
Mark P Jones 
Portland State University

Languages & Low-Level Programming

CS 410/510

Week 5: Case Study - The L4 Microkernel

Fall 2018

�1

Copyright Notice
• These slides are distributed under the Creative Commons

Attribution 3.0 License

• You are free:

• to share—to copy, distribute and transmit the work

• to remix—to adapt the work

• under the following conditions:

• Attribution: You must attribute the work (but not in any way that
suggests that the author endorses you or your use of the work) as
follows: “Courtesy of Mark P. Jones, Portland State University”

 
The complete license text can be found at  
http://creativecommons.org/licenses/by/3.0/legalcode

 2

From ad-hoc to generic
• So far, we’ve been building bare-metal applications in an ad-

hoc manner

• … which would be reasonable in a custom embedded system

• …. but what if we want a more generic, reusable foundation
for building and deploying computer systems?

• (also known as an “operating system” !)

• Let’s take a look at L4 as an initial case study …

 3

Why L4?

 4

Context …

In the “Programatica” project, we were looking to
build a OS kernel with very high assurance of

separation between domains

 5

OS kernel

Native Apps POSIX

POSIX Apps

Linux

Linux Apps

Linux

Linux Apps

Hardware

Approaches to Kernel Design
• In a monolithic kernel, all OS code runs in kernel mode

• improves performance; reduces reliability

• A microkernel design aims to minimize the amount of
code that runs in kernel mode (the "trusted computing base"
or TCB) and implement as much functionality as it can in “user
level servers”

• A microkernel must abstract physical memory, CPU
(threads), and interrupts/exceptions

• A microkernel must also provide (efficient) mechanisms for
communication and synchronization

• A microkernel should be “policy free”

 6

Microkernel design: L4
• L4 is a “second generation” µ-kernel design, originally

designed by Jochen Liedtke

• Designed to show that µ-kernel based systems are usable in
practice with good performance

• Minimalist philosophy: If it can be implemented outside the
kernel, it doesn’t belong inside

 7

Why pick L4?
• L4 is industrially and technically relevant

• Multiple working implementations (Pistachio, Fiasco, OKL4, etc…)
• Multiple supported architectures (ia32, arm, powerpc, mips, sparc, …)
• Already used in a variety of domains, including real-time, security,

virtual machines & monitors, etc…
• Open Kernel Labs spin-off from NICTA & UNSW
• Commercial use by Qualcomm and others …

 8

Why pick L4?
• L4 is industrially and technically relevant
• L4 is small enough to be tractable

• Original implementation ~ 12K executable
• Recent/portable/flexible implementations ~ 10-20 KLOC C++
• Much easier to implement that a full POSIX OS, for example!

 9

Why pick L4?
• L4 is industrially and technically relevant
• L4 is small enough to be tractable
• L4 is real enough to be interesting

• For example, we can run multiple, separated instances of Linux
(specifically: L4Linux, Wombat) on top of an L4 μ-kernel

• Use somebody else’s POSIX layer rather than build our own!
• Detailed specification documents are available

 10

Why pick L4?
• L4 is industrially and technically relevant
• L4 is small enough to be tractable
• L4 is real enough to be interesting
• L4 is a good representative of the target domain and a

good tool for exposing core research challenges
• Threads, address spaces, IPC, preemption, interrupts, etc… are core μ-

kernel concepts, regardless of API details
• It should be possible to retarget to a different API or μ-kernel design

 11

Why pick L4?
• L4 is industrially and technically relevant
• L4 is small enough to be tractable
• L4 is real enough to be interesting
• L4 is a good representative of the target domain and a

good tool for exposing core research challenges

• L4 is “not invented here”
• We’re not in the business of OS design and implementation
• Leverage the insights and expertise of the OS community so that we

can focus on our own research goals
• A credibility boost, showing that our methods apply to other people’s

problems (we can’t change the OS design to make our lives easier …)

 12

Evolution of L4

 13

Pistachio
(X.2)

NICTA
N2 OKL4 3.0

codezero

Jochen
Liedke

• IA32
• clans &

chiefs • portable
• privileged spaces
• global thread ids
• redirection
• multiprocessor

OKL4 2.x

• IA32 & ARM
• OKLinux

• L4Linux

Nova

• IA32
L4.sec

Bastei

• IA32 & ARM
• capability-based

seL4
model seL4

Hazelnut

Karlsruhe

Fiasco

Dresden

pork

Hank

Portland

NICTA
N1

Sydney

Evolution of L4 - Case Study 1

 14

Pistachio
(X.2)

NICTA
N2 OKL4 3.0

codezero

Jochen
Liedke

• IA32
• clans &

chiefs • portable
• privileged spaces
• global thread ids
• redirection
• multiprocessor

OKL4 2.x

• IA32 & ARM
• OKLinux

• L4Linux

Nova

• IA32
L4.sec

Bastei

• IA32 & ARM
• capability-based

seL4
model seL4

Hazelnut

Karlsruhe

Fiasco

Dresden

pork

Hank

Portland

NICTA
N1

Sydney

NICTA N1
• For concreteness, this

presentation will be based
(mostly) on the NICTA N1
version of the L4 spec

• Available in reference section
of D2L course content

• (primary reference for pork)

• Lots of diagrams of bitdata
and memory area structures

• … implications for language
design?

 15

NICTA L4-embedded
Kernel Reference Manual

Version NICTA N1

National ICT Australia
Embedded Real-Time and Operating Systems Program (ERTOS)

Kensington Research Laboratory, Sydney
l4spec@ertos.nicta.com.au

Based on Reference Manual for L4 X.2
System Architecture Group
Dept. of Computer Science
Universität Karlsruhe

(L4Ka Team)
l4spec@l4ka.org

Document Revision 2
October 7, 2005

Evolution of L4 - Case Study 2

 16

Pistachio
(X.2)

NICTA
N2 OKL4 3.0

codezero

Jochen
Liedke

• IA32
• clans &

chiefs • portable
• privileged spaces
• global thread ids
• redirection
• multiprocessor

OKL4 2.x

• IA32 & ARM
• OKLinux

• L4Linux

Nova

• IA32
L4.sec

Bastei

• IA32 & ARM
• capability-based

seL4
model seL4

Hazelnut

Karlsruhe

Fiasco

Dresden

pork

Hank

Portland

NICTA
N1

Sydney

Address Space Layout

 17

0 4GB

virtual address space

Userspace perspective

 18

3GB

user space kernel space

KIP

Kernel  
Information 
Page

(mapped in to every address space)

UTCB area

User 
Thread 
Control  
Block

One UTCB for each (possible) thread in the
address space

• Information about the 
kernel version

What’s in the KIP?

 19

2 KERNEL INTERFACE PAGE

1.1 Kernel Interface Page [Data Structure]

The kernel-interface page contains API and kernel version data, system descriptors including memory descriptors, and
system-call links. The remainder of the page is undefined.
The page is a microkernel object. It is directly mapped through the microkernel into each address space upon address-

space creation. It is not mapped by a pager, can not be mapped or granted to another address space and can not be
unmapped. The creator of a new address space can specify the address where the kernel interface page has to be mapped.
This address will remain constant through the lifetime of that address space. Any thread can obtain the address of the
kernel interface page through the KERNELINTERFACE system call (see page 7).

L4 version parts

Supplier KernelVer KernelGenDate KernelId KernDescPtr

InternalFreq ExternalFreq ProcDescPtr

MemoryDesc MemDescPtr

⇠ SCHEDULE SC THREADSWITCH SC Reserved +F0 / +1E0

EXCHANGEREGISTERS SC UNMAP SC LIPC SC IPC SC +E0 / +1C0

MEMORYCONTROL pSC PROCESSORCONTROL pSC THREADCONTROL pSC SPACECONTROL pSC +D0 / +1A0

ProcessorInfo PageInfo ThreadInfo ClockInfo +C0 / +180

ProcDescPtr BootInfo ⇠ +B0 / +160

KipAreaInfo UtcbInfo VirtualRegInfo ⇠ +A0 / +140

⇠ +90 / +120

⇠ +80 / +100

⇠ +70 / +E0

⇠ +60 / +C0

⇠ MemoryInfo ⇠ +50 / +A0

⇠ +40 / +80

⇠ +30 / +60

⇠ +20 / +40

⇠ +10 / +20

KernDescPtr API Flags APIVersion 0(0/32) ’K’ 230 ’4’ ’L’ +0

+C / +18 +8 / +10 +4 / +8 +0

KERNEL INTERFACE PAGE 3

Note that this kernel interface page is basically upward compatible to the kernel info page of versions 2 and X.0. The
magic byte string “L4µK” at the beginning of the object identifies the kernel interface page.

