
Mark P Jones 
Portland State University

Languages & Low-Level Programming

CS 410/510

Week 6: L4 Implementation

Fall 2018

�1

Copyright Notice
• These slides are distributed under the Creative Commons

Attribution 3.0 License

• You are free:

• to share—to copy, distribute and transmit the work

• to remix—to adapt the work

• under the following conditions:

• Attribution: You must attribute the work (but not in any way that
suggests that the author endorses you or your use of the work) as
follows: “Courtesy of Mark P. Jones, Portland State University”

 
The complete license text can be found at  
http://creativecommons.org/licenses/by/3.0/legalcode

 2

Introducing “pork”

• pork = the “Portland Oregon Research Kernel”

• An implementation of (a subset of) L4 X.2

• Similar API to Pistachio, but specific to IA32 platform

• Written around the start of 2007

• “I have almost all the pieces that I need to build an L4
kernel … perhaps I should try putting them together?”

• Built using the techniques we have seen so far in this
course …

!3

Performance Benchmarking:  
Pingpong, Pistachio, and Pork

The pingpong benchmark
• A small L4 benchmark from the Karlsruhe Pistachio

distribution, written in C++

• A single ipc call transfers contents of n message registers
(MRs) between threads

• create two threads, “ping” & “pong”: 
for n = 0, 4, 8, …, 60:  

for 128K times:  
send n MRs from “ping” to “pong” 
send n MRs from “pong” to “ping” 

measure cycles & time per ipc call

• Cycles measured using rdtsc, time measured using
interrupts

Expected Performance Model
t

t = A + Bn
 where A = system call overhead

 B = cost per word

n

Test Platform

• Dell Mini 9 netbook (1.6GHz
Atom N270 CPU)

• Booting via grub from a
flashdrive

Pistachio “Output”

Pork “Output” Transcribed Data (Inter-AS)

Inter-AS = “ping” and “pong” in different address spaces

ping pong pistachio Inter-AS IPC pork Inter-AS IPC Ratio, pork/pistachio
#MRs cycles microseconds cycles microseconds cycles microseconds

0 1240.67 0.77 1519.59 0.95 1.22 1.23
4 1293.58 0.81 1530.14 0.95 1.18 1.17
8 1301.64 0.81 1556.71 0.99 1.20 1.22
12 1306.29 0.81 1579.67 0.99 1.21 1.22
16 1317.96 0.82 1607.34 1.02 1.22 1.24
20 1325.16 0.83 1634.98 1.02 1.23 1.23
24 1333.26 0.83 1664.64 1.02 1.25 1.23
28 1342.28 0.84 1687.47 1.02 1.26 1.21
32 1350.34 0.84 1702.89 1.06 1.26 1.26
36 1358.46 0.85 1721.46 1.06 1.27 1.25
40 1362.08 0.85 1745.56 1.10 1.28 1.29
44 1374.64 0.86 1787.86 1.14 1.30 1.33
48 1382.80 0.86 1804.40 1.14 1.30 1.33
52 1390.88 0.87 1818.78 1.14 1.31 1.31
56 1398.02 0.87 1842.79 1.14 1.32 1.31
60 1406.13 0.88 1875.66 1.18 1.33 1.34

Cycles (Inter-AS)

pistachio = 1274.66 + 2.27n (least squares)
pork = 1512.57 + 6n

Microseconds (Inter-AS)

Pork : Pistachio (Inter-AS) Transcribed Data (Intra-AS)

Intra-AS = “ping” and “pong” in same address space

ping pong pistachio Intra-AS IPC pork Intra-AS IPC Ratio, pork/pistachio
#MRs cycles microseconds cycles microseconds cycles microseconds

0 729.19 0.45 1078.71 0.68 1.48 1.51
4 774.74 0.48 1097.90 0.68 1.42 1.42
8 778.49 0.48 1115.55 0.72 1.43 1.50
12 790.04 0.49 1143.99 0.72 1.45 1.47
16 795.65 0.49 1171.99 0.72 1.47 1.47
20 806.12 0.50 1193.23 0.76 1.48 1.52
24 811.85 0.50 1219.75 0.76 1.50 1.52
28 822.54 0.51 1247.19 0.76 1.52 1.49
32 827.20 0.51 1271.19 0.80 1.54 1.57
36 838.69 0.52 1295.20 0.80 1.54 1.54
40 843.37 0.52 1319.39 0.83 1.56 1.60
44 855.89 0.53 1343.43 0.83 1.57 1.57
48 859.57 0.53 1363.04 0.87 1.59 1.64
52 871.08 0.54 1391.45 0.87 1.60 1.61
56 875.72 0.54 1415.61 0.91 1.62 1.69
60 887.38 0.55 1439.58 0.91 1.62 1.65

Cycles (Intra-AS)

pistachio = 756.54 + 2.21n (least squares)
pork = 1073.54 + 6.11n

Microseconds (Intra-AS)

Pork : Pistachio (Intra-AS) Estimating Clock Frequency

cycles/microsecond
pistachio pork

1611.26 1599.57
1597.01 1610.67
1606.96 1572.43
1612.70 1595.63
1607.27 1575.82
1596.58 1602.92
1606.34 1632.00
1597.95 1654.38
1607.55 1606.50
1598.19 1624.02
1602.45 1586.87
1598.42 1568.30
1607.91 1582.81
1598.71 1595.42
1606.92 1616.48
1597.88 1589.54

Intra-ASInter-AS

cycles/microsecond
pistachio pork

1620.42 1586.34
1614.04 1614.56
1621.85 1549.38
1612.33 1588.88
1623.78 1627.76
1612.24 1570.04
1623.70 1604.93
1612.82 1641.04
1621.96 1588.99
1612.87 1619.00
1621.87 1589.63
1614.89 1618.59
1621.83 1566.71
1613.11 1599.37
1621.70 1555.62
1613.42 1581.96

Pretty consistent with 1.6GHz processor
frequency, but estimates from pork are typically a

little lower than those for Pistachio

Summary

• IPC in Pork is slower than Pistachio (17-65%)
• Overhead for crossing address spaces is higher in

pork than Pistachio (65% vs 35%)

Comparison Range

Pork/Pistachio (Inter-AS) 1.17 – 1.35

Pork/Pistachio (Intra-AS) 1.42 – 1.65

Inter-AS/Intra-AS (Pork) 1.58 – 1.70

Inter-AS/Intra-AS (Pistachio) 1.30 – 1.40

Performance Tuning Opportunities?

• Are there opportunities for performance-tuning
pork to reduce the gap?

