101111 .
01010 Languages & Low-Level Programming

X)gf;;gig CS 410/510

Mark P Jones
Portland State University

Fall 2018

Week 5: Case Study - The L4 Microkernel

Copyright Notice

* These slides are distributed under the Creative Commons
Attribution 3.0 License

* You are free:
* to share—to copy, distribute and transmit the work
* to remix—to adapt the work

* under the following conditions:

* Attribution: You must attribute the work (but not in any way that
suggests that the author endorses you or your use of the work) as
follows: “Courtesy of Mark P. Jones, Portland State University”

The complete license text can be found at
http://creativecommons.org/licenses/by/3.0/legalcode

From ad-hoc to generic

* So far, we’ve been building bare-metal applications in an ad-
hoc manner

* ... which would be reasonable in a custom embedded system

ebut what if we want a more generic, reusable foundation
for building and deploying computer systems?

* (also known as an “operating system” &)

* Let’s take a look at L4 as an initial case study ...

Why L4?

Context ...

Linux Apps Linux Apps POSIX Apps
Linux Linux Native Apps POSIX
OS kernel
Hardware

In the “Programatica” project, we were looking to
build a OS kernel with very high assurance of
separation between domains

Approaches to Kernel Design

* |In a monolithic kernel, all OS code runs in kernel mode
* improves performance; reduces reliability
* A microkernel design aims to minimize the amount of
code that runs in kernel mode (the "trusted computing base"

or TCB) and implement as much functionality as it can in “user
level servers”

* A microkernel must abstract physical memory, CPU
(threads), and interrupts/exceptions

* A microkernel must also provide (efficient) mechanisms for
communication and synchronization

* A microkernel should be “policy free”

Microkernel design: L4

* L4 is a “second generation” u-kernel design, originally
designed by Jochen Liedtke

* Designed to show that p-kernel based systems are usable in
practice with good performance

* Minimalist philosophy: If it can be implemented outside the
kernel, it doesn’t belong inside

Why pick L4?

* L4 is industrially and technically relevant
* Multiple working implementations (Pistachio, Fiasco, OKL4, etc...)
* Multiple supported architectures (ia32, arm, powerpc, mips, sparc, ...)

* Already used in a variety of domains, including real-time, security,
virtual machines & monitors, etc...

* Open Kernel Labs spin-off from NICTA & UNSW
* Commercial use by Qualcomm and others ...

Why pick L4?

* L4 is small enough to be tractable
* Original implementation ~ 12K executable
* Recent/portable/flexible implementations ~ 10-20 KLOC C++
* Much easier to implement that a full POSIX OS, for example!

Why pick L4?

* L4 is real enough to be interesting

* For example, we can run multiple, separated instances of Linux
(specifically: L4Linux,Wombat) on top of an L4 p-kernel

* Use somebody else’s POSIX layer rather than build our own!
* Detailed specification documents are available

Why pick L4?

* L4 is a good representative of the target domain and a
good tool for exposing core research challenges

* Threads, address spaces, IPC, preemption, interrupts, etc... are core H-
kernel concepts, regardless of API details

* It should be possible to retarget to a different APl or p-kernel design

Why pick L4?

* L4 is “not invented here”
* We're not in the business of OS design and implementation

* Leverage the insights and expertise of the OS community so that we
can focus on our own research goals

* A credibility boost, showing that our methods apply to other people’s
problems (we can’t change the OS design to make our lives easier ...)

Evolution of L4

codezero
e L4Linux * 1A32
Fiasco @ Nova
“Dresden * |[A32 & ARM
chhen e OKLinux
Liedke Sydney
Pistachio NICTA NICTA
. Hazelnut { (X.2) P NT # N2 H OKL4 2.x H OKL4 3.01
e clans & Karlsruhe
Chiefs ° Portable Pork selL4 SeL4
* privileged spaces model
* global thread ids
* redirection Hank *|A32 & ARM
* multiprocessor * capability-based
Portland