Version/id number convention: Version/subversion/subsubversion numbers and id/subid numbers with the most signif-
icant bit 0 denote official versions/ids and are globally unique through all suppliers. Version/id numbers that have the
most significant bit set to 1 denote experimental versions/ids and may be unique only in the context of a supplier.

API Description

API Version version (8) subversion (8) ⇠ (16)

version subversion
0x02 Version 2
0x83 0x80 Experimental Version X.0
0x83 0x81 Experimental Version X.1
0x84 rev Experimental Version X.2 (Revision rev)
0x85 rev Dresden
0x86 rev NICTA N1 (Revision rev)
0x04 rev Version 4 (Revision rev)

API Flags
⇠ (28/60) ww ee

ee = 00 : little endian,
= 01 : big endian.

ww = 00 : 32-bit API,
= 01 : 64-bit API.

Note that this field can not be used directly to differentiate between little endian and big endian
mode since the ee field resides in different bytes for both modes. Furthermore, the offset address
of the API Flags is different for 32-bit and 64-bit modes. In summary, a direct inspection of the
kernel interface page is not sufficient to securely differentiate between 32/64-bit modes and
little/big endian modes.
Secure mode detection is enabled through the KERNELINTERFACE system call (see page 7). It
delivers the API Flags in a register.

System Description

ProcessorInfo
s (4) ⇠ (12/44) processors� 1 (16)

s The size of the area occupied by a single processor description is 2s. Location of description
fields for the first processor is denoted by ProcDescPtr. Description fields for subsequent pro-
cessors are located directly following the previous one.

processors
Number of available system processors.

PageInfo
page-size mask (22/54) ⇠ (7) r w x

page-size mask
If bit k� 10 of the page-size mask field (bit k of the entire word) is set to 1 hardware and kernel
support pages of size 2k. If the bit is 0 hardware and/or kernel do not support pages of size 2k.
Note that fpages of size 2k can be used, even if 2k is no supported hardware page size. Infor-
mation about supported hardware page sizes is only a performance hint.

• Information about the 
kernel version

• Information about the 
host system

What’s in the KIP?

 20

2 KERNEL INTERFACE PAGE

1.1 Kernel Interface Page [Data Structure]

The kernel-interface page contains API and kernel version data, system descriptors including memory descriptors, and
system-call links. The remainder of the page is undefined.
The page is a microkernel object. It is directly mapped through the microkernel into each address space upon address-

space creation. It is not mapped by a pager, can not be mapped or granted to another address space and can not be
unmapped. The creator of a new address space can specify the address where the kernel interface page has to be mapped.
This address will remain constant through the lifetime of that address space. Any thread can obtain the address of the
kernel interface page through the KERNELINTERFACE system call (see page 7).

L4 version parts

Supplier KernelVer KernelGenDate KernelId KernDescPtr

InternalFreq ExternalFreq ProcDescPtr

MemoryDesc MemDescPtr

⇠ SCHEDULE SC THREADSWITCH SC Reserved +F0 / +1E0

EXCHANGEREGISTERS SC UNMAP SC LIPC SC IPC SC +E0 / +1C0

MEMORYCONTROL pSC PROCESSORCONTROL pSC THREADCONTROL pSC SPACECONTROL pSC +D0 / +1A0

ProcessorInfo PageInfo ThreadInfo ClockInfo +C0 / +180

ProcDescPtr BootInfo ⇠ +B0 / +160

KipAreaInfo UtcbInfo VirtualRegInfo ⇠ +A0 / +140

⇠ +90 / +120

⇠ +80 / +100

⇠ +70 / +E0

⇠ +60 / +C0

⇠ MemoryInfo ⇠ +50 / +A0

⇠ +40 / +80

⇠ +30 / +60

⇠ +20 / +40

⇠ +10 / +20

KernDescPtr API Flags APIVersion 0(0/32) ’K’ 230 ’4’ ’L’ +0

+C / +18 +8 / +10 +4 / +8 +0

KERNEL INTERFACE PAGE 3

Note that this kernel interface page is basically upward compatible to the kernel info page of versions 2 and X.0. The
magic byte string “L4µK” at the beginning of the object identifies the kernel interface page.

Version/id number convention: Version/subversion/subsubversion numbers and id/subid numbers with the most signif-
icant bit 0 denote official versions/ids and are globally unique through all suppliers. Version/id numbers that have the
most significant bit set to 1 denote experimental versions/ids and may be unique only in the context of a supplier.

API Description

API Version version (8) subversion (8) ⇠ (16)

version subversion
0x02 Version 2
0x83 0x80 Experimental Version X.0
0x83 0x81 Experimental Version X.1
0x84 rev Experimental Version X.2 (Revision rev)
0x85 rev Dresden
0x86 rev NICTA N1 (Revision rev)
0x04 rev Version 4 (Revision rev)

API Flags
⇠ (28/60) ww ee

ee = 00 : little endian,
= 01 : big endian.

ww = 00 : 32-bit API,
= 01 : 64-bit API.

Note that this field can not be used directly to differentiate between little endian and big endian
mode since the ee field resides in different bytes for both modes. Furthermore, the offset address
of the API Flags is different for 32-bit and 64-bit modes. In summary, a direct inspection of the
kernel interface page is not sufficient to securely differentiate between 32/64-bit modes and
little/big endian modes.
Secure mode detection is enabled through the KERNELINTERFACE system call (see page 7). It
delivers the API Flags in a register.

System Description

ProcessorInfo
s (4) ⇠ (12/44) processors� 1 (16)

s The size of the area occupied by a single processor description is 2s. Location of description
fields for the first processor is denoted by ProcDescPtr. Description fields for subsequent pro-
cessors are located directly following the previous one.

processors
Number of available system processors.

PageInfo
page-size mask (22/54) ⇠ (7) r w x

page-size mask
If bit k� 10 of the page-size mask field (bit k of the entire word) is set to 1 hardware and kernel
support pages of size 2k. If the bit is 0 hardware and/or kernel do not support pages of size 2k.
Note that fpages of size 2k can be used, even if 2k is no supported hardware page size. Infor-
mation about supported hardware page sizes is only a performance hint.

• Information about the 
kernel version

• Information about the 
host system

• Information about 
address space layout

What’s in the KIP?

 21

2 KERNEL INTERFACE PAGE

1.1 Kernel Interface Page [Data Structure]

The kernel-interface page contains API and kernel version data, system descriptors including memory descriptors, and
system-call links. The remainder of the page is undefined.
The page is a microkernel object. It is directly mapped through the microkernel into each address space upon address-

space creation. It is not mapped by a pager, can not be mapped or granted to another address space and can not be
unmapped. The creator of a new address space can specify the address where the kernel interface page has to be mapped.
This address will remain constant through the lifetime of that address space. Any thread can obtain the address of the
kernel interface page through the KERNELINTERFACE system call (see page 7).

L4 version parts

Supplier KernelVer KernelGenDate KernelId KernDescPtr

InternalFreq ExternalFreq ProcDescPtr

MemoryDesc MemDescPtr

⇠ SCHEDULE SC THREADSWITCH SC Reserved +F0 / +1E0

EXCHANGEREGISTERS SC UNMAP SC LIPC SC IPC SC +E0 / +1C0

MEMORYCONTROL pSC PROCESSORCONTROL pSC THREADCONTROL pSC SPACECONTROL pSC +D0 / +1A0

ProcessorInfo PageInfo ThreadInfo ClockInfo +C0 / +180

ProcDescPtr BootInfo ⇠ +B0 / +160

KipAreaInfo UtcbInfo VirtualRegInfo ⇠ +A0 / +140

⇠ +90 / +120

⇠ +80 / +100

⇠ +70 / +E0

⇠ +60 / +C0

⇠ MemoryInfo ⇠ +50 / +A0

⇠ +40 / +80

⇠ +30 / +60

⇠ +20 / +40

⇠ +10 / +20

KernDescPtr API Flags APIVersion 0(0/32) ’K’ 230 ’4’ ’L’ +0

+C / +18 +8 / +10 +4 / +8 +0

4 KERNEL INTERFACE PAGE

r w x Identifies the supported access rights (read, write, execute) that can be set independently of
other access rights. A 1-bit signals that the right can be set and reset on a mapped page. For
rwx = 010, only write permission could be controlled orthogonally. The processor would
implicitly permit read and execute access on any mapped page. For rwx = 111, all three rights
could be set and reset independently.