• Inter-AS:

• Intra-AS:

• Example: pork takes ~6 cycles to transfer a
machine word, where Pistachio uses around ~2

pistachio = 756.54 + 2.21n (least squares)
pork = 1073.54 + 6.11n

pistachio = 1274.66 + 2.27n (least squares)
pork = 1512.57 + 6n

loop

initialization

Transfer Message in pork
Source:

for (i=1; i<=u; i++) {
 rutcb->mr[i] = sutcb->mr[i];
}

Machine Code:
 209: ba 01 00 00 00 mov $0x1,%edx

 20e: 8b 84 97 00 01 00 00 mov 0x100(%edi,%edx,4),%eax
 215: 89 84 91 00 01 00 00 mov %eax,0x100(%ecx,%edx,4)
 21c: 83 c2 01 add $0x1,%edx
 21f: 39 d3 cmp %edx,%ebx
 221: 73 eb jae 20e

Transfer Message in Pistachio
Source:

INLINE void tcb_t::copy_mrs(tcb_t * dest, word_t start, word_t count)
{
 ASSERT(start + count <= IPC_NUM_MR);
 ASSERT(count > 0);
 word_t dummy;

#if defined(CONFIG_X86_SMALL_SPACES)
 asm volatile ("mov %0, %%es" : : "r" (X86_KDS));
#endif

 /* use optimized IA32 copy loop -- uses complete cacheline
 transfers */
 __asm__ __volatile__ (
 "cld\n"
 "rep movsl (%0), (%1)\n"
 : /* output */
 "=S"(dummy), "=D"(dummy), "=c"(dummy)
 : /* input */
 "c"(count), "S"(&get_utcb()->mr[start]),
 "D"(&dest->get_utcb()->mr[start]));

#if defined(CONFIG_X86_SMALL_SPACES)
 asm volatile ("mov %0, %%es" : : "r" (X86_UDS));
#endif
}

loop

initialization

Transfer Message in Pistachio
Machine Code:

b15: 31 c9 xor %ecx,%ecx
b17: 8b 73 0c mov 0xc(%ebx),%esi
b1a: 8b 7d 0c mov 0xc(%ebp),%edi
b1d: 88 d1 mov %dl,%cl
b1f: 81 c6 04 01 00 00 add $0x104,%esi
b25: 81 c7 04 01 00 00 add $0x104,%edi
b2b: fc cld

b2c: f3 a5 rep movsl %ds:(%esi), %es:(%edi)

Reflections
• In this case, the performance differences between pork and

Pistachio can be understood and (likely) addressed

• Could be handled by a compiler intrinsic (looks like a
function, but treated specially by the compiler)

• Familiar in C (memcpy)

• How easily can other performance gaps be closed?

• Other opportunities for intrinsics? Special handling for
fast paths? Algorithmic tweaks? Refined choice of data
structures? etc.  

Implementing pork

 25

Introducing “pork”

• pork = the “Portland Oregon Research Kernel”

• An implementation of (a subset of) L4 X.2

• Similar API to Pistachio, but specific to IA32 platform

• Written around the start of 2007

• “I have almost all the pieces that I need to build an L4
kernel … perhaps I should try putting them together?”

• Built using the techniques we have seen so far in this
course …

• … let’s take a tour!

!26

Boot

 27

boot.S should look very familiar …

 28

 .global entry
entry: cli # Turn off interrupts

 #--
 # Create initial page directory:
 ...
 #--
 # Turn on paging/protected mode execution:
 ...
 #--
 # Initialize GDT:
 ...
 #--
 # Initialize IDT:
 ...
 #--
 # Initialize PIC:
 ...
 jmp init # Jump off into kernel, no return!

 #--
 # Halt processor: Also used as code for the idle thread.
 .global halt
halt: hlt
 jmp halt

 #--
 # Data areas:
 .data
 ...

Exception handlers

 29

 # Descriptors and handlers for exceptions: ------------------------
 intr 0, divideError
 intr 1, debug
 intr 2, nmiInterrupt
 intr 3, breakpoint
 intr 4, overflow

 intr 5, boundRangeExceeded
 intr 6, invalidOpcode
 intr 7, deviceNotAvailable
 intr 8, doubleFault, err=HWERR
 intr 9, coprocessorSegmentOverrun

 intr 10, invalidTSS, err=HWERR
 intr 11, segmentNotPresent, err=HWERR
 intr 12, stackSegmentFault, err=HWERR
 intr 13, generalProtection, err=HWERR
 intr 14, pageFault, err=HWERR

 // Slot 15 is Intel Reserved
 intr 16, floatingPointError
 intr 17, alignmentCheck, err=HWERR
 intr 18, machineCheck
 intr 19, simdFloatingPointException

 // Slots 20-31 are Intel Reserved

Hardware interrupt handlers

 30

 # Add descriptors for hardware irqs: ------------------------------
 .equ IRQ_BASE, 0x20 # lowest hw irq number

 .irp num, 0x21,0x22,0x23, 0x24,0x25,0x26,0x27, \
 0x28,0x29,0x2a,0x2b, 0x2c,0x2d,0x2e,0x2f
 intr \num, service=hardwareIRQ, err=(\num-IRQ_BASE)
 .endr

 intr 0x20, timerInterrupt

System call entry points

 31

 # Add descriptors for system calls: -------------------------------
 # These are the only idt entries that we will allow to be called
 # from user mode without generating a general protection fault,
 # so they will be tagged with dpl=3.
 intr INT_THREADCONTROL, threadControl, err=NOERR, dpl=3
 intr INT_SPACECONTROL, spaceControl, err=NOERR, dpl=3
 intr INT_IPC, ipc, err=NOERR, dpl=3
 intr INT_EXCHANGEREGS, exchangeRegisters, err=NOERR, dpl=3
 intr INT_SCHEDULE, schedule, err=NOERR, dpl=3
 intr INT_THREADSWITCH, threadSwitch, err=NOERR, dpl=3
 intr INT_UNMAP, unmap, err=NOERR, dpl=3
 intr INT_PROCCONTROL, processorControl, err=NOERR, dpl=3
 intr INT_MEMCONTROL, memoryControl, err=NOERR, dpl=3
 intr INT_SYSTEMCLOCK, systemClock, err=NOERR, dpl=3

Overall kernel structure

 32

Int
err

up
t

Hand
ler

s

Sys
tem

 C
alls

Ex
cep

tio
n

Hand
ler

s

Shared (Kernel) State

Boot

An example exception handler

 33

ENTRY invalidOpcode() {
 byte* eip = (byte*)current->context.iret.eip;
 if (eip[0]==0xf0 && eip[1]==0x90) { // Check for LOCK NOP instruction
 current->context.iret.eip += 2; // found => KernelInterface syscall
 KernelInterface_SetBaseAddress = kipStart(current->space);
 KernelInterface_SetAPIVersion = API_VERSION;
 KernelInterface_SetAPIFlags = API_FLAGS;
 KernelInterface_SetKernelId = KERNEL_ID;
 resume();
 }
 handleException(6);
}

The KIP

 34

What’s in the KIP?

 35

2 KERNEL INTERFACE PAGE

1.1 Kernel Interface Page [Data Structure]

The kernel-interface page contains API and kernel version data, system descriptors including memory descriptors, and
system-call links. The remainder of the page is undefined.
The page is a microkernel object. It is directly mapped through the microkernel into each address space upon address-

space creation. It is not mapped by a pager, can not be mapped or granted to another address space and can not be
unmapped. The creator of a new address space can specify the address where the kernel interface page has to be mapped.
This address will remain constant through the lifetime of that address space. Any thread can obtain the address of the
kernel interface page through the KERNELINTERFACE system call (see page 7).