Evolution of L4 - Case Study |

codezero
e L4Linux * 1A32
Fiasco @ Nova
“Dresden * |A32 & ARM
chhen e OKLinux
Liedke Sydney
Pistachio NICTA NICTA
Hazelnut { (X2) % NI # N2 H OKL4 2.x H OKL4 3.01
« |[A32 ——
e clans & Karlsruhe
ChiefS ° Portable pork SeL4 seL4
* privileged spaces —_— model
* global thread ids
* redirection el *|A32 & ARM
* multiprocessor —— * capability-based

Portland

NICTA NI

* For concreteness, this
presentation will be based
(mostly) on the NICTA NI

version of the L4 spec

* Available in reference section
of D2L course content

* (primary reference for pork)

* Lots of diagrams of bitdata
and memory area structures

* ... implications for language
design?

NICTA L4-embedded
Kernel Reference Manual

Version NICTA N1

National ICT Australia
Embedded Real-Time and Operating Systems Program (ERTOS)
Kensington Research Laboratory, Sydney
l4spec@ertos.nicta.com.au

Based on Reference Manual for L4 X.2
System Architecture Group
Dept. of Computer Science

Universitit Karlsruhe
(L4Ka Team)
1l4speceldka.org

Document Revision 2
October 7, 2005

Evolution of L4 - Case Study 2

o L4Linux

codezero

* [A32

Fiasco Bastei Nova
Jochen “Dresden o |A32.& ARM
¢ OKLinux
Liedke Sydney
Hazelnut { Pi?;?;';“ % N'NCITA { N',SZTA HOKL4 Disc H OKL4 3.0‘
« |A32 ’
« clans & Karlsruhe
Chiefs . Portable pork sel4
* privileged spaces S model
* global thread ids ———
* redirection Hank *|A32 & ARM
* capability-based

* multiprocessor

Portland

Address Space Layout

Userspace perspective

0 3GB 4GB
user space kernel space
KIP UTCB area

Kernel

Information

Page

(mapped in to every address space) g
Thread
Control
Block

One UTCB for each (possible) thread in the
address space

What’s in the KIP?

o
[] I f b h ~ SCHEDULE SC THREADSWITCH SC Re: d +F0 / +1E(
ntormation about the 5 5 !
I I . EXCHANGEREGISTERS SC /_UN\AAP SC, LipC.SC lec.sC £E0 / +1C(
MEMORYCONTROL pSC (API Version i R Al
version (s) subversion () ~ (16)
Processorlnfo 8(
version subversion ‘
ProcDescPtr 0x02 Version 2 6(
0x83 0x80 Experimental Version X.0
KipArealnfo 0x83 0x81 Experimental Version X.1 4
0x84 rev Experimental Version X.2 (Revision rev)
0x85 rev Dresden 2
0x86 rev NICTA N1 (Revision rev)
0x04 rev Version 4 (Revision rev) 04
APIFlags E(
~ (28/60) ww
C(
ce =00 little endian,
=01 : big endian.
A(
ww =00 : 32-bit AP,
=01 : 64-bit API.)4—3(
~ I / +30/ +6(
~I / +20/ +4(
+10/ +2(
KernDescPtr H APIFlags API Version | 0(0/32) |‘l(' 230 +
+C/+18 +8/+10 +4/+8 +0
19
What’s i he KIP?
ats In the {
o
[] I f b h ~ SCHEDULE SC THREADSWITCH SC Re: d +F0 / +1E(
ntormation about the 5 5 !
I I . EXCHANGEREGISTERS SC UNMAP SC Lipc SC Iec SC +E0 / +1C(
MEMORYCONTROL pSC | PROCESSORCONTROL pSC [THREADCONTROL pSC SPACECONTROL pSC +D0 / +1A(
ProcessorInfo Pagelnfo ThreadInfo ClockInfo +CO0 / +18(
.
* Inform b h
n o r atl O n a- O Ut t e ProcDescPtr BootInfo ~ +B0 / +16(
h o St Syste m KipA// Utcblnfo VirtualRegInfo ~ +A0 / +14(
/ / ~ +90 /+12(
(~ +80 / +10(
ProcessorInfo ~
T T ———— 470/ 4B
s The size of the area occupied by a single processor description is 2°. Location of description ~ +60/ +C(
fields for the first processor is denoted by ProcDescPrr. Description fields for pro-
cessors are located directly following the previous one. MemoryInfo ~ +50/ +A(
processors) o 40/ +8(
Number of available system processors.
~ +30/ +6(
Pagelnfo -] +6
page-size mask (5/54) ~m rwz
~ +20/ +4(
page-size mask
If bit k — 10 of the page-size mask field (bit J of the entire word) is set o 1 hardware and kernel ~ +107 +2
support pages of size 2". If the bit is 0 hardware and/or kernel do not support pages of size 2*.
< ok ok . Y
Note that fpages of size 2° can be used, even if 2" is no supported hardware page size. Infor- API Version | 0(0/32) |'1<' 30| H
\ mation about supported hardware page sizes is only a performance hint.
+8/+10 +4/+8 +0