ThreadInfo
UserBase (12) SystemBase (12) t (8)

t Number of valid thread-number bits. The thread number field may be larger but only bits
0 . . . t� 1 are significant for this kernel. Higher bits must all be 0.

UserBase
Lowest thread number available for user threads (see page 14). The first three thread numbers
will be used for the initial thread of �0, �1, and root task respectively (see page 78). The version
numbers (see page 14) for these initial threads will equal to one.

SystemBase
Lowest thread number used for system threads (see page 14). Thread numbers below this value
denote hardware interrupts.

ClockInfo
⇠ (0/32) SchedulePrecision (32)

SchedulePrecision
Specifies the maximal jitter (±) for a scheduled thread activation based on a wakeup time (pro-
vided that no thread of higher or equal priority is active and timer interrupts are enabled).
Precisions are given in microseconds.

UtcbInfo
⇠ (10/42) s (6) a (6) m (10)

s The minimal area size for an address space’s UTCB area is 2s. The size of the UTCB area limits
the total number of threads k to 2amk  2s. A size of 0 indicates that the UTCB is not part of
the user address space and cannot be controlled (see page 41).

m UTCB size multiplier.

a The UTCB location must be aligned to 2a. The total size required for one UTCB is 2am.

VirtualRegInfo
⇠ (26/58) n� 1 (6)

n The number of message registers supported by the kernel.

KipAreaInfo
⇠ (26/58) s (6)

s The size of the kernel interface page area for an address space is 2s. A size of 0 indicates that
the KIP is not part of the user address space and cannot be controlled (see page 41).

BootInfo Prior to kernel initialization a boot loader can write an arbitrary value into the BootInfo field of
the kernel configuration page (see page 78). Post-initialization code, e.g., a root server can later
read the field from the kernel interface page. Its value is neither changed nor interpreted by the
kernel. This is a generic method for passing system information across kernel initialization.

Processor Description

ProcDescPtr Points to an array containing a description for each system processor. The ProcessorInfo field
contains the dimension of the array. ProcDescPtr is given as an address relative to the kernel
interface page’s base address.

• Information about the 
kernel version

• Information about the 
host system

• Information about 
address space layout

• System call entry  
points

What’s in the KIP?

 22

2 KERNEL INTERFACE PAGE

1.1 Kernel Interface Page [Data Structure]

The kernel-interface page contains API and kernel version data, system descriptors including memory descriptors, and
system-call links. The remainder of the page is undefined.
The page is a microkernel object. It is directly mapped through the microkernel into each address space upon address-

space creation. It is not mapped by a pager, can not be mapped or granted to another address space and can not be
unmapped. The creator of a new address space can specify the address where the kernel interface page has to be mapped.
This address will remain constant through the lifetime of that address space. Any thread can obtain the address of the
kernel interface page through the KERNELINTERFACE system call (see page 7).

L4 version parts

Supplier KernelVer KernelGenDate KernelId KernDescPtr

InternalFreq ExternalFreq ProcDescPtr

MemoryDesc MemDescPtr

⇠ SCHEDULE SC THREADSWITCH SC Reserved +F0 / +1E0

EXCHANGEREGISTERS SC UNMAP SC LIPC SC IPC SC +E0 / +1C0

MEMORYCONTROL pSC PROCESSORCONTROL pSC THREADCONTROL pSC SPACECONTROL pSC +D0 / +1A0

ProcessorInfo PageInfo ThreadInfo ClockInfo +C0 / +180

ProcDescPtr BootInfo ⇠ +B0 / +160

KipAreaInfo UtcbInfo VirtualRegInfo ⇠ +A0 / +140

⇠ +90 / +120

⇠ +80 / +100

⇠ +70 / +E0

⇠ +60 / +C0

⇠ MemoryInfo ⇠ +50 / +A0

⇠ +40 / +80

⇠ +30 / +60

⇠ +20 / +40

⇠ +10 / +20

KernDescPtr API Flags APIVersion 0(0/32) ’K’ 230 ’4’ ’L’ +0

+C / +18 +8 / +10 +4 / +8 +0

Offsets, relative to the
start of the KIP to system

call entry points

• So how can a user 
process find the KIP 
address?

How to find the KIP
• Option 1: Design protocol

• User code assumes a predetermined KIP address

• Option 2: “Slow system call” … a “virtual” instruction

• User code executes the illegal instruction LOCK NOP

• This triggers an illegal opcode exception, which enters the
kernel

• The kernel checks for this exception, loads the kip address
in to the context registers, and returns to user mode

 23

84 SYSTEMCALLS

A.2 Systemcalls [ia32]

The system-calls which are invoked by the call instruction take the target of the calls from the system-call link fields in
the kernel interface page (see page 2). Each system-call link specifies an address relative to the kernel interface page’s
base address. An application may use instructions other than call to invoke the system-calls, but must ensure that a valid
return address resides on the stack.

KERNELINTERFACE [Slow Systemcall]

� KernelInterface!

lock: nop

– EAX EAX base address
– ECX ECX API Version
– EDX EDX API Flags
– ESI ESI Kernel ID
– EDI EDI ⌘
– EBX EBX ⌘
– EBP EBP ⌘
– ESP ESP ⌘

EXCHANGEREGISTERS [Systemcall]

� Exchange Registers!

call ExchangeRegisters

dest EAX EAX result
control ECX ECX control

SP EDX EDX SP
IP ESI ESI IP

FLAGS EDI EDI FLAGS
UserDefinedHandle EBX EBX UserDefinedHandle

pager EBP EBP pager
– ESP ESP ⌘

“FLAGS” refers to the user-modifiable ia32 processor flags that are held in the EFLAGS register.

THREADCONTROL [Privileged Systemcall]

� Thread Control!

call ThreadControl

dest EAX EAX result
Pager ECX ECX ⇠

Scheduler EDX EDX ⇠
SpaceSpecifier ESI ESI ⇠
UtcbLocation EDI EDI ⇠

– EBX EBX ⇠
– EBP EBP ⇠
– ESP ESP ⌘

THREADSWITCH [Systemcall]

� ThreadSwitch!

call ThreadSwitch

dest EAX EAX ⌘
– ECX ECX ⌘
– EDX EDX ⌘
– ESI ESI ⌘
– EDI EDI ⌘
– EBX EBX ⌘
– EBP EBP ⌘
– ESP ESP ⌘

What are the gaps for?

 24

2 KERNEL INTERFACE PAGE

1.1 Kernel Interface Page [Data Structure]

The kernel-interface page contains API and kernel version data, system descriptors including memory descriptors, and
system-call links. The remainder of the page is undefined.
The page is a microkernel object. It is directly mapped through the microkernel into each address space upon address-

space creation. It is not mapped by a pager, can not be mapped or granted to another address space and can not be
unmapped. The creator of a new address space can specify the address where the kernel interface page has to be mapped.
This address will remain constant through the lifetime of that address space. Any thread can obtain the address of the
kernel interface page through the KERNELINTERFACE system call (see page 7).

