into MRs.
The read-once property permits to implement MRs not only by special registers or memory locations, but also by

general registers. Writing to such an MR has to block the corresponding general register for code-generator use; reading
the MR can release it. Typically, code generated by an IDL compiler will load MRs just before an IPC system call and
store them to user variables just afterwards.

Messages
A message consists of up to 3 sections: the mandatory message tag, followed by an optional untyped-words section,
followed by an optional typed-items section. The message tag is always held in MR 0. It contains message control
information and the message label which can be freely set by the user. The kernel associates no semantics with it. Often,
the message label is used to encode a request key or to define the method that should be invoked by the message.

MsgTag [MR0]
label (16/48) flags (4) t (6) u (6)

u Number of untyped words following word 0. MR 1...u hold the untyped words. u = 0 denotes
a message without untyped words. If u is greater than the architecture defined number of MRs
(n), only nMRs will be copied.

t Number of typed-item words following the untyped words or the message tag if no untyped
words are present. The typed items use MR u+1...u+t. A message without typed items has
t = 0.

flags Message flags, see IPC systemcall, page 55.

label Freely available, often used to specify the request type or invoked method.

untyped words [MR1...u ]
The optional untyped-words section holds arbitrary data that is untyped from the kernel’s point
of view. The data is simply copied to the receiver. The kernel associates no semantics with it.

typed items [MRu+1...u+t]
The optional typed-items section is a sequence of items such as map items (page 50), and grant
items (page 52). Typed message items have their type encoded in the lower-most 4 bits of their
first word:

XXX1 Reserved
0000 Reserved
1000 MapItem see page 50
1010 GrantItem see page 52
1100 Reserved
1110 Reserved

MRs ⟹ MRs Example: IPCs from hardware interrupts
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ENTRY hardwareIRQ() {
  unsigned n = current->context.iret.error;
  maskAckIRQ(n); // Mask and acknowledge the interrupt with the PIC
  struct TCB* irqTCB = existsTCB(n);

 if (irqTCB->status==Halted && irqTCB->vutcb!=nilthread) {
    if (sendPhase(Interrupt, irqTCB, irqTCB->vutcb)) {
      irqTCB->status = Receiving(Interrupt) | Halted;
    }
  }
  reschedule(); // allow the user level handler to begin ...
}

Interrupt handler protocol
• When a hardware interrupt occurs, the kernel sends an IPC 

message from the interrupt thread to its pager with the tag:
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INTERRUPT PROTOCOL 71

7.2 Interrupt Protocol [Protocol]

Interrupts are delivered as an IPC call to the interrupt handler thread (i.e., the pager of the interrupt thread). The interrupt
is disabled until the interrupt handler sends a re-enable message.

From Interrupt Thread

�1 (12/44) 0 (4) 0 (4) t = 0 (6) u = 0 (6) MR 0

To Interrupt Thread

0 (16/48) 0 (4) t = 0 (6) u = 0 (6) MR 0

      case Interrupt :   // Send message to an interrupt handler
        rutcb->mr[0] = MsgTag((-1)<<4, 0, 0, 0);
        return NoError;

Interrupt ⟹ MRs Interrupt handler protocol
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INTERRUPT PROTOCOL 71

7.2 Interrupt Protocol [Protocol]

Interrupts are delivered as an IPC call to the interrupt handler thread (i.e., the pager of the interrupt thread). The interrupt
is disabled until the interrupt handler sends a re-enable message.

From Interrupt Thread

�1 (12/44) 0 (4) 0 (4) t = 0 (6) u = 0 (6) MR 0

To Interrupt Thread

0 (16/48) 0 (4) t = 0 (6) u = 0 (6) MR 0

• When the pager has finished handling the error, it sends an 
IPC message back to the interrupt thread to reenable the 
corresponding interrupt

      case Interrupt :   // Receive a response from an interrupt handler
        if (mask(sutcb->mr[0],12)==0) {
          ASSERT(mask(recv->tid, VERSIONBITS)==1, "Wrong irq version");
          ASSERT(threadNo(recv->tid) < NUMIRQs,   "IRQ out of range");
          enableIRQ(threadNo(recv->tid));   // Reenable interrupt
          return NoError;
        }
        break;

MRs ⟹ Interrupt



Example: IPCs from page faults
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ENTRY pageFault() {
  asm("  movl %%cr2, %0\n" : "=r"(current->faultCode));  

  if (current->space==sigma0Space && sigma0map(current->faultCode)) {
    printf("sigma0 case succeeded!\n");
  } else {
    ThreadId  pagerId = current->utcb->pager;
    if (pagerId==nilthread) {
      haltThread(current);
    } else if (sendPhase(PageFault, current, pagerId)) {
      removeRunnable(current);   // Block current if message already delivered
      current->status = Receiving(PageFault);
    }
  }
  refreshSpace();
  reschedule();
}

• When a thread triggers a page fault, the kernel translates that 
event into an IPC to the thread’s pager:

Page fault protocol
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72 PAGEFAULT PROTOCOL

7.3 Pagefault Protocol [Protocol]

A thread generating a pagefault will cause the kernel to transparently generate a pagefault IPC to the faulting thread’s
pager. The behavior of the faulting thread is undefined if the pager does not exactly follow this protocol.