20

What’s in the KIP?

* Information about the

~ SCHEDULE SC THREADSWITCH SC Reserved +F0 / +1E(
. EXCHANGEREGISTERS SC UNMAP SC Lipc SC Irc SC +E0 / +1C(
kernel version
MEMORYCONTROL pSC | PROCESSORCONTROL pSC [THREADCONTROL pSC SPACECONTROL pSC +D0 / +1A(
ProcessorInfo Pagelnfo ThreadInfo ClockInfo +CO0 / +18(
* Information about the [- 807416
h o St Syste m KipArealnfo Utcblnfo VirtualRegInfo ~ +A0 / +14(
~ +90 / +12(
. / ~ +80 / +10(
* Information about
/ ~ +70/ +E(
address space layout / - g
~ / | MemoryInfo | ~ +50/ +A(
/ ~ +40/ +8(
1 |
(+30/ +6(
Utcblnfo
if ‘ ~ (10/42) H 5 (6) ‘ a6 H m (10 ‘ _ +20/ +4(
+10/ +2(
s The minimal area size for an address space’s UTCB area is 2°. The size of the UTCB area limits
the total number of threads k to 2°mk < 2°. A size of 0 indicates that the UTCB is not part of :|Z +
the user address space and cannot be controlled (see page 41).
+0
m UTCB size multiplier.
\ a The UTCB location must be aligned to 2. The total size required for one UTCB is 2“m. J
21
What’s in the KIP?
tsint (
) I nfo rm ati on a b (o) ut th e ~ SCHEDULE SC THREADSWITCH SC Reserved +F0 / +1E(
. EXCHANGEREGISTERS SC UNMAP SC Lipc SC Irc SC +E0 / +1C(
kernel version
MEMORYCONTROL pSC | PROCESSORCONTROL pSC [THREADCONTROL pSC SPACECONTROL pSC +D0 / +1A(
ProcessorInfo Pagelnfo ThreadInfo ClockInfo +CO0 / +18(
* Information about the | | AN - 501416
h o St Syste m KipArealnfo Utcblnfo \ualReglnfo | ~ +A0 / +14(
+90 / +12(
. | +80 / +10(
° Informat|on about OﬁcSGJ[S, re'atl\/e tO the I
+ +
address space layout start of the KIP to system |
call entry points 01 o
* System call entry w01
. ~ +30/ +6(
POIntS ~ +20/ +4(
~ +10/ +2(
e SO h oW can a user KernDescPtr H API Flags API Version | 0(0/32) |'1<' 230) ‘4'|'L' +
Process ﬁnd the KIP +C/+18 +8/+10 +4/+8 +0

address?

22

How to find the KIP

* Option |: Design protocol
* User code assumes a predetermined KIP address
* Option 2: “Slow system call” ... a “virtual” instruction
* User code executes the illegal instruction LOCK NOP

* This triggers an illegal opcode exception, which enters the
kernel

* The kernel checks for this exception, loads the kip address
in to the context registers, and returns to user mode

— EAX — Kernellnterface — EAX base address
- ECX ECX API Version
— EDX EDX API Flags

— ESI lock: nop ESI Kernel ID

— EDI EDI =

— EBX EBX =

— EBP EBP =

— ESP ESP =

What are the gaps for?