L4 version parts

Supplier KernelVer KernelGenDate KernelId KernDescPtr

InternalFreq ExternalFreq ProcDescPtr

MemoryDesc MemDescPtr

⇠ SCHEDULE SC THREADSWITCH SC Reserved +F0 / +1E0

EXCHANGEREGISTERS SC UNMAP SC LIPC SC IPC SC +E0 / +1C0

MEMORYCONTROL pSC PROCESSORCONTROL pSC THREADCONTROL pSC SPACECONTROL pSC +D0 / +1A0

ProcessorInfo PageInfo ThreadInfo ClockInfo +C0 / +180

ProcDescPtr BootInfo ⇠ +B0 / +160

KipAreaInfo UtcbInfo VirtualRegInfo ⇠ +A0 / +140

⇠ +90 / +120

⇠ +80 / +100

⇠ +70 / +E0

⇠ +60 / +C0

⇠ MemoryInfo ⇠ +50 / +A0

⇠ +40 / +80

⇠ +30 / +60

⇠ +20 / +40

⇠ +10 / +20

KernDescPtr API Flags APIVersion 0(0/32) ’K’ 230 ’4’ ’L’ +0

+C / +18 +8 / +10 +4 / +8 +0

78 GENERIC BOOTING

7.7 Generic Booting [Protocol]

Machine-specific boot procedures are described on pages 93 ff.
After booting, L4 initializes itself. It generates the basic address space-servers �0, �1 and a root server which is

intended to boot the higher-level system.
�0, �1 and the root server are user-level servers and not part of the pure kernel. The predefined ones can be replaced by

modifying the following table in the L4 image before starting L4. An empty area specifies that the corresponding server
should not be started. Note, that �0 is a mandatory service. The kernel debugger kdebug is also not part of the kernel and
can accordingly be replaced by modifying the table.

MemoryDesc MemDescPtr

⇠ BootInfo ⇠ +B0 / +160

⇠ +A0 / +140

⇠ +90 / +120

⇠ +80 / +100

⇠ +70 / +E0

⇠ +60 / +C0

Kdebug.config1 Kdebug.config0 MemoryInfo ⇠ +50 / +A0

root server.high root server.low root server.IP root server.SP +40 / +80

�1.high �1.low �1.IP �1.SP +30 / +60

�0.high �0.low �0.IP �0.SP +20 / +40

Kdebug.high Kdebug.low Kdebug.entry Kdebug.init +10 / +20

⇠ APIVersion ⇠(0/32) ’K’ 230 ’4’ ’L’ +0

+C / +18 +8 / +10 +4 / +8 +0

The addresses are offsets relative to the configuration page’s base address. The configuration page is located at a page
boundary and can be found by searching for the magic “L4µK” starting at the load address. The IP and SP values
however, are absolute addresses. The appropriate code must be loaded at these addresses before L4 is started.

IP Physical address of a server’s initial instruction pointer (start).

SP Physical address of a server’s initial stack pointer (stack bottom).

Kdebug.init Physical address of kdebug’s initialization routine.

What’s in the UTCB area?
• Every user thread has a User Thread Control Block (UTCB),

which is a block of memory that the thread uses for
communication with the kernel.

• The UTCB contains:

• Message registers (MRs)

• Thread control registers (TCRs)

• All UTCBs for a given address space are grouped in a single
block called the UTCB area

• Example: If UTCBs are 512 bytes long, then an address space
with a 4KB UTCB area can support at most 8 threads

 25

UTCB Layout (IA32)

 26

VIRTUAL REGISTERS 83

Message Registers (MRs)
Memory-mapped MRs are implemented as part of the ia32-specific user-level thread control block (UTCB). The address
of the current thread’s UTCB will not change over the lifetime of the thread. Setting the UTCB address of an active thread
via THREADCONTROL is similar to deletion and re-creation. There is a fixed correlation between the UtcbLocation
parameter when invoking THREADCONTROL and the UTCB address. The UTCB address of the current thread can be
loaded through a machine instruction

mov %gs:[0], %r

UTCB objects of the current thread can then be accessed as any other memory object. UTCBs of other threads must not
be accessed, even if they are physically accessible.

MR 0 is always mapped to a general register. MR 1 and MR 2 are mapped to general registers when reading a received
message; in all other cases, MR 1 and MR 2 are mapped to memory locations. MR 3...63 are always mapped to memory.

MR 0 ESI

MR 1 (only for msg receive)

EBX

MR 2 (only for msg receive)

EBP

MR 1...63 [UTCB fields]

MR 63 (32) +252
...

...

MR 4 (32) +16

MR 3 (32) +12

MR 2 (except for msg receive) (32) +8

MR 1 (except for msg receive) (32) � UTCB address + 4

UTCB Memory With Undefined Semantics
The kernel will associate no semantics with memory located at UTCB address. . .UTCB address + 3. The application can
use this memory as thread local storage, e.g., for implementing the L4 API. Note, however, that the memory contents
within this region may be overwritten during a system-call operating on message registers.
Note, depending on kernel configuration, not all 64 message registers may be available. In this case, no semantics

are associated with the memory defined for the unused MRs as above. Note also that when fewer message registers are
configured, the kernel may reduce the UTCB size such that memory locations beyond the highest usable message register
may not be accessible.

All undefined UTCB memory which is not covered by the above mentioned region may have kernel defined semantics.

82 VIRTUAL REGISTERS

A.1 Virtual Registers [ia32]

Thread Control Registers (TCRs)
TCRs are implemented as part of the ia32-specific user-level thread control block (UTCB). The address of the current
thread’s UTCBwill not change over the lifetime of the thread. Setting the UTCB address of an active thread via THREAD-
CONTROL is similar to deletion and re-creation. There is a fixed correlation between the UtcbLocation parameter when
invoking THREADCONTROL and the UTCB address. The UTCB address of the current thread can be loaded through a
machine instruction

mov %gs:[0], %r

UTCB objects of the current thread can then be accessed as any other memory object. UTCBs of other threads must not
be accessed, even if they are physically accessible.

⇠ (32) � UTCB address
...

...

PreemptedIP (32) –16

PreemptCallbackIP (32) –20

VirtualSender/ActualSender (32) –24

IntendedReceiver (32) –28

ErrorCode (32) –32

⇠ (16) cop flags (8) preempt flags (8) –36

ExceptionHandler (32) –40

Pager (32) –44

UserDefinedHandle (32) –48

ProcessorNo (32) –52

Acceptor (32) –60

NotifyBits (32) –64

NotifyMask (32) –68

MyGlobalId (32) –72

MyLocalId = UTCB address (32) gs:[0]

The TCRMyLocalId is not part of the UTCB. On ia32 it is identical with the UTCB address and
can be loaded from memory location gs:[0].

• 64 Message “registers”
named MR0, MR1, …, MR63

• Miscellaneous other fields:

• ErrorCode

• ExceptionHandler

• Pager

• Acceptor

• …

• UTCB address points to the
middle of the UTCB

Trust, and UTCBs
• User processes can read and write whatever values they like

in the UTCB (and in the UTCBs of other threads in the same
address space)

• Protected thread parameters (e.g., priority) must be stored in
a separate TCB data structure that is only accessible to the
kernel

• Any data that is read from the UTCB cannot be trusted and
must be validated by the kernel, as necessary, before use

• Mappings for the UTCB area must be created by the kernel
(otherwise user space code could cause the kernel to page
fault by reading from an unmapped UTCB)

 27

UTCB addresses and local thread ids
• Every UTCB must be 64-byte aligned, so the lower 6 bits in

any UTCB address will be zero

• Within a given address space, UTCB addresses are used as
local thread ids:

• Other thread ids must have a nonzero value in their least
significant 6 bits

 28

14 THREADID

2.1 ThreadId [Data Type]

Thread IDs identify threads and hardware interrupts. A thread ID can be global or local. Global thread IDs are unique
through the entire system. They identify threads independently of the address space in which they are used. Local thread
IDs exist per address space; the scope of a thread’s local ID is only the thread’s own address space. In different address
spaces, the same local thread ID may identify different and unrelated threads.
Note that any thread has a global and a local thread ID. Both global and local thread IDs are encoded in a single word.

Global Thread ID
A global thread ID consists of a word, where 18 bits (32-bit processor) or 32 bits (64-bit processor) determine the thread
number and 14 bits (32-bit processor) or 32 bits (64-bit processor) are available for a version number. At least one of the
lowermost 6 version bits must be 1 to differentiate a global from a local thread ID.
User-thread numbers can be freely allocated within the interval [UserBase , 2t), where t denotes the upper limit of

thread IDs. The thread-number interval [SystemBase ,UserBase) is reserved for L4-internal threads. Hardware interrupts
are regarded as hardware-implemented threads. Consequently, they are identified by thread IDs. Their corresponding
thread numbers are within the interval [0 , SystemBase). The values SystemBase, UserBase, and t are published in the
kernel interface page (see page 4).

global thread ID
thread no (18/32) version(14/32) 6= 0 (mod 64)

global interrupt ID
intr no (18/32) 1 (14/32)

Global thread IDs have a version field whose content can be freely set by those threads that can create and delete threads.
However, the lowermost 6 bits of the version must not all be 0, i.e. v mod 64 6= 0 must hold for every version v. For
hardware interrupts, the version field is always 1.
The microkernel checks version fields whenever a thread is accessed through its global thread ID. However, the se-

mantics of the version field are not defined by the microkernel. OS personalities are free to use this field for any purpose.
For example, they may use it to make thread IDs unique in time.