L4 version parts

Supplier KernelVer KernelGenDate KernelId KernDescPtr

InternalFreq ExternalFreq ProcDescPtr

MemoryDesc MemDescPtr

⇠ SCHEDULE SC THREADSWITCH SC Reserved +F0 / +1E0

EXCHANGEREGISTERS SC UNMAP SC LIPC SC IPC SC +E0 / +1C0

MEMORYCONTROL pSC PROCESSORCONTROL pSC THREADCONTROL pSC SPACECONTROL pSC +D0 / +1A0

ProcessorInfo PageInfo ThreadInfo ClockInfo +C0 / +180

ProcDescPtr BootInfo ⇠ +B0 / +160

KipAreaInfo UtcbInfo VirtualRegInfo ⇠ +A0 / +140

⇠ +90 / +120

⇠ +80 / +100

⇠ +70 / +E0

⇠ +60 / +C0

⇠ MemoryInfo ⇠ +50 / +A0

⇠ +40 / +80

⇠ +30 / +60

⇠ +20 / +40

⇠ +10 / +20

KernDescPtr API Flags APIVersion 0(0/32) ’K’ 230 ’4’ ’L’ +0

+C / +18 +8 / +10 +4 / +8 +0

kip.S

 36

 .data
 .align (1<<PAGESIZE)
 .global Kip, KipEnd
Kip: .byte 'L', '4', 230, 'K'
 .long API_VERSION, API_FLAGS, (KernelDesc - Kip)

 .global Sigma0Server, Sigma1Server, RootServer
Kdebug: .long 0, 0, 0, 0 # Kernel debugger information
Sigma0Server: .long 0, 0, 0, 0 # Sigma0 information
Sigma1Server: .long 0, 0, 0, 0 # Sigma1 information
RootServer: .long 0, 0, 0, 0 # Rootserver information
 .long RESERVED

 .global MemoryInfo
 .macro memoryInfo offset, number
 .long ((\offset<<16) | \number)
 .endm
MemoryInfo: memoryInfo offset=(MemDesc-Kip), number=0

KdebugConfig: .long 0, 0

 .long RESERVED, RESERVED, RESERVED, RESERVED
 .long RESERVED, RESERVED, RESERVED, RESERVED
 .long RESERVED, RESERVED, RESERVED, RESERVED
 .long RESERVED, RESERVED, RESERVED, RESERVED
 .long RESERVED

VirtRegInfo: .long NUMMRS-1 # virtual register information
 ...

Onetime macros

 37

KernelDesc: .long KERNEL_ID # Kernel Descriptor

 .macro kernelGenDate day, month, year
 .long (\year-2000)<<9 | (\month<<5) | \day
 .endm
 kernelGenDate day=4, month=2, year=2007

 .macro kernelVer ver, subver, subsubver
 .long (((\ver<<8) | \subver)<<16) | \subsubver
 .endm
 kernelVer ver=1, subver=2, subsubver=0

Kernel entry points

 38

SystemCalls: .long (spaceControlEntry - Kip)
 .long (threadControlEntry - Kip)
 .long (ipcEntry - Kip)
 ...
 .long (exchangeRegistersEntry - Kip)
 .long (threadSwitchEntry - Kip)
 ...

 #-- Privileged system call entry points: ------------------
 .align 128
spaceControlEntry:
 int $INT_SPACECONTROL
 ret
threadControlEntry:
 int $INT_THREADCONTROL
 ret
 ...  

 #-- System call entry points: -----------------------------
ipcEntry: int $INT_IPC
 ret

threadSwitchEntry:
 int $INT_THREADSWITCH
 ret
 ...

Thread Ids

 39

• User programs can reference other threads using thread ids

Thread Ids

 40

14 THREADID

2.1 ThreadId [Data Type]

Thread IDs identify threads and hardware interrupts. A thread ID can be global or local. Global thread IDs are unique
through the entire system. They identify threads independently of the address space in which they are used. Local thread
IDs exist per address space; the scope of a thread’s local ID is only the thread’s own address space. In different address
spaces, the same local thread ID may identify different and unrelated threads.
Note that any thread has a global and a local thread ID. Both global and local thread IDs are encoded in a single word.

Global Thread ID
A global thread ID consists of a word, where 18 bits (32-bit processor) or 32 bits (64-bit processor) determine the thread
number and 14 bits (32-bit processor) or 32 bits (64-bit processor) are available for a version number. At least one of the
lowermost 6 version bits must be 1 to differentiate a global from a local thread ID.
User-thread numbers can be freely allocated within the interval [UserBase , 2t), where t denotes the upper limit of

thread IDs. The thread-number interval [SystemBase ,UserBase) is reserved for L4-internal threads. Hardware interrupts
are regarded as hardware-implemented threads. Consequently, they are identified by thread IDs. Their corresponding
thread numbers are within the interval [0 , SystemBase). The values SystemBase, UserBase, and t are published in the
kernel interface page (see page 4).

global thread ID
thread no (18/32) version(14/32) 6= 0 (mod 64)

global interrupt ID
intr no (18/32) 1 (14/32)

Global thread IDs have a version field whose content can be freely set by those threads that can create and delete threads.
However, the lowermost 6 bits of the version must not all be 0, i.e. v mod 64 6= 0 must hold for every version v. For
hardware interrupts, the version field is always 1.
The microkernel checks version fields whenever a thread is accessed through its global thread ID. However, the se-

mantics of the version field are not defined by the microkernel. OS personalities are free to use this field for any purpose.
For example, they may use it to make thread IDs unique in time.

Local Thread ID
Local thread IDs identify threads within the same address space. They are identified by the 6 lowermost bits being 0.

local thread ID local id/64 (26/58) 0 0 0 0 0 0

Special Thread IDs
Special IDs exist for nilthread and two wild cards. The thread ID anythread matches with any given thread ID, including
all interrupt IDs. The ID anylocalthread matches all threads that reside in the same address space.

nilthread 0 (32/64)

anythread
�1 (32/64)

anylocalthread
�1 (26/58) 0 0 0 0 0 0

14 THREADID

2.1 ThreadId [Data Type]

Thread IDs identify threads and hardware interrupts. A thread ID can be global or local. Global thread IDs are unique
through the entire system. They identify threads independently of the address space in which they are used. Local thread
IDs exist per address space; the scope of a thread’s local ID is only the thread’s own address space. In different address
spaces, the same local thread ID may identify different and unrelated threads.
Note that any thread has a global and a local thread ID. Both global and local thread IDs are encoded in a single word.

Global Thread ID
A global thread ID consists of a word, where 18 bits (32-bit processor) or 32 bits (64-bit processor) determine the thread
number and 14 bits (32-bit processor) or 32 bits (64-bit processor) are available for a version number. At least one of the
lowermost 6 version bits must be 1 to differentiate a global from a local thread ID.
User-thread numbers can be freely allocated within the interval [UserBase , 2t), where t denotes the upper limit of

thread IDs. The thread-number interval [SystemBase ,UserBase) is reserved for L4-internal threads. Hardware interrupts
are regarded as hardware-implemented threads. Consequently, they are identified by thread IDs. Their corresponding
thread numbers are within the interval [0 , SystemBase). The values SystemBase, UserBase, and t are published in the
kernel interface page (see page 4).

global thread ID
thread no (18/32) version(14/32) 6= 0 (mod 64)

global interrupt ID
intr no (18/32) 1 (14/32)

Global thread IDs have a version field whose content can be freely set by those threads that can create and delete threads.
However, the lowermost 6 bits of the version must not all be 0, i.e. v mod 64 6= 0 must hold for every version v. For
hardware interrupts, the version field is always 1.
The microkernel checks version fields whenever a thread is accessed through its global thread ID. However, the se-

mantics of the version field are not defined by the microkernel. OS personalities are free to use this field for any purpose.
For example, they may use it to make thread IDs unique in time.