~ SCHEDULE SC THREADSWITCH SC Reserved +F0 / +1E0
EXCHANGEREGISTERS SC UNMAP SC Lipc SC Ipc SC +E0 / +1CO
MEMORYCONTROL pSC | PROCESSORCONTROL pSC| THREADCONTROL pSC SPACECONTROL pSC +D0 / +1A0
ProcessorInfo Pagelnfo ThreadInfo ClockInfo +C0/ +180
ProcDescPtr Bootlnfo ~ +B0 /+160
KipArealnfo UtcbInfo VirtualRegInfo ~ +A0 / +140

~ +90 / +120

~ +80 / +100

~ +70/ +EO

~ +60/ +CO

Kdebug.configl + Kdebug.configd MemoryInfo ~ +50/ +A0
root server.high root server.low + root server.IP root server.SP +40/ +80

o1 .high o1 low A o1 IP o1.SP +30/ +60

o9 high oo low A oo IP 00.SP +20/ +40

Kdebug high Kdebug.low + Kdebug.entry Kdebug.init +10/ +20
KernDescPtr APIFlags API Version 0O(0/32) K’ 230‘ Ky ‘ L +0

+C/+18 +8/+10 +4/+8 +0

What’s in the UTCB area?

* Every user thread has a User Thread Control Block (UTCB),
which is a block of memory that the thread uses for

communication with the kernel.

* The UTCB contains:
* Message registers (MRs)

* Thread control registers (TCRs)

» All UTCB:s for a given address space are grouped in a single

block called the UTCB area

* Example: If UTCBs are 512 bytes long, then an address space
with a 4KB UTCB area can support at most 8 threads

25

UTCB Layout (IA32)

* 64 Message “registers”
named MRo, MRy, ..., MRe3

* Miscellaneous other fields: "

* ErrorCode

* ExceptionHandler
* Pager

* Acceptor

* UTCB address points to the
middle of the UTCB

MR63 (32)

MR 4 (32)

MR3 (39)

MR (except for msg receive) (32)

MR 1 (except for msg receive) (32)

~(32)

PreemptedIP (30,

PreemptCallbackIP (32)

VirtualSender/ActualSender (32)

IntendedReceiver (32)

ErrorCode (32)

~ (16) cop flags (s)

preempt flags (g)

ExceptionHandler (3)

Pager (32)

UserDefinedHandle (35

ProcessorNo (30

Acceptor (32)

NotifyBits (32)

NotifyMask (32)

MyGloballd (g5

+252

+16

+12

+8

«— UTCB address + 4

«— UTCB address

26

Trust, and UTCBs

* User processes can read and write whatever values they like
in the UTCB (and in the UTCBs of other threads in the same
address space)

* Protected thread parameters (e.g., priority) must be stored in
a separate TCB data structure that is only accessible to the
kernel

* Any data that is read from the UTCB cannot be trusted and
must be validated by the kernel, as necessary, before use

* Mappings for the UTCB area must be created by the kernel
(otherwise user space code could cause the kernel to page
fault by reading from an unmapped UTCB)

27

UTCB addresses and local thread ids

* Every UTCB must be 64-byte aligned, so the lower 6 bits in
any UTCB address will be zero

* Within a given address space, UTCB addresses are used as
local thread ids:

local thread ID local id/64 (26, 58) 000000

* Other thread ids must have a nonzero value in their least
significant 6 bits

28

How to find the UTCB

* Option |: Design Protocol

* User code assumes a predetermined UTCB address
* Option 2: The UTCB pointer

At boot time, the kernel creates a 4 byte, read only
segment in the GDT for a specific kernelspace address and

loads a corresponding segment selector in $gs

* The kernel stores the UTCB address of the current thread
in that location

* User code can read the UTCB address from %gs:0

29

Configuring an address space

* The addresses of the KIP and the UTCB can be set when a
new address space is created:

* First, create a new thread in a new address space (we’'ll see
how this is done soon)

* Now use the (privileged) SpaceControl system call:

SpaceSpecifier EAX — Space Control — EAX result
control ECX ECX control

KernellnterfacePageArea EDX EDX ~
UtcbArea ESI call SpaceControl ESI ~

— EDI EDI ~

— EBX EBX ~

— EBP EBP ~

— ESP ESP =

* Threads cannot be activated (made runnable) until the
associated address space has been configured in this way

30

Threads

31

Thread Ids

* User programs can

reference other threads using thread ids

global thread ID

thread no (18/32)

Version(14/32) #0 (mod 64)

global interrupt ID

intr no (15/32) 1 (14/32)

local thread ID local id/64 (5,55 000000
nilthread

0 (32/64)
anythread

—1 (32/64)
anylocalthread

~1 (26/58) 000000

32

Thread numbers

* Every thread number falls in to one of three ranges:

0 SystemBase UserBase
I I I
NV
hardware kernel user thread
interrupts reserved numbers

* The SystemBase and UserBase values are defined in the KIP

* Key insight: L4 translates hardware interrupts in to messages
from (special) threads

33

Global ids bad ...

* The reliance on global ids is one of the weaknesses of the
original L4 design

 Any thread can reference any other thread by using its
global id

 Any thread can interfere with another thread (e.g., a denial
of service attack) by using its global id

* Even if thread ids are not officially published, they can still
be guessed or faked

* We could avoid these problems if there were a way to ensure
that any thread only had the capability to access a specific
set of authorized threads ...

34

ThreadControl

* New threads are created using the (privileged) ThreadControl
system call:

dest EAX — Thread Control — EAX result
Pager ECX ECX ~
Scheduler EDX EDX ~
SpaceSpecifier ESI call ThreadControl ESI ~
UtcbLocation EDI EDI ~
— EBX EBX ~
— EBP EBP ~
— ESP ESP =

* |f dest does not exist then the new thread is created in the
same address space as SpaceSpecifier

* If SpaceSpecifier=dest, then a new address space is created
* The UTCBLocation must be within the UTCB area

* If dest exists and SpaceSpecifier is nilthread, then the thread is
deleted

35

Exception handlers, pagers, and schedulers

* Every thread has three associated threads

thread t

i

ExceptionHandler Pager Scheduler

* The exception handler is responsible for dealing with any
exceptions that t generates (specified in UTCB)

* The pager is responsible for dealing with any page faults that
t generates (specified in UTCB)

* The scheduler is responsible for setting the priority and
timeslice for t (hidden inside kernel TCB)

36

Schedule

* If s is the scheduler thread for t, then s can set t’s scheduling
parameters using the Schedule system call:

dest EAX — Schedule — EAX result
prio ECX ECX ~
processor control EDX EDX
preemption control ESI call Schedule ESI ~
tslen EDI EDI remts
total quantum EBX EBX rem total
— EBP EBP ~
— ESP ESP =

* The specified priority cannot be higher than the scheduler’s
own priority

* ts is the timeslice: how long does the thread run before the
kernel will switch to another thread

* quantum specifies a limit on the total time that a thread can
run before it is suspended

37

ThreadSwitch

* A thread can give up any remaining part of its timeslice to
another thread using the ThreadSwitch system call:

dest EAX — ThreadSwitch — EAX =
— ECX ECX =
— EDX EDX =
— ESI call ThreadSwitch ESI =
— EDI EDI =
— EBX EBX =
— EBP EBP =
— ESP ESP =

* If dest is nilthread, then the caller still yields the CPU and the
kernel determines which thread will run next ...

38

ExchangeRegisters

* A thread can read or write parameters of another thread
using the ExchangeRegisters system call:

dest EAX | — Exchange Registers — | EAX result
control ECX ECX control
SP EDX EDX SP
IP EsI call ExchangeRegisters ESI [P
FLAGS EDI EDI FLAGS
UserDefinedHandle ~ EBX EBX UserDefinedHandle
pager EBP EBP pager
— ESP ESP =

* ExchangeRegisters is not “privileged” ... but the destination
thread must be in the same address space as the caller

* The exact effects of an ExchangeRegisters call are specified by
a bit map in the control word:

control

from(ls/gz) 0(3/19) TdhpufszRH

IPC

IPC - Interprocess Communication

* |IPC is a fundamental system call for communication between
threads in L4

* A typical use of IPC proceeds as follows:

* Load the message registers in the UTCB with a message to
send

* Invoke the IPC system call, which has two phases:
* Send the message register values to a specified thread

* Receive new message register values from a thread

* Resume thread that initiated the IPC

41

Why combine send and receive phases!?