Local Thread ID
Local thread IDs identify threads within the same address space. They are identified by the 6 lowermost bits being 0.

local thread ID local id/64 (26/58) 0 0 0 0 0 0

Special Thread IDs
Special IDs exist for nilthread and two wild cards. The thread ID anythread matches with any given thread ID, including
all interrupt IDs. The ID anylocalthread matches all threads that reside in the same address space.

nilthread 0 (32/64)

anythread
�1 (32/64)

anylocalthread
�1 (26/58) 0 0 0 0 0 0

How to find the UTCB
• Option 1: Design Protocol

• User code assumes a predetermined UTCB address

• Option 2: The UTCB pointer

• At boot time, the kernel creates a 4 byte, read only
segment in the GDT for a specific kernelspace address and
loads a corresponding segment selector in %gs

• The kernel stores the UTCB address of the current thread
in that location

• User code can read the UTCB address from %gs:0

 29

Configuring an address space
• The addresses of the KIP and the UTCB can be set when a

new address space is created:

• First, create a new thread in a new address space (we’ll see
how this is done soon)

• Now use the (privileged) SpaceControl system call:

• Threads cannot be activated (made runnable) until the
associated address space has been configured in this way

 30

SYSTEMCALLS 85

SCHEDULE [Systemcall]

� Schedule!

call Schedule

dest EAX EAX result
prio ECX ECX ⇠

processor control EDX EDX ⇠
preemption control ESI ESI ⇠

ts len EDI EDI rem ts
total quantum EBX EBX rem total

– EBP EBP ⇠
– ESP ESP ⌘

IPC [Systemcall]

� Ipc!

call Ipc

to EAX EAX from
– ECX ECX ⇠

FromSpecifier EDX EDX ⇠
MR 0 ESI ESI MR 0

UTCB EDI EDI ⌘
– EBX EBX MR 1

– EBP EBP MR 2

– ESP ESP ⌘

LIPC [Systemcall]

� Lipc!

call Lipc

to EAX EAX from
– ECX ECX ⇠

FromSpecifier EDX EDX ⇠
MR 0 ESI ESI MR 0

UTCB EDI EDI ⌘
– EBX EBX MR 1

– EBP EBP MR 2

– ESP ESP ⌘

UNMAP [Systemcall]

� Unmap!

call Unmap

control EAX EAX ⇠
– ECX ECX ⇠
– EDX EDX ⇠

MR 0 ESI ESI MR 0

UTCB EDI EDI ⌘
– EBX EBX ⇠
– EBP EBP ⇠
– ESP ESP ⌘

SPACECONTROL [Privileged Systemcall]

� Space Control!

call SpaceControl

SpaceSpecifier EAX EAX result
control ECX ECX control

KernelInterfacePageArea EDX EDX ⇠
UtcbArea ESI ESI ⇠

– EDI EDI ⇠
– EBX EBX ⇠
– EBP EBP ⇠
– ESP ESP ⌘

Threads

 31

• User programs can reference other threads using thread ids

Thread Ids

 32

14 THREADID

2.1 ThreadId [Data Type]

Thread IDs identify threads and hardware interrupts. A thread ID can be global or local. Global thread IDs are unique
through the entire system. They identify threads independently of the address space in which they are used. Local thread
IDs exist per address space; the scope of a thread’s local ID is only the thread’s own address space. In different address
spaces, the same local thread ID may identify different and unrelated threads.
Note that any thread has a global and a local thread ID. Both global and local thread IDs are encoded in a single word.

Global Thread ID
A global thread ID consists of a word, where 18 bits (32-bit processor) or 32 bits (64-bit processor) determine the thread
number and 14 bits (32-bit processor) or 32 bits (64-bit processor) are available for a version number. At least one of the
lowermost 6 version bits must be 1 to differentiate a global from a local thread ID.
User-thread numbers can be freely allocated within the interval [UserBase , 2t), where t denotes the upper limit of

thread IDs. The thread-number interval [SystemBase ,UserBase) is reserved for L4-internal threads. Hardware interrupts
are regarded as hardware-implemented threads. Consequently, they are identified by thread IDs. Their corresponding
thread numbers are within the interval [0 , SystemBase). The values SystemBase, UserBase, and t are published in the
kernel interface page (see page 4).

global thread ID
thread no (18/32) version(14/32) 6= 0 (mod 64)

global interrupt ID
intr no (18/32) 1 (14/32)

Global thread IDs have a version field whose content can be freely set by those threads that can create and delete threads.
However, the lowermost 6 bits of the version must not all be 0, i.e. v mod 64 6= 0 must hold for every version v. For
hardware interrupts, the version field is always 1.
The microkernel checks version fields whenever a thread is accessed through its global thread ID. However, the se-

mantics of the version field are not defined by the microkernel. OS personalities are free to use this field for any purpose.
For example, they may use it to make thread IDs unique in time.

Local Thread ID
Local thread IDs identify threads within the same address space. They are identified by the 6 lowermost bits being 0.

local thread ID local id/64 (26/58) 0 0 0 0 0 0

Special Thread IDs
Special IDs exist for nilthread and two wild cards. The thread ID anythread matches with any given thread ID, including
all interrupt IDs. The ID anylocalthread matches all threads that reside in the same address space.

nilthread 0 (32/64)

anythread
�1 (32/64)

anylocalthread
�1 (26/58) 0 0 0 0 0 0

14 THREADID

2.1 ThreadId [Data Type]

Thread IDs identify threads and hardware interrupts. A thread ID can be global or local. Global thread IDs are unique
through the entire system. They identify threads independently of the address space in which they are used. Local thread
IDs exist per address space; the scope of a thread’s local ID is only the thread’s own address space. In different address
spaces, the same local thread ID may identify different and unrelated threads.
Note that any thread has a global and a local thread ID. Both global and local thread IDs are encoded in a single word.

Global Thread ID
A global thread ID consists of a word, where 18 bits (32-bit processor) or 32 bits (64-bit processor) determine the thread
number and 14 bits (32-bit processor) or 32 bits (64-bit processor) are available for a version number. At least one of the
lowermost 6 version bits must be 1 to differentiate a global from a local thread ID.
User-thread numbers can be freely allocated within the interval [UserBase , 2t), where t denotes the upper limit of

thread IDs. The thread-number interval [SystemBase ,UserBase) is reserved for L4-internal threads. Hardware interrupts
are regarded as hardware-implemented threads. Consequently, they are identified by thread IDs. Their corresponding
thread numbers are within the interval [0 , SystemBase). The values SystemBase, UserBase, and t are published in the
kernel interface page (see page 4).

global thread ID
thread no (18/32) version(14/32) 6= 0 (mod 64)

global interrupt ID
intr no (18/32) 1 (14/32)

Global thread IDs have a version field whose content can be freely set by those threads that can create and delete threads.
However, the lowermost 6 bits of the version must not all be 0, i.e. v mod 64 6= 0 must hold for every version v. For
hardware interrupts, the version field is always 1.
The microkernel checks version fields whenever a thread is accessed through its global thread ID. However, the se-

mantics of the version field are not defined by the microkernel. OS personalities are free to use this field for any purpose.
For example, they may use it to make thread IDs unique in time.