Local Thread ID
Local thread IDs identify threads within the same address space. They are identified by the 6 lowermost bits being 0.

local thread ID local id/64 (26/58) 0 0 0 0 0 0

Special Thread IDs
Special IDs exist for nilthread and two wild cards. The thread ID anythread matches with any given thread ID, including
all interrupt IDs. The ID anylocalthread matches all threads that reside in the same address space.

nilthread 0 (32/64)

anythread
�1 (32/64)

anylocalthread
�1 (26/58) 0 0 0 0 0 0

14 THREADID

2.1 ThreadId [Data Type]

Thread IDs identify threads and hardware interrupts. A thread ID can be global or local. Global thread IDs are unique
through the entire system. They identify threads independently of the address space in which they are used. Local thread
IDs exist per address space; the scope of a thread’s local ID is only the thread’s own address space. In different address
spaces, the same local thread ID may identify different and unrelated threads.
Note that any thread has a global and a local thread ID. Both global and local thread IDs are encoded in a single word.

Global Thread ID
A global thread ID consists of a word, where 18 bits (32-bit processor) or 32 bits (64-bit processor) determine the thread
number and 14 bits (32-bit processor) or 32 bits (64-bit processor) are available for a version number. At least one of the
lowermost 6 version bits must be 1 to differentiate a global from a local thread ID.
User-thread numbers can be freely allocated within the interval [UserBase , 2t), where t denotes the upper limit of

thread IDs. The thread-number interval [SystemBase ,UserBase) is reserved for L4-internal threads. Hardware interrupts
are regarded as hardware-implemented threads. Consequently, they are identified by thread IDs. Their corresponding
thread numbers are within the interval [0 , SystemBase). The values SystemBase, UserBase, and t are published in the
kernel interface page (see page 4).

global thread ID
thread no (18/32) version(14/32) 6= 0 (mod 64)

global interrupt ID
intr no (18/32) 1 (14/32)

Global thread IDs have a version field whose content can be freely set by those threads that can create and delete threads.
However, the lowermost 6 bits of the version must not all be 0, i.e. v mod 64 6= 0 must hold for every version v. For
hardware interrupts, the version field is always 1.
The microkernel checks version fields whenever a thread is accessed through its global thread ID. However, the se-

mantics of the version field are not defined by the microkernel. OS personalities are free to use this field for any purpose.
For example, they may use it to make thread IDs unique in time.

Local Thread ID
Local thread IDs identify threads within the same address space. They are identified by the 6 lowermost bits being 0.

local thread ID local id/64 (26/58) 0 0 0 0 0 0

Special Thread IDs
Special IDs exist for nilthread and two wild cards. The thread ID anythread matches with any given thread ID, including
all interrupt IDs. The ID anylocalthread matches all threads that reside in the same address space.

nilthread 0 (32/64)

anythread
�1 (32/64)

anylocalthread
�1 (26/58) 0 0 0 0 0 0

/*---
 * Thread Ids:
 ---/
typedef unsigned ThreadId; // Global thread id
#define nilthread 0
#define anythread (-1)
#define anylocalthread ((-1)<<6)
#define threadId(t,v) ((t<<VERSIONBITS)|v)
#define threadNo(tid) mask((tid)>>VERSIONBITS, THREADBITS)
#define isGlobal(tid) (mask(tid,6))

Flexpages

 41

Flexpages (fpages)
• A generalized form of “page” that can vary in size:

• Includes both 4KB pages and 4MB superpages as special cases

• Also includes special cases to represent the full address space
(complete) and the empty address space (nilpage):

• Can be represented, in practice, using collections of 4KB and
4MB pages

 42

36 FPAGE

4.1 Fpage [Data Type]

Fpages (Flexpages) are regions of the virtual address space. An fpage consists of all pages mapped actually in this region
sans kernel mapped objects, i.e., kernel interface page and UTCBs. Fpages have a size of at least 1 K. For specific
processors, the minimal fpage size may be larger; e.g., a Pentium processor offers a minimal page size of 4 K while the
Alpha processor offers smallest pages of 8 K. Fpages smaller than the minimal page size are treated as nilpages. The
kernel interface page (see page 3) specifies which page sizes are supported by the hardware/kernel. An fpage of size 2s

has a 2s-aligned base address b, i.e., b ⌘ 0 (mod 2s), where s�10 for all architectures.
Mapped fpages are considered inseparable objects. That is, if an fpage is mapped, the mapper can not later partially

unmap the mapped page; the whole fpage must be unmapped in a single operation. The mappee can, however, separate
the fpage and map fpages (objects) of smaller size. Partially unmapping an fpage might or might not work on some
systems. The kernel will give no indication as to whether such an operation succeeded or not.

fpage (b, 2s)
b/210

(22/54) s (6) 0 r w x

Special fpage encodings describe the complete user address space and the nilpage, an fpage which has no base address
and a size of 0:

complete
0 (22/54) s = 1 (6) 0 r w x

nilpage
0 (32/64)

Access Rights

rwx The rwx bits define the accessibility of the fpage:

r readable
w writable
x executable

A bit set to one permits the corresponding access to the newly-mapped/granted page provided
that the mapper itself possesses that access right. If the mapper does not have the access right
itself or if the bit is set to zero the mapped/granted page will not get the corresponding access
right.
Note that processor architectures may impose restrictions on the access-right combinations.
However, read-only (including execute), rwx = 101, and read/write/execute, rwx = 111,
should be valid for any processor architecture. The kernel interface page (see page 3) specifies
which access rights are supported in the processor architecture.

Generic Programming Interface

#include <l4/space.h>

struct FPAGE {Word raw }

Word Readable

Word Writable

36 FPAGE

4.1 Fpage [Data Type]

Fpages (Flexpages) are regions of the virtual address space. An fpage consists of all pages mapped actually in this region
sans kernel mapped objects, i.e., kernel interface page and UTCBs. Fpages have a size of at least 1 K. For specific
processors, the minimal fpage size may be larger; e.g., a Pentium processor offers a minimal page size of 4 K while the
Alpha processor offers smallest pages of 8 K. Fpages smaller than the minimal page size are treated as nilpages. The
kernel interface page (see page 3) specifies which page sizes are supported by the hardware/kernel. An fpage of size 2s

has a 2s-aligned base address b, i.e., b ⌘ 0 (mod 2s), where s�10 for all architectures.
Mapped fpages are considered inseparable objects. That is, if an fpage is mapped, the mapper can not later partially

unmap the mapped page; the whole fpage must be unmapped in a single operation. The mappee can, however, separate
the fpage and map fpages (objects) of smaller size. Partially unmapping an fpage might or might not work on some
systems. The kernel will give no indication as to whether such an operation succeeded or not.

fpage (b, 2s)
b/210

(22/54) s (6) 0 r w x

Special fpage encodings describe the complete user address space and the nilpage, an fpage which has no base address
and a size of 0:

complete
0 (22/54) s = 1 (6) 0 r w x

nilpage
0 (32/64)

Access Rights

rwx The rwx bits define the accessibility of the fpage:

r readable
w writable
x executable

A bit set to one permits the corresponding access to the newly-mapped/granted page provided
that the mapper itself possesses that access right. If the mapper does not have the access right
itself or if the bit is set to zero the mapped/granted page will not get the corresponding access
right.
Note that processor architectures may impose restrictions on the access-right combinations.
However, read-only (including execute), rwx = 101, and read/write/execute, rwx = 111,
should be valid for any processor architecture. The kernel interface page (see page 3) specifies
which access rights are supported in the processor architecture.