* The combination of send and receive phases in a single
system call:

* requires only one system call instead of separate send and
receive system calls

» accomplishes both send and receive actions with only a
single transition in to kernel mode

* matches common communication idioms:
* RPC: Send a request to a thread and wait for its reply

* Server: Send response to a previous request and then
wait for a new request to arrive

42

Synchronization and blocking

* Communication between threads requires a sender and a

receiver

* If either party is not ready, then the communication blocks

* Some versions of L4 allow an IPC call to specify timeout
periods, after which a blocked IPC call will be aborted.

* In practice, it is hard to come up with a good methodology
for picking sensible timeout values

* Other versions of L4 support only two possible timeout

options: 0 (non blocking) and oo (blocking)

43

Specifics

to

FromSpecifier
MR o
UTCB

EAX
ECX
EDX
ESI
EDI
EBX
EBP
ESP

— Ipc —

call Ipc

EAX
ECX
EDX
ESI
EDI
EBX
EBP
ESP

from

~Y

~Y

MR o
MR
MR -

* Some message registers passed in CPU registers

* “to” can be nilthread, if there is no send phase

* “FromSpecified” can be:

* nilthread, if there is no receive phase

e anythread, if it is a server that will accept requests from any

other thread

Message tags

* The value in MRg provides a message tag that describes the
structure of the message in the remaining message registers:

MsgTag [MRo]

label (16/48) flags (4) t (6) U (6)

* label can be used to send/receive a |6 bit data value

* u is the number of untyped words (uninterpreted 32 bit word
values) sent in message registers

* t is the number of typed-item words (Mapltem, Grantltem;
we’ll talk about these soon ...)

45

Example: Interrupt handlers

* When a hardware interrupt occurs, the kernel sends an IPC
message from the interrupt thread to its pager with the tag:

From Interrupt Thread

=1 (12/44) 0@ | 0@ | t=0@ | u=0¢ | MRog

* When the pager has finished handling the error, it sends an
IPC message back to the interrupt thread to reenable the
corresponding interrupt

To Interrupt Thread

0 (16/48) 0@ | t=0@ | v=0¢,) | MRy

46

Example: Thread start

* When a new thread is constructed, it waits for a message

from its pager before starting:

From Pager

Initial SP (3264

Initial IP (32/64)

0 (16/48)

0

t:()(ﬁ)

u:2(6)

MR ,
MR

MR ¢

* When a newly created thread receives a message of this form,
the kernel loads the specified esp and eip values from the
message in to the thread’s context and marks the thread as
being runnable ...

47

Example: Exception handling

* When a thread generates an exception, the kernel sends a
message to the associated exception handler

EAX (35 MR 2

ECX (52, MR 1

EDX (32 MR 19

EBX (32 MR

ESP (32 MR s

EBP (33 MR 7

ESI (52 MR

EDI (32 MR 5

ErorCode (32 MR,

ExceptionNo (32 MR 3

EFLAGS (32 MR

EIP (35 MR

—4/ =5 (12/49) | 0 | 04 | t=0 |u:12(5) MR,

* If it chooses to resume the thread that generated the
exception, it responds with a message of essentially the same
format (possibly having updated registers in the process)

48

Address Space Management

49

Flexpages (fpages)

* A generalized form of “page” that can vary in size:

fpage (b,2%)

b/2'° (32/54

S (6)

or

wT

* Includes both 4KB pages and 4MB superpages as special cases

* Also includes special cases to represent the full address space
(complete) and the empty address space (nilpage):

complete
0 (22/54)

$=1(6)

or

wT

nilpage

0 (32/64)