Local Thread ID
Local thread IDs identify threads within the same address space. They are identified by the 6 lowermost bits being 0.

local thread ID local id/64 (26/58) 0 0 0 0 0 0

Special Thread IDs
Special IDs exist for nilthread and two wild cards. The thread ID anythread matches with any given thread ID, including
all interrupt IDs. The ID anylocalthread matches all threads that reside in the same address space.

nilthread 0 (32/64)

anythread
�1 (32/64)

anylocalthread
�1 (26/58) 0 0 0 0 0 0

14 THREADID

2.1 ThreadId [Data Type]

Thread IDs identify threads and hardware interrupts. A thread ID can be global or local. Global thread IDs are unique
through the entire system. They identify threads independently of the address space in which they are used. Local thread
IDs exist per address space; the scope of a thread’s local ID is only the thread’s own address space. In different address
spaces, the same local thread ID may identify different and unrelated threads.
Note that any thread has a global and a local thread ID. Both global and local thread IDs are encoded in a single word.

Global Thread ID
A global thread ID consists of a word, where 18 bits (32-bit processor) or 32 bits (64-bit processor) determine the thread
number and 14 bits (32-bit processor) or 32 bits (64-bit processor) are available for a version number. At least one of the
lowermost 6 version bits must be 1 to differentiate a global from a local thread ID.
User-thread numbers can be freely allocated within the interval [UserBase , 2t), where t denotes the upper limit of

thread IDs. The thread-number interval [SystemBase ,UserBase) is reserved for L4-internal threads. Hardware interrupts
are regarded as hardware-implemented threads. Consequently, they are identified by thread IDs. Their corresponding
thread numbers are within the interval [0 , SystemBase). The values SystemBase, UserBase, and t are published in the
kernel interface page (see page 4).

global thread ID
thread no (18/32) version(14/32) 6= 0 (mod 64)

global interrupt ID
intr no (18/32) 1 (14/32)

Global thread IDs have a version field whose content can be freely set by those threads that can create and delete threads.
However, the lowermost 6 bits of the version must not all be 0, i.e. v mod 64 6= 0 must hold for every version v. For
hardware interrupts, the version field is always 1.
The microkernel checks version fields whenever a thread is accessed through its global thread ID. However, the se-

mantics of the version field are not defined by the microkernel. OS personalities are free to use this field for any purpose.
For example, they may use it to make thread IDs unique in time.

Local Thread ID
Local thread IDs identify threads within the same address space. They are identified by the 6 lowermost bits being 0.

local thread ID local id/64 (26/58) 0 0 0 0 0 0

Special Thread IDs
Special IDs exist for nilthread and two wild cards. The thread ID anythread matches with any given thread ID, including
all interrupt IDs. The ID anylocalthread matches all threads that reside in the same address space.

nilthread 0 (32/64)

anythread
�1 (32/64)

anylocalthread
�1 (26/58) 0 0 0 0 0 0

• Every thread number falls in to one of three ranges:

• The SystemBase and UserBase values are defined in the KIP

• Key insight: L4 translates hardware interrupts in to messages
from (special) threads

Thread numbers

 33

user thread
numbers

0

hardware
interrupts

SystemBase

kernel
reserved

UserBase

Global ids bad …
• The reliance on global ids is one of the weaknesses of the

original L4 design

• Any thread can reference any other thread by using its
global id

• Any thread can interfere with another thread (e.g., a denial
of service attack) by using its global id

• Even if thread ids are not officially published, they can still
be guessed or faked

• We could avoid these problems if there were a way to ensure
that any thread only had the capability to access a specific
set of authorized threads …

 34

ThreadControl
• New threads are created using the (privileged) ThreadControl

system call:

• If dest does not exist then the new thread is created in the
same address space as SpaceSpecifier

• If SpaceSpecifier=dest, then a new address space is created

• The UTCBLocation must be within the UTCB area

• If dest exists and SpaceSpecifier is nilthread, then the thread is
deleted

 35

84 SYSTEMCALLS

A.2 Systemcalls [ia32]

The system-calls which are invoked by the call instruction take the target of the calls from the system-call link fields in
the kernel interface page (see page 2). Each system-call link specifies an address relative to the kernel interface page’s
base address. An application may use instructions other than call to invoke the system-calls, but must ensure that a valid
return address resides on the stack.

KERNELINTERFACE [Slow Systemcall]

� KernelInterface!

lock: nop

– EAX EAX base address
– ECX ECX API Version
– EDX EDX API Flags
– ESI ESI Kernel ID
– EDI EDI ⌘
– EBX EBX ⌘
– EBP EBP ⌘
– ESP ESP ⌘

EXCHANGEREGISTERS [Systemcall]

� Exchange Registers!

call ExchangeRegisters

dest EAX EAX result
control ECX ECX control

SP EDX EDX SP
IP ESI ESI IP

FLAGS EDI EDI FLAGS
UserDefinedHandle EBX EBX UserDefinedHandle

pager EBP EBP pager
– ESP ESP ⌘

“FLAGS” refers to the user-modifiable ia32 processor flags that are held in the EFLAGS register.

THREADCONTROL [Privileged Systemcall]

� Thread Control!

call ThreadControl

dest EAX EAX result
Pager ECX ECX ⇠

Scheduler EDX EDX ⇠
SpaceSpecifier ESI ESI ⇠
UtcbLocation EDI EDI ⇠

– EBX EBX ⇠
– EBP EBP ⇠
– ESP ESP ⌘

THREADSWITCH [Systemcall]

� ThreadSwitch!

call ThreadSwitch

dest EAX EAX ⌘
– ECX ECX ⌘
– EDX EDX ⌘
– ESI ESI ⌘
– EDI EDI ⌘
– EBX EBX ⌘
– EBP EBP ⌘
– ESP ESP ⌘

Exception handlers, pagers, and schedulers
• Every thread has three associated threads

• The exception handler is responsible for dealing with any
exceptions that t generates (specified in UTCB)

• The pager is responsible for dealing with any page faults that
t generates (specified in UTCB)

• The scheduler is responsible for setting the priority and
timeslice for t (hidden inside kernel TCB)

 36

thread t

ExceptionHandler Pager Scheduler

Schedule
• If s is the scheduler thread for t, then s can set t’s scheduling

parameters using the Schedule system call:

• The specified priority cannot be higher than the scheduler’s
own priority

• ts is the timeslice: how long does the thread run before the
kernel will switch to another thread

• quantum specifies a limit on the total time that a thread can
run before it is suspended

 37

SYSTEMCALLS 85

SCHEDULE [Systemcall]

� Schedule!

call Schedule

dest EAX EAX result
prio ECX ECX ⇠

processor control EDX EDX ⇠
preemption control ESI ESI ⇠

ts len EDI EDI rem ts
total quantum EBX EBX rem total

– EBP EBP ⇠
– ESP ESP ⌘

IPC [Systemcall]

� Ipc!

call Ipc

to EAX EAX from
– ECX ECX ⇠

FromSpecifier EDX EDX ⇠
MR 0 ESI ESI MR 0

UTCB EDI EDI ⌘
– EBX EBX MR 1

– EBP EBP MR 2

– ESP ESP ⌘

LIPC [Systemcall]

� Lipc!

call Lipc

to EAX EAX from
– ECX ECX ⇠

FromSpecifier EDX EDX ⇠
MR 0 ESI ESI MR 0

UTCB EDI EDI ⌘
– EBX EBX MR 1

– EBP EBP MR 2

– ESP ESP ⌘

UNMAP [Systemcall]

� Unmap!

call Unmap

control EAX EAX ⇠
– ECX ECX ⇠
– EDX EDX ⇠

MR 0 ESI ESI MR 0

UTCB EDI EDI ⌘
– EBX EBX ⇠
– EBP EBP ⇠
– ESP ESP ⌘

SPACECONTROL [Privileged Systemcall]

� Space Control!

call SpaceControl

SpaceSpecifier EAX EAX result
control ECX ECX control

KernelInterfacePageArea EDX EDX ⇠
UtcbArea ESI ESI ⇠

– EDI EDI ⇠
– EBX EBX ⇠
– EBP EBP ⇠
– ESP ESP ⌘

ThreadSwitch
• A thread can give up any remaining part of its timeslice to

another thread using the ThreadSwitch system call:

• If dest is nilthread, then the caller still yields the CPU and the
kernel determines which thread will run next …

 38

84 SYSTEMCALLS

A.2 Systemcalls [ia32]

The system-calls which are invoked by the call instruction take the target of the calls from the system-call link fields in
the kernel interface page (see page 2). Each system-call link specifies an address relative to the kernel interface page’s
base address. An application may use instructions other than call to invoke the system-calls, but must ensure that a valid
return address resides on the stack.