Generic Programming Interface

#include <l4/space.h>

struct FPAGE {Word raw }

Word Readable

Word Writable

 43

Example

The first 128KB of an address space can be represented by:

128K1 x 128KB

64K 64K2 x 64KB

32K 32K 32K 32K4 x 32KB

16K 16K 16K 16K 16K 16K 16K 16K8 x 16KB

8K 8K 8K 8K 8K 8K 8K 8K 8K 8K 8K 8K 8K 8K 8K 8K16 x 8KB

4K4K4K 4K4K 4K4K4K4K 4K4K4K 4K4K 4K4K4K 4K4K4K 4K4K4K 4K4K4K4K 4K4K 4K4K 4K32 x 4KB

If two flexpages overlap, then one includes the other

Flexpage implementation

 44

/*---
 * The Flexpage datatype:
 ---/
typedef unsigned Fpage;

static inline Fpage fpage(unsigned base, unsigned size) {
 return align(base, size) | (size<<4);
}

static inline Fpage completeFpage(void) { // [0::Bit 22 | 1::Bit 6 |0|r|w|x]
 return (1<<4);
}

extern unsigned fpsize[];
// initialized to 0 -> 0, 1 -> 32, 2 -> 0, ..., 11 -> 0,
// 12 -> 12, 13 -> 13, ..., 32 -> 32, 33 -> 0, ...
extern unsigned fpmask[];
// initialized to 0 -> 0, 1 -> ~0, 2 -> 0, ..., 11 -> 0,
// 12 -> 0xfff, 13 -> 0x1fff, ..., 32 -> 0xffffffff, 33 -> 0, ...

static inline unsigned fpageMask(Fpage fp) { return fpmask[(fp>>4)&0x3f]; }
static inline unsigned fpageSize(Fpage fp) { return fpsize[(fp>>4)&0x3f]; }
static inline bool isComplete(Fpage fp) { return ~fpageMask(fp) == 0; }
static inline bool isNilpage(Fpage fp) { return fpageMask(fp) == 0; }
static inline unsigned fpageStart(Fpage fp) { return fp & ~fpageMask(fp); }
static inline unsigned fpageEnd(Fpage fp) { return fp | fpageMask(fp); }

Initialization of fpsize and fpmask arrays

 45

void initSpaces() {
 // Basic consistency checks:
 ASSERT(mask((unsigned)Kip,PAGESIZE) == 0, "KIP alignment error");
 ASSERT((KipEnd-Kip) <= (1<<KIPAREASIZE), "KIP size error");
 ASSERT(KIPAREASIZE <= PAGESIZE, "KIP area size error");
 ASSERT(UTCBSIZE <= PAGESIZE, "UTCB area size error");

 // Initialize fpage mask and size arrays.
 unsigned i;
 for (i=0; i<64; i++) {
 fpsize[i] = fpmask[i] = 0;
 }
 unsigned k = 0xfff;
 for (i=12; i<=32; i++) {
 fpsize[i] = i;
 fpmask[i] = k;
 k = (k<<1)|1;
 }
 fpsize[1] = 32;
 fpmask[1] = ~0;

 ...
}

Memory Management

 46

Kernel Memory Allocator

• void initMemory(void);  
The kernel reserves a pool of 4K pages as part of the
initialization process.

• void* allocPage1(void);  
Allocates a single page from the kernel pool

• void freePage(void* p);  
Returns a single page to the kernel pool

• bool availPages(unsigned n);  
Checks to see if there are (at least) n free pages

• Around ~150 lines of code, most in initMemory()

• No automatic GC in pork …

!47

Why alloc1()?

• A function f that requires the allocation of up to N pages (but
never more) has a name of the form fN

• A function that calls fN() will either:

• Call availPages(N) beforehand

• Have a name of the form gM, where M is N plus the number of
additional pages that gM might require …

• Goal: minimize number of checks for free pages

• Reduce code size

• Improve performance

• Fewer places to write error handling code

!48

Alas, this could fail!

• Consider the following function:

void g1() { // 1 suffix because this function  
 // allocates a page  
 f();  
 void* p = allocPage1();  
 ...  
 }

• But now suppose f() takes the form:

void f() {  
 if (availPages(1)) { … allocPage1(); … }  
}

• Pork still uses this naming convention, but relies on “disciplined use”

• Maybe a type system could do better … ?

!49

Thread Control Blocks

 50

Thread control blocks (TCBs)

 51

struct TCB {
 ThreadId tid; // this thread's id and version number
 byte status; // thread status
 byte prio; // thread priority
 byte padding;
 byte count; // for gc of TCBs in kernel memory
 struct UTCB* utcb; // pointer to this thread's utcb
 unsigned vutcb; // virtual address of utcb

 struct TCB* sendqueue; // list of threads waiting to send
 struct TCB* receiver; // pointer to owner of sendqueue
 struct TCB* prev;
 struct TCB* next;

 struct Space* space; // pointer to this thread's addr space
 unsigned faultCode; // exception number or page fault addr
 struct Context context; // context of user level process

 ThreadId scheduler; // scheduling parameters
 unsigned timeslice;
 unsigned timeleft;
 unsigned quantleft;
};

version140 idx5tableidx12

ThreadId

TCBTable* tcbDir[4096]

typedef struct TCB TCBTable[32]

!52

Thread control blocks (TCBs)

struct TCB* existsTCB(unsigned threadNo) {
 TCBTable* tab = tcbDir[threadNo>>TCBDIRBITS];
 if (tab) {
 struct TCB* tcb = ((struct TCB*)tab) + mask(threadNo, TCBDIRBITS);
 if (tcb->space) {
 return tcb;
 }
 }
 return 0;
}

struct TCB* findTCB(ThreadId tid) {
 struct TCB* tcb = existsTCB(threadNo(tid));
 return (tcb && tcb->tid==tid) ? tcb : 0;
}

version140 idx5tableidx12

Contextscheduling paramsqueue dataid

ThreadId

struct TCB

!53

Thread control blocks (TCBs)

TCBTable* tcbDir[4096]

typedef struct TCB TCBTable[32]

Allocating and initializing TCBs

 54

struct TCB* allocTCB1(ThreadId tid, struct Space* space, ThreadId scheduler) {
 unsigned threadNo = threadNo(tid);
 TCBTable* tab = tcbDir[threadNo>>TCBDIRBITS];
 if (!tab) {
 tab = tcbDir[threadNo>>TCBDIRBITS] = (TCBTable*)allocPage1();
 }
 ++tab[0]->count; // Count an additional TCB in this page
 struct TCB* tcb = ((struct TCB*)tab) + mask(threadNo, TCBDIRBITS);
 tcb->tid = tid;
 tcb->status = Halted;
 tcb->space = space;
 tcb->utcb = 0;
 tcb->vutcb = 0xffffffff;
 tcb->sendqueue = 0;
 tcb->next = tcb;
 tcb->prev = tcb;
 tcb->prio = 128; // Default is unspecified
 tcb->scheduler = scheduler;
 tcb->timeslice =
 tcb->timeleft = 10000; // Default timeslice is 10ms
 tcb->quantleft = 0; // Default quantum is infinite
 initUserContext(&(tcb->context));
 enterSpace(space); // Register the thread in this space
 return tcb;
}