* Can be represented, in practice, using collections of 4KB and

4MB pages

50

Mapping and granting

* Address spaces in L4 are constructed by mapping or granting
regions of memory between address spaces

|

sender address space receiver address space

page table

tabl
mappings page ta>'e

mappings

physical memory

sender address space receiver address space

‘ grant

page table
mappings

physical memory

51

Mapltems and Grantltems

* A Mapltem specifies a region of memory in the sender’s
address space that will be mapped in to the receiver’s address
space

snd fpage (28/60) Orwz | MRiq

snd base / 1024 (52/54) 0@ |1000| MR;

* A Grantltem specifies a region of memory that will be
removed from the sender’s address space and added to the
receiver’s address space

snd fpage (28/60) Orwz| MRt

snd base / 1024 (23 /54) 0 (6) 1010 | MR;

* Base values are used for mapping between fpages of different
sizes; we will mostly ignore them for now

52

Typed items in IPC messages

* An IPC message can contain multiple “typed items” (either
Mapltem or Grantltem values), that will create mappings in
the receiver based on mappings in the sender

* The receiver sets an “acceptor” fpage in its UTCB to specify
where newly received mappings should be received

* To receive anywhere, set the acceptor to “complete”

* To receive nowhere, set the acceptor to “nilpage”

53

Page faults

* When a thread triggers a page fault, the kernel translates that
event into an IPC to the thread’s pager:

To Pager
g faulting user-level IP (55 /4 MR

fault address (32/64) MR

-2 (12/44) Orwz 0(4) tIO(G) u:2(6) MRO

* The pager can respond by sending back a reply with a new
mapping ... that also restarts the faulting thread:

From Pager

Mapltem / GrantItem MR 2

0 (16/48) O | t=2@ | v=03 | MRo

54

The “recursive address space model”

* created by the kernel at
boot time

* threads in these address
spaces are “privileged”

Oo

pager

root

/

N

all physical memory
is mapped in Oo

AN

* In a dynamic system, we need the ability to revoke previous
mappings ... this will get interesting ...

55

Let’s look at an example ...

56

A demo using “pork”

Thread (48,1)

Thread (I,1) 00 (at 4MB)
kbd ipc pager
Thread (49,1)
pager root (at 5MB)
spawn spawn

ping ipc

Thread (100,1) Thread (200,1)

all physical memory
is mapped in Oo

pager

pong

57

Initialization code in root.c:

printf("This is a root server!\n");
showKIP();

ping L4_GlobalId(100,1);
pong = L4 GlobalId(200,1);

//startPing();

spawn("ping", ping, // Name & thread id
0, ping, // utcbNo & space spec
L4 _Myself(), // Scheduler
L4_Pager(), // Pager
(L4_Word_t)ping thread, // eip

((L4_Word_t)pingstack) + PINGSTACKSIZE); // esp

//startPong();

spawn("pong", pong, // Name & thread id
0, pong, // utcbNo & space spec
L4 Myself(), // Scheduler
L4_Pager(), // Pager
(L4_Word_t)pong_thread, // eip

((L4_Word_t)pongstack) + PONGSTACKSIZE); // esp

//keyboard listener
L4_ThreadId_t keyId
L4_ThreadId_t rootId

L4 GlobalId(1l, 1); // Keyboard on IRQ1l
L4 MyGlobalId(); // My id

printf("keyboard id = %x, my id = %$x\n", keyId, rootId);
printf("associate produces %x\n",
L4 AssociatelInterrupt(keyId, rootId));

58

Event loop code in root.c:

L4 MsgTag t tag = L4 Receive(keyId);
for (;3) {

printf ("received msg (tag=%x) from %x\n", tag, keyId);

if (L4_IpcSucceeded(tag) &&

L4 UntypedWords(tag)==0 &&

L4 TypedWords(tag) ==0) {
printf ("Scancode = 0x%x\n", inb(0x60));

L4 LoadMR(0, 0); // tag: Empty message, ping back to interrupt thread

tag = L4 Call(keyId);
printf("root's Call completed ...\n");
} else {
printf("Ignoring message/failure, trying again
tag = L4 _Receive(keyId);
}
}

printf("This message won't appear!\n");

..o.\n");

59