KERNELINTERFACE [Slow Systemcall]

� KernelInterface!

lock: nop

– EAX EAX base address
– ECX ECX API Version
– EDX EDX API Flags
– ESI ESI Kernel ID
– EDI EDI ⌘
– EBX EBX ⌘
– EBP EBP ⌘
– ESP ESP ⌘

EXCHANGEREGISTERS [Systemcall]

� Exchange Registers!

call ExchangeRegisters

dest EAX EAX result
control ECX ECX control

SP EDX EDX SP
IP ESI ESI IP

FLAGS EDI EDI FLAGS
UserDefinedHandle EBX EBX UserDefinedHandle

pager EBP EBP pager
– ESP ESP ⌘

“FLAGS” refers to the user-modifiable ia32 processor flags that are held in the EFLAGS register.

THREADCONTROL [Privileged Systemcall]

� Thread Control!

call ThreadControl

dest EAX EAX result
Pager ECX ECX ⇠

Scheduler EDX EDX ⇠
SpaceSpecifier ESI ESI ⇠
UtcbLocation EDI EDI ⇠

– EBX EBX ⇠
– EBP EBP ⇠
– ESP ESP ⌘

THREADSWITCH [Systemcall]

� ThreadSwitch!

call ThreadSwitch

dest EAX EAX ⌘
– ECX ECX ⌘
– EDX EDX ⌘
– ESI ESI ⌘
– EDI EDI ⌘
– EBX EBX ⌘
– EBP EBP ⌘
– ESP ESP ⌘

ExchangeRegisters
• A thread can read or write parameters of another thread

using the ExchangeRegisters system call:

• ExchangeRegisters is not “privileged” … but the destination
thread must be in the same address space as the caller

• The exact effects of an ExchangeRegisters call are specified by
a bit map in the control word:

 39

84 SYSTEMCALLS

A.2 Systemcalls [ia32]

The system-calls which are invoked by the call instruction take the target of the calls from the system-call link fields in
the kernel interface page (see page 2). Each system-call link specifies an address relative to the kernel interface page’s
base address. An application may use instructions other than call to invoke the system-calls, but must ensure that a valid
return address resides on the stack.

KERNELINTERFACE [Slow Systemcall]

� KernelInterface!

lock: nop

– EAX EAX base address
– ECX ECX API Version
– EDX EDX API Flags
– ESI ESI Kernel ID
– EDI EDI ⌘
– EBX EBX ⌘
– EBP EBP ⌘
– ESP ESP ⌘

EXCHANGEREGISTERS [Systemcall]

� Exchange Registers!

call ExchangeRegisters

dest EAX EAX result
control ECX ECX control

SP EDX EDX SP
IP ESI ESI IP

FLAGS EDI EDI FLAGS
UserDefinedHandle EBX EBX UserDefinedHandle

pager EBP EBP pager
– ESP ESP ⌘

“FLAGS” refers to the user-modifiable ia32 processor flags that are held in the EFLAGS register.

THREADCONTROL [Privileged Systemcall]

� Thread Control!

call ThreadControl

dest EAX EAX result
Pager ECX ECX ⇠

Scheduler EDX EDX ⇠
SpaceSpecifier ESI ESI ⇠
UtcbLocation EDI EDI ⇠

– EBX EBX ⇠
– EBP EBP ⇠
– ESP ESP ⌘

THREADSWITCH [Systemcall]

� ThreadSwitch!

call ThreadSwitch

dest EAX EAX ⌘
– ECX ECX ⌘
– EDX EDX ⌘
– ESI ESI ⌘
– EDI EDI ⌘
– EBX EBX ⌘
– EBP EBP ⌘
– ESP ESP ⌘

EXCHANGEREGISTERS 19

2.3 EXCHANGEREGISTERS [Systemcall]

�!ThreadId dest ThreadId result
Word control Word control
Word SP Word SP
Word IP Word IP
Word FLAGS Word FLAGS
ThreadId pager ThreadId pager
Word UserDefinedHandle Word UserDefinedHandle

Exchanges or reads a thread’s FLAGS, SP, and IP hardware registers as well as pager and UserDefinedHandle TCRs.
Furthermore, thread execution can be suspended or resumed. The destination thread must be an active thread (see page 24)
residing in the invoker’s address space.
Any IP, SP, or FLAGS modification changes the corresponding user-level registers of the addressed thread. In general,

ongoing kernel activities are not influenced. However, a currently active IPC operation can be canceled or aborted. For
details see the SR-bit specification below.
Modifications of the pager TCR and the UserDefinedHandle TCR become immediately effective, whether the desti-

nation thread executes in user mode or in kernel mode.

Input Parameters

dest Thread ID of the addressed thread. This may be a local or a global ID. However, the addressed
thread must reside in the current address space. Using a local thread ID might be substantially
faster in some implementations.

control from (18/32) 0 (3/19) r d h p u f i s S R H

h p u f i s The s-flag refers to the SP register, i to IP, f to FLAGS, u to the UserDefinedHandle TCR, p to
the pager TCR, and h to the H-flag. If a flag is set to 1, the register/state is overwritten by the
corresponding input parameter. Otherwise, the corresponding input parameter is ignored and the
register/state is not modified.

S R Controls whether the addressed thread’s ongoing IPC operation should be canceled/aborted
through the system call or not.

S = 0 An IPC operation of the addressed thread that is currently waiting to send a message or is sending
a message will continue as usual. SP, IP or FLAGS modifications are delayed until the IPC
operation terminates.

S = 1 An IPC operation of the addressed thread that is currently waiting to send a message will be
canceled. An IPC operation that is currently sending a message will be aborted.

R = 0 An IPC operation of the addressed thread that is currently waiting to receive a message or is
receiving a message will continue as usual. SP, IP or FLAGS modifications are delayed until the
IPC operation terminates.

R = 1 An IPC operation of the addressed thread that is currently waiting to receive a message will be
canceled. An IPC operation that is currently receiving a message will be aborted.

H Halts/resumes the thread if h = 1. Ignored for h = 0.

H = 0 No effect if the thread was not halted. Otherwise, thread execution is resumed.

H = 1 User-level thread execution is halted. Note that ongoing IPCs and other kernel operations are
not affected byH . (See SR for also aborting active IPC.)

IPC

 40

IPC - Interprocess Communication
• IPC is a fundamental system call for communication between

threads in L4

• A typical use of IPC proceeds as follows:

• Load the message registers in the UTCB with a message to
send

• Invoke the IPC system call, which has two phases:

• Send the message register values to a specified thread

• Receive new message register values from a thread

• Resume thread that initiated the IPC

 41

Why combine send and receive phases?
• The combination of send and receive phases in a single

system call:

• requires only one system call instead of separate send and
receive system calls

• accomplishes both send and receive actions with only a
single transition in to kernel mode

• matches common communication idioms:

• RPC: Send a request to a thread and wait for its reply

• Server: Send response to a previous request and then
wait for a new request to arrive

 42

Synchronization and blocking
• Communication between threads requires a sender and a

receiver

• If either party is not ready, then the communication blocks

• Some versions of L4 allow an IPC call to specify timeout
periods, after which a blocked IPC call will be aborted.