Thread Control Blocks (TCBs)
version140 idx5tableidx12

Contextscheduling paramsqueue dataid

ThreadId

struct TCB* runqueue[256]

!55

struct TCB

TCBTable* tcbDir[4096]

typedef struct TCB TCBTable[32]

!56

Scheduling data structures: runqueue

Doubly-linked list of
runnable threads
with priority p

Doubly-linked list of
runnable threads
with priority q

!57

Scheduling data structures: runqueue

Doubly-linked list of
blocked threads waiting
to communicate with C

Switching to a new thread (w/o debugging)

 58

static void inline switchTo(struct TCB* tcb) {
 struct Context* ctxt = &(tcb->context);
 current = tcb; // Change current thread
 *utcbptr = tcb->vutcb // Change UTCB address
 + (unsigned)&(((struct UTCB*)0)->mr[0]);
 esp0 = (unsigned)(ctxt + 1); // Change esp0
 switchSpace(tcb->space); // Change address space
 returnToContext(ctxt);
}

...

void switchSpace(struct Space* space) {
 if (space->pdir) { // No switch for kernel/inactive threads
 if (currentSpace!=space) {
 currentSpace = space;
 setPdir(currentSpace->pdir);
 currentSpace->loaded = 1;
 } else {
 refreshSpace();
 }
 }
}

!59

Scheduling data structures: prioset

/*---
 * Select a new thread to execute. We pick the next runnable thread with
 * the highest priority.
 */
void reschedule() {
 switchTo(holder = priosetSize ? runqueue[prioset[0]] : idleTCB);
}

Address Spaces

 60

0 4GB

virtual address space

Address space layout

 61

3GB

user space kernel space

KIP

Kernel  
Information 
Page

(mapped in to every address space)

UTCB area

User 
Thread 
Control  
Block

One UTCB for each (possible) thread in the
address space

Representing address spaces

 62

struct Space { // Structure known only in this module
 unsigned pdir; // Physical address of page directory
 struct Mapping* mem; // Memory map
 Fpage kipArea; // Location of kernel interface page
 Fpage utcbArea; // Location of UCTBs
 unsigned count; // Count of threads in this space
 unsigned active; // Count of active threads in this space
 unsigned loaded; // 1 => already loaded in cr3
};

...

void enterSpace(struct Space* space) {
 space->count++; // increment reference count;
}

...

void configureSpace(struct Space* space, Fpage kipArea, Fpage utcbArea) {
 ASSERT(!activeSpace(space), "configuring active space");
 space->kipArea = kipArea;
 space->utcbArea = utcbArea;
}

A typical system call

 63

ENTRY spaceControl() {
 if (!privileged(current->space)) { /* check for privileged thread */
 retError(SpaceControl_Result, NO_PRIVILEGE);
 } else {
 struct TCB* dest = findTCB(SpaceControl_SpaceSpecifier);
 if (!dest) {
 retError(SpaceControl_Result, INVALID_SPACE);
 } else if (!activeSpace(dest->space)) { /* ignore if active threads */
 Fpage kipArea = SpaceControl_KipArea;
 Fpage utcbArea = SpaceControl_UtcbArea;
 unsigned kipEnd, utcbEnd;
 if (isNilpage(utcbArea) /* validate utcb area */
 || fpageSize(utcbArea)<MIN_UTCBAREASIZE
 || (utcbEnd=fpageEnd(utcbArea))>=KERNEL_SPACE) {
 retError(SpaceControl_Result, INVALID_UTCB);
 } else if (isNilpage(kipArea) /* validate KIP area */
 || fpageSize(kipArea)!=KIPAREASIZE
 || (kipEnd=fpageEnd(kipArea))>=KERNEL_SPACE
 || (kipEnd>=fpageStart(utcbArea) && utcbEnd>=fpageStart(kipArea))) {
 retError(SpaceControl_Result, INVALID_KIPAREA);
 } else {
 configureSpace(dest->space, kipArea, utcbArea);
 }
 }
 SpaceControl_Result = 1;
 SpaceControl_Control = 0; /* control parameter is not used */
 resume();
 }
}

Spaces and mappings
version140 idx5tableidx12

Contextscheduling paramsqueue dataid

ThreadId

struct Space

struct Mapping

!64

struct TCB* runqueue[256]

struct TCB

TCBTable* tcbDir[4096]

typedef struct TCB TCBTable[32]

Representing mappings

 65

struct Mapping {
 struct Space* space; // Which address space is this in?
 struct Mapping* next;
 struct Mapping* prev;
 unsigned level;
 Fpage vfp; // Virtual fpage
 unsigned phys; // Physical address
 struct Mapping* left;
 struct Mapping* right;
};

• A binary search tree of memory regions within a single
address space

• A mapping data base that documents the way that memory
regions have been mapped between address spaces

Small Objects

• Pork uses only two “small” object types (≤32 bytes):

• Address space descriptors (Space)

• Mapping descriptors (Mapping)

• Kernel allocates/frees pages to store small objects (each
page can store up to 127 objects)

• Pages with free slots are linked together

0 0
header

object

free space

!66

Page Directories and Page Tables
version140 idx5tableidx12

…

Contextscheduling paramsqueue dataid

ThreadId

struct PTab struct PTab

struct PDir

!67

struct Space

struct Mapping

struct TCB* runqueue[256]

struct TCB

TCBTable* tcbDir[4096]

typedef struct TCB TCBTable[32]

User TCBs (UTCBs)
version140 idx5tableidx12

…

UTCB

Contextscheduling paramsqueue dataid

ThreadId

!68

struct PTab struct PTab

struct PDir

struct Space

struct Mapping

struct TCB* runqueue[256]

struct TCB

TCBTable* tcbDir[4096]

typedef struct TCB TCBTable[32]

IPC

 69

Thread status

 70

/*---
 * Thread status:
 * A byte field in each TCB specifies the current status of that thread:
 * +----+----+----+---------+
 * | b6 | b5 | b4 | ipctype |
 * +----+----+----+---------+
 * b3-b0: ipctype (4 bits)
 * b4: 1=>halted, or halt requested (i.e., will halt after IPC)
 * b5: 1=>blocked waiting to send an ipc of the specified type
 * b6: 1=>blocked waiting to receive an ipc of the specified type
 * A zero status byte indicates that the thread is Runnable.
 ---/
#define Runnable 0
#define Halted 0x10
#define Sending(type) (0x20|(type))
#define Receiving(type) (0x40|(type))

typedef enum {
 MRs, PageFault, Exception, Interrupt, Preempt, Startup
} IPCType;

static inline IPCType ipctype(struct TCB* tcb) {
 return (IPCType)(tcb->status & 0xf);
}

The ipc system call

 71

/*--
 * The "IPC" System Call:
 --/
ENTRY ipc() {

 ThreadId to = IPC_GetTo; // Send Phase
 if (to!=nilthread) {
 if (!sendPhase(MRs, current, to)) {
 reschedule();
 }
 }