To Pager
faulting user-level IP (32/64) MR 2

fault address (32/64) MR 1

�2 (12/44) 0 r w x 0 (4) t = 0 (6) u = 2 (6) MR 0

rwx The rwx bits specify the fault reason:

r read fault
w write fault
x execute fault

A bit set to one reports the type of the attempted access. On processors that do not differentiate
between read and execute accesses, x is never set. Read and execute accesses will both be
reported by the r bit.

Acceptor [TCR]
0 (22/54) s = 1 (6) 0 0 0 0

The acceptor covers the complete user address space. The kernel accepts mappings or grants
into this region on behalf of the faulting thread. The received message is discarded.

From Pager

MapItem / GrantItem MR 1,2

0 (16/48) 0 (4) t = 2 (6) u = 0 (6) MR 0
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7.3 Pagefault Protocol [Protocol]

A thread generating a pagefault will cause the kernel to transparently generate a pagefault IPC to the faulting thread’s
pager. The behavior of the faulting thread is undefined if the pager does not exactly follow this protocol.

To Pager
faulting user-level IP (32/64) MR 2

fault address (32/64) MR 1

�2 (12/44) 0 r w x 0 (4) t = 0 (6) u = 2 (6) MR 0

rwx The rwx bits specify the fault reason:

r read fault
w write fault
x execute fault

A bit set to one reports the type of the attempted access. On processors that do not differentiate
between read and execute accesses, x is never set. Read and execute accesses will both be
reported by the r bit.

Acceptor [TCR]
0 (22/54) s = 1 (6) 0 0 0 0

The acceptor covers the complete user address space. The kernel accepts mappings or grants
into this region on behalf of the faulting thread. The received message is discarded.

From Pager

MapItem / GrantItem MR 1,2

0 (16/48) 0 (4) t = 2 (6) u = 0 (6) MR 0

• The pager can respond by sending back a reply with a new 
mapping … that also restarts the faulting thread:

• When a thread triggers a page fault, the kernel translates that 
event into an IPC to the thread’s pager:

Page fault protocol
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7.3 Pagefault Protocol [Protocol]

A thread generating a pagefault will cause the kernel to transparently generate a pagefault IPC to the faulting thread’s
pager. The behavior of the faulting thread is undefined if the pager does not exactly follow this protocol.

To Pager
faulting user-level IP (32/64) MR 2

fault address (32/64) MR 1

�2 (12/44) 0 r w x 0 (4) t = 0 (6) u = 2 (6) MR 0

rwx The rwx bits specify the fault reason:

r read fault
w write fault
x execute fault

A bit set to one reports the type of the attempted access. On processors that do not differentiate
between read and execute accesses, x is never set. Read and execute accesses will both be
reported by the r bit.

Acceptor [TCR]
0 (22/54) s = 1 (6) 0 0 0 0

The acceptor covers the complete user address space. The kernel accepts mappings or grants
into this region on behalf of the faulting thread. The received message is discarded.

From Pager

MapItem / GrantItem MR 1,2

0 (16/48) 0 (4) t = 2 (6) u = 0 (6) MR 0

      case PageFault : { // Send pagefault message to pager
          unsigned rwx  = (send->context.iret.error & 2) ? 2 : 4;
          rutcb->mr[0]  = MsgTag(((-2)<<4)|rwx, 0, 0, 2);
          rutcb->mr[1]  = send->faultCode;
          rutcb->mr[2]  = send->context.iret.eip;
        }
        return NoError;

PageFault ⟹ MRs Page fault protocol
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7.3 Pagefault Protocol [Protocol]

A thread generating a pagefault will cause the kernel to transparently generate a pagefault IPC to the faulting thread’s
pager. The behavior of the faulting thread is undefined if the pager does not exactly follow this protocol.

To Pager
faulting user-level IP (32/64) MR 2

fault address (32/64) MR 1

�2 (12/44) 0 r w x 0 (4) t = 0 (6) u = 2 (6) MR 0

rwx The rwx bits specify the fault reason:

r read fault
w write fault
x execute fault

A bit set to one reports the type of the attempted access. On processors that do not differentiate
between read and execute accesses, x is never set. Read and execute accesses will both be
reported by the r bit.

Acceptor [TCR]
0 (22/54) s = 1 (6) 0 0 0 0

The acceptor covers the complete user address space. The kernel accepts mappings or grants
into this region on behalf of the faulting thread. The received message is discarded.

From Pager

MapItem / GrantItem MR 1,2

0 (16/48) 0 (4) t = 2 (6) u = 0 (6) MR 0

• The pager can respond by sending back a reply with a new 
mapping … that also restarts the faulting thread:

      case PageFault :  // Receive a response from a pager
        if (mask(sutcb->mr[0],12)==MsgTag(0, 0, 2, 0)) {
          return transferTyped(send, recv,
                       completeFpage(), sutcb->mr[1], sutcb->mr[2]);
        }
        break;

MRs ⟹ PageFault

Time to poke around … !
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