 ThreadId fromSpec = IPC_GetFromSpec(current); // Receive Phase
 if (fromSpec!=nilthread) {
 current->utcb->mr[0] = 0;
 recvPhase(MRs, current, fromSpec);
 }

 reschedule();
}

The send phase (Part 1)

 72

static bool sendPhase(IPCType sendtype, struct TCB* send, ThreadId recvId) {
 // Find the receiver TCB: ---
 struct TCB* recv;
 if (recvId==anythread ||
 recvId==anylocalthread ||
 !(recv=findTCB(recvId))) {
 sendError(sendtype, send, NonExistingPartner);
 return 0;
 }

 // Determine whether we can send the message immediately: ---------------
 if (isReceiving(recv)) {
 IPCType recvtype = ipctype(recv);
 ThreadId srcId = recvFromSpec(recvtype, recv);
 if ((srcId==send->tid) ||
 (srcId==anythread) ||
 (srcId==anylocalthread && send->space==recv->space)) {
 // Destination is blocked and ready to receive from send:
 IPCErr err = transferMessage(sendtype, send, recvtype, recv);
 if (err==NoError) {
 resumeThread(recv);
 return 1;
 } else {
 sendError(sendtype, send, err);
 recvError(recvtype, recv, err);
 return 0;
 }
 }
 }
 ...

The send phase (Part 2)

 73

 ...
 // Destination is not ready to receive a message, so try to block: ------
 if (sendCanBlock(sendtype, send)) {
 if (send->status==Runnable) {
 removeRunnable(send);
 }
 send->status = Sending(sendtype) | (Halted & send->status);
 send->receiver = recv;
 recv->sendqueue = insertTCB(recv->sendqueue, send);
 } else {
 sendError(sendtype, send, NoPartner);
 }
 return 0;
}

Transferring messages

 74

static IPCErr transferMessage(IPCType sendtype, struct TCB* send,  
 IPCType recvtype, struct TCB* recv) {
 if (recvtype==MRs) { // Send to MRs (Destination is user ipc)
 ...
 switch (sendtype) {
 case MRs : ... // Send between sets of message registers
 case PageFault : ... // Send pagefault message to pager
 case Exception : ... // Send message to an exception handler
 case Interrupt : ... // Send message to an interrupt handler
 }
 } else if (sendtype==MRs) { // Receive from MRs (Source is user ipc)
 ...
 switch (recvtype) {
 case PageFault : ... // Receive a response from a pager
 case Exception : ... // Receive a response from an exception handler
 case Interrupt : ... // Receive a response from an interrupt handler
 case Startup : ... // Receive startup message from thread's pager
 }
 return Protocol; // Protocol error: incompatible types/format
}

Regular IPC:

 75

struct UTCB* rutcb = recv->utcb;
struct UTCB* sutcb = send->utcb;
unsigned u = mask(sutcb->mr[0], 6); // untyped items
unsigned t = mask(sutcb->mr[0]>>6, 6); // typed items
if ((u+t>=NUMMRS) || (t&1)) {
 return MessageOverflow;
} else {
 unsigned i;
 rutcb->mr[0] = MsgTag(sutcb->mr[0]>>16, 0, t, u);
 for (i=1; i<=u; i++) {
 rutcb->mr[i] = sutcb->mr[i];
 }
 if (t>0) {
 Fpage acc = rutcb->acceptor;
 do {
 IPCErr err = transferTyped(send, recv, acc,
 rutcb->mr[i] = sutcb->mr[i],
 rutcb->mr[i+1] = sutcb->mr[i+1]);
 if (err!=NoError) {
 return err;
 }
 i += 2;
 } while ((t-=2)>0);
 }
 return NoError;
}

46 MESSAGES AND MESSAGE REGISTERS (MRS)

5.1 Messages And Message Registers (MRs) [Virtual Registers]

Messages can be sent and received through the IPC system call (see page 55). Basically, the sender writes a message into
the sender’s message registers (MRs) and the receiver reads it from the receiver’s MRs. A kernel will always support at
least 8message registers and no more than 64. The actual number of message registers supported is a kernel configuration
option and is indicated in the VirtualRegInfo field of the kernel interface page. A message can use some or all MRs to
transfer untyped words; it can include fpages which are also specified using MRs.
MRs are virtual registers (see page 11), but they are more transient than TCRs. MRs are read-once registers: once

an MR has been read, its value is undefined until the MR is written again. The send phase of an IPC implicitly reads all
MRs; the receive phase writes the received message into MRs.
The read-once property permits to implement MRs not only by special registers or memory locations, but also by

general registers. Writing to such an MR has to block the corresponding general register for code-generator use; reading
the MR can release it. Typically, code generated by an IDL compiler will load MRs just before an IPC system call and
store them to user variables just afterwards.

Messages
A message consists of up to 3 sections: the mandatory message tag, followed by an optional untyped-words section,
followed by an optional typed-items section. The message tag is always held in MR 0. It contains message control
information and the message label which can be freely set by the user. The kernel associates no semantics with it. Often,
the message label is used to encode a request key or to define the method that should be invoked by the message.

MsgTag [MR0]
label (16/48) flags (4) t (6) u (6)

u Number of untyped words following word 0. MR 1...u hold the untyped words. u = 0 denotes
a message without untyped words. If u is greater than the architecture defined number of MRs
(n), only nMRs will be copied.

t Number of typed-item words following the untyped words or the message tag if no untyped
words are present. The typed items use MR u+1...u+t. A message without typed items has
t = 0.

flags Message flags, see IPC systemcall, page 55.

label Freely available, often used to specify the request type or invoked method.

untyped words [MR1...u]
The optional untyped-words section holds arbitrary data that is untyped from the kernel’s point
of view. The data is simply copied to the receiver. The kernel associates no semantics with it.

typed items [MRu+1...u+t]
The optional typed-items section is a sequence of items such as map items (page 50), and grant
items (page 52). Typed message items have their type encoded in the lower-most 4 bits of their
first word:

XXX1 Reserved
0000 Reserved
1000 MapItem see page 50
1010 GrantItem see page 52
1100 Reserved
1110 Reserved

MRs ⟹ MRs Example: IPCs from hardware interrupts

 76

ENTRY hardwareIRQ() {
 unsigned n = current->context.iret.error;
 maskAckIRQ(n); // Mask and acknowledge the interrupt with the PIC
 struct TCB* irqTCB = existsTCB(n);

 if (irqTCB->status==Halted && irqTCB->vutcb!=nilthread) {
 if (sendPhase(Interrupt, irqTCB, irqTCB->vutcb)) {
 irqTCB->status = Receiving(Interrupt) | Halted;
 }
 }
 reschedule(); // allow the user level handler to begin ...
}

Interrupt handler protocol
• When a hardware interrupt occurs, the kernel sends an IPC

message from the interrupt thread to its pager with the tag:

 77

INTERRUPT PROTOCOL 71

7.2 Interrupt Protocol [Protocol]

Interrupts are delivered as an IPC call to the interrupt handler thread (i.e., the pager of the interrupt thread). The interrupt
is disabled until the interrupt handler sends a re-enable message.

From Interrupt Thread

�1 (12/44) 0 (4) 0 (4) t = 0 (6) u = 0 (6) MR 0

To Interrupt Thread

0 (16/48) 0 (4) t = 0 (6) u = 0 (6) MR 0

 case Interrupt : // Send message to an interrupt handler
 rutcb->mr[0] = MsgTag((-1)<<4, 0, 0, 0);
 return NoError;

Interrupt ⟹ MRs Interrupt handler protocol

 78

INTERRUPT PROTOCOL 71

7.2 Interrupt Protocol [Protocol]

Interrupts are delivered as an IPC call to the interrupt handler thread (i.e., the pager of the interrupt thread). The interrupt
is disabled until the interrupt handler sends a re-enable message.

From Interrupt Thread

�1 (12/44) 0 (4) 0 (4) t = 0 (6) u = 0 (6) MR 0

To Interrupt Thread

0 (16/48) 0 (4) t = 0 (6) u = 0 (6) MR 0

• When the pager has finished handling the error, it sends an
IPC message back to the interrupt thread to reenable the
corresponding interrupt

 case Interrupt : // Receive a response from an interrupt handler
 if (mask(sutcb->mr[0],12)==0) {
 ASSERT(mask(recv->tid, VERSIONBITS)==1, "Wrong irq version");
 ASSERT(threadNo(recv->tid) < NUMIRQs, "IRQ out of range");
 enableIRQ(threadNo(recv->tid)); // Reenable interrupt
 return NoError;
 }
 break;

MRs ⟹ Interrupt

Example: IPCs from page faults

 79

ENTRY pageFault() {
 asm(" movl %%cr2, %0\n" : "=r"(current->faultCode));  

 if (current->space==sigma0Space && sigma0map(current->faultCode)) {
 printf("sigma0 case succeeded!\n");
 } else {
 ThreadId pagerId = current->utcb->pager;
 if (pagerId==nilthread) {
 haltThread(current);
 } else if (sendPhase(PageFault, current, pagerId)) {
 removeRunnable(current); // Block current if message already delivered
 current->status = Receiving(PageFault);
 }
 }
 refreshSpace();
 reschedule();
}

• When a thread triggers a page fault, the kernel translates that
event into an IPC to the thread’s pager:

Page fault protocol

 80

72 PAGEFAULT PROTOCOL

7.3 Pagefault Protocol [Protocol]

A thread generating a pagefault will cause the kernel to transparently generate a pagefault IPC to the faulting thread’s
pager. The behavior of the faulting thread is undefined if the pager does not exactly follow this protocol.

To Pager
faulting user-level IP (32/64) MR 2

fault address (32/64) MR 1

�2 (12/44) 0 r w x 0 (4) t = 0 (6) u = 2 (6) MR 0

rwx The rwx bits specify the fault reason:

r read fault
w write fault
x execute fault

A bit set to one reports the type of the attempted access. On processors that do not differentiate
between read and execute accesses, x is never set. Read and execute accesses will both be
reported by the r bit.

Acceptor [TCR]
0 (22/54) s = 1 (6) 0 0 0 0

The acceptor covers the complete user address space. The kernel accepts mappings or grants
into this region on behalf of the faulting thread. The received message is discarded.

From Pager

MapItem / GrantItem MR 1,2

0 (16/48) 0 (4) t = 2 (6) u = 0 (6) MR 0

72 PAGEFAULT PROTOCOL

7.3 Pagefault Protocol [Protocol]

A thread generating a pagefault will cause the kernel to transparently generate a pagefault IPC to the faulting thread’s
pager. The behavior of the faulting thread is undefined if the pager does not exactly follow this protocol.

To Pager
faulting user-level IP (32/64) MR 2

fault address (32/64) MR 1

�2 (12/44) 0 r w x 0 (4) t = 0 (6) u = 2 (6) MR 0

rwx The rwx bits specify the fault reason:

r read fault
w write fault
x execute fault

A bit set to one reports the type of the attempted access. On processors that do not differentiate
between read and execute accesses, x is never set. Read and execute accesses will both be
reported by the r bit.

Acceptor [TCR]
0 (22/54) s = 1 (6) 0 0 0 0

The acceptor covers the complete user address space. The kernel accepts mappings or grants
into this region on behalf of the faulting thread. The received message is discarded.

From Pager

MapItem / GrantItem MR 1,2

0 (16/48) 0 (4) t = 2 (6) u = 0 (6) MR 0

• The pager can respond by sending back a reply with a new
mapping … that also restarts the faulting thread:

• When a thread triggers a page fault, the kernel translates that
event into an IPC to the thread’s pager:

Page fault protocol

 81

72 PAGEFAULT PROTOCOL

7.3 Pagefault Protocol [Protocol]

A thread generating a pagefault will cause the kernel to transparently generate a pagefault IPC to the faulting thread’s
pager. The behavior of the faulting thread is undefined if the pager does not exactly follow this protocol.

To Pager
faulting user-level IP (32/64) MR 2

fault address (32/64) MR 1

�2 (12/44) 0 r w x 0 (4) t = 0 (6) u = 2 (6) MR 0

rwx The rwx bits specify the fault reason:

r read fault
w write fault
x execute fault

A bit set to one reports the type of the attempted access. On processors that do not differentiate
between read and execute accesses, x is never set. Read and execute accesses will both be
reported by the r bit.

Acceptor [TCR]
0 (22/54) s = 1 (6) 0 0 0 0

The acceptor covers the complete user address space. The kernel accepts mappings or grants
into this region on behalf of the faulting thread. The received message is discarded.

From Pager

MapItem / GrantItem MR 1,2

0 (16/48) 0 (4) t = 2 (6) u = 0 (6) MR 0

 case PageFault : { // Send pagefault message to pager
 unsigned rwx = (send->context.iret.error & 2) ? 2 : 4;
 rutcb->mr[0] = MsgTag(((-2)<<4)|rwx, 0, 0, 2);
 rutcb->mr[1] = send->faultCode;
 rutcb->mr[2] = send->context.iret.eip;
 }
 return NoError;

PageFault ⟹ MRs Page fault protocol

 82

72 PAGEFAULT PROTOCOL

7.3 Pagefault Protocol [Protocol]

A thread generating a pagefault will cause the kernel to transparently generate a pagefault IPC to the faulting thread’s
pager. The behavior of the faulting thread is undefined if the pager does not exactly follow this protocol.

To Pager
faulting user-level IP (32/64) MR 2

fault address (32/64) MR 1

�2 (12/44) 0 r w x 0 (4) t = 0 (6) u = 2 (6) MR 0

rwx The rwx bits specify the fault reason:

r read fault
w write fault
x execute fault

A bit set to one reports the type of the attempted access. On processors that do not differentiate
between read and execute accesses, x is never set. Read and execute accesses will both be
reported by the r bit.

Acceptor [TCR]
0 (22/54) s = 1 (6) 0 0 0 0

The acceptor covers the complete user address space. The kernel accepts mappings or grants
into this region on behalf of the faulting thread. The received message is discarded.

From Pager

MapItem / GrantItem MR 1,2

0 (16/48) 0 (4) t = 2 (6) u = 0 (6) MR 0

• The pager can respond by sending back a reply with a new
mapping … that also restarts the faulting thread:

 case PageFault : // Receive a response from a pager
 if (mask(sutcb->mr[0],12)==MsgTag(0, 0, 2, 0)) {
 return transferTyped(send, recv,
 completeFpage(), sutcb->mr[1], sutcb->mr[2]);
 }
 break;

MRs ⟹ PageFault

Time to poke around … !

 83