• In practice, it is hard to come up with a good methodology
for picking sensible timeout values

• Other versions of L4 support only two possible timeout
options: 0 (non blocking) and ∞ (blocking)

 43

Specifics

• Some message registers passed in CPU registers

• “to” can be nilthread, if there is no send phase

• “FromSpecified” can be:

• nilthread, if there is no receive phase

• anythread, if it is a server that will accept requests from any
other thread

 44

SYSTEMCALLS 85

SCHEDULE [Systemcall]

� Schedule!

call Schedule

dest EAX EAX result
prio ECX ECX ⇠

processor control EDX EDX ⇠
preemption control ESI ESI ⇠

ts len EDI EDI rem ts
total quantum EBX EBX rem total

– EBP EBP ⇠
– ESP ESP ⌘

IPC [Systemcall]

� Ipc!

call Ipc

to EAX EAX from
– ECX ECX ⇠

FromSpecifier EDX EDX ⇠
MR 0 ESI ESI MR 0

UTCB EDI EDI ⌘
– EBX EBX MR 1

– EBP EBP MR 2

– ESP ESP ⌘

LIPC [Systemcall]

� Lipc!

call Lipc

to EAX EAX from
– ECX ECX ⇠

FromSpecifier EDX EDX ⇠
MR 0 ESI ESI MR 0

UTCB EDI EDI ⌘
– EBX EBX MR 1

– EBP EBP MR 2

– ESP ESP ⌘

UNMAP [Systemcall]

� Unmap!

call Unmap

control EAX EAX ⇠
– ECX ECX ⇠
– EDX EDX ⇠

MR 0 ESI ESI MR 0

UTCB EDI EDI ⌘
– EBX EBX ⇠
– EBP EBP ⇠
– ESP ESP ⌘

SPACECONTROL [Privileged Systemcall]

� Space Control!

call SpaceControl

SpaceSpecifier EAX EAX result
control ECX ECX control

KernelInterfacePageArea EDX EDX ⇠
UtcbArea ESI ESI ⇠

– EDI EDI ⇠
– EBX EBX ⇠
– EBP EBP ⇠
– ESP ESP ⌘

Message tags
• The value in MR0 provides a message tag that describes the

structure of the message in the remaining message registers:

• label can be used to send/receive a 16 bit data value

• u is the number of untyped words (uninterpreted 32 bit word
values) sent in message registers

• t is the number of typed-item words (MapItem, GrantItem;
we’ll talk about these soon …)

 45

46 MESSAGES AND MESSAGE REGISTERS (MRS)

5.1 Messages And Message Registers (MRs) [Virtual Registers]

Messages can be sent and received through the IPC system call (see page 55). Basically, the sender writes a message into
the sender’s message registers (MRs) and the receiver reads it from the receiver’s MRs. A kernel will always support at
least 8message registers and no more than 64. The actual number of message registers supported is a kernel configuration
option and is indicated in the VirtualRegInfo field of the kernel interface page. A message can use some or all MRs to
transfer untyped words; it can include fpages which are also specified using MRs.
MRs are virtual registers (see page 11), but they are more transient than TCRs. MRs are read-once registers: once

an MR has been read, its value is undefined until the MR is written again. The send phase of an IPC implicitly reads all
MRs; the receive phase writes the received message into MRs.
The read-once property permits to implement MRs not only by special registers or memory locations, but also by

general registers. Writing to such an MR has to block the corresponding general register for code-generator use; reading
the MR can release it. Typically, code generated by an IDL compiler will load MRs just before an IPC system call and
store them to user variables just afterwards.

Messages
A message consists of up to 3 sections: the mandatory message tag, followed by an optional untyped-words section,
followed by an optional typed-items section. The message tag is always held in MR 0. It contains message control
information and the message label which can be freely set by the user. The kernel associates no semantics with it. Often,
the message label is used to encode a request key or to define the method that should be invoked by the message.

MsgTag [MR0]
label (16/48) flags (4) t (6) u (6)

u Number of untyped words following word 0. MR 1...u hold the untyped words. u = 0 denotes
a message without untyped words. If u is greater than the architecture defined number of MRs
(n), only nMRs will be copied.

t Number of typed-item words following the untyped words or the message tag if no untyped
words are present. The typed items use MR u+1...u+t. A message without typed items has
t = 0.

flags Message flags, see IPC systemcall, page 55.

label Freely available, often used to specify the request type or invoked method.

untyped words [MR1...u]
The optional untyped-words section holds arbitrary data that is untyped from the kernel’s point
of view. The data is simply copied to the receiver. The kernel associates no semantics with it.

typed items [MRu+1...u+t]
The optional typed-items section is a sequence of items such as map items (page 50), and grant
items (page 52). Typed message items have their type encoded in the lower-most 4 bits of their
first word:

XXX1 Reserved
0000 Reserved
1000 MapItem see page 50
1010 GrantItem see page 52
1100 Reserved
1110 Reserved

Example: Interrupt handlers
• When a hardware interrupt occurs, the kernel sends an IPC

message from the interrupt thread to its pager with the tag:

• When the pager has finished handling the error, it sends an
IPC message back to the interrupt thread to reenable the
corresponding interrupt

 46

INTERRUPT PROTOCOL 71

7.2 Interrupt Protocol [Protocol]

Interrupts are delivered as an IPC call to the interrupt handler thread (i.e., the pager of the interrupt thread). The interrupt
is disabled until the interrupt handler sends a re-enable message.

From Interrupt Thread

�1 (12/44) 0 (4) 0 (4) t = 0 (6) u = 0 (6) MR 0

To Interrupt Thread

0 (16/48) 0 (4) t = 0 (6) u = 0 (6) MR 0

INTERRUPT PROTOCOL 71

7.2 Interrupt Protocol [Protocol]

Interrupts are delivered as an IPC call to the interrupt handler thread (i.e., the pager of the interrupt thread). The interrupt
is disabled until the interrupt handler sends a re-enable message.

From Interrupt Thread

�1 (12/44) 0 (4) 0 (4) t = 0 (6) u = 0 (6) MR 0

To Interrupt Thread

0 (16/48) 0 (4) t = 0 (6) u = 0 (6) MR 0

Example: Thread start
• When a new thread is constructed, it waits for a message

from its pager before starting:

• When a newly created thread receives a message of this form,
the kernel loads the specified esp and eip values from the
message in to the thread’s context and marks the thread as
being runnable …

 47

70 THREAD START PROTOCOL

7.1 Thread Start Protocol [Protocol]

Newly created active threads start immediately by receiving a message from its pager. The received message contains the
initial instruction-pointer and stack-pointer for the thread.

From Pager
Initial SP (32/64) MR 2

Initial IP (32/64) MR 1

0 (16/48) 0 (4) t = 0 (6) u = 2 (6) MR 0

Example: Exception handling
• When a thread generates an exception, the kernel sends a

message to the associated exception handler

• If it chooses to resume the thread that generated the
exception, it responds with a message of essentially the same
format (possibly having updated registers in the process)

 48

EXCEPTION MESSAGE FORMAT 91

A.7 Exception Message Format [ia32]

To Exception Handler

EAX (32) MR 12

ECX (32) MR 11

EDX (32) MR 10

EBX (32) MR 9

ESP (32) MR 8

EBP (32) MR 7

ESI (32) MR 6

EDI (32) MR 5

ErrorCode (32) MR 4

ExceptionNo (32) MR 3

EFLAGS (32) MR 2

EIP (32) MR 1

�4/� 5 (12/44) 0 (4) 0 (4) t = 0 (6) u = 12 (6) MR 0

#PF (page fault), #MC (machine check exception), and some #GP (general protection), #SS (stack segment fault), and
#NM (no math coprocessor) exceptions are handled by the kernel and therefore do not generate exception messages.

Note that executing an INT n instructions in 32-bit mode will always raise a #GP (general protection). The exception
handler may interpret the error code (8n + 2, see processor manual) and emulate the INT n accordingly.

Address Space Management

 49

Flexpages (fpages)
• A generalized form of “page” that can vary in size:

• Includes both 4KB pages and 4MB superpages as special cases

• Also includes special cases to represent the full address space
(complete) and the empty address space (nilpage):

• Can be represented, in practice, using collections of 4KB and
4MB pages

 50

36 FPAGE

4.1 Fpage [Data Type]

Fpages (Flexpages) are regions of the virtual address space. An fpage consists of all pages mapped actually in this region
sans kernel mapped objects, i.e., kernel interface page and UTCBs. Fpages have a size of at least 1 K. For specific
processors, the minimal fpage size may be larger; e.g., a Pentium processor offers a minimal page size of 4 K while the
Alpha processor offers smallest pages of 8 K. Fpages smaller than the minimal page size are treated as nilpages. The
kernel interface page (see page 3) specifies which page sizes are supported by the hardware/kernel. An fpage of size 2s

has a 2s-aligned base address b, i.e., b ⌘ 0 (mod 2s), where s�10 for all architectures.
Mapped fpages are considered inseparable objects. That is, if an fpage is mapped, the mapper can not later partially

unmap the mapped page; the whole fpage must be unmapped in a single operation. The mappee can, however, separate
the fpage and map fpages (objects) of smaller size. Partially unmapping an fpage might or might not work on some
systems. The kernel will give no indication as to whether such an operation succeeded or not.

fpage (b, 2s)
b/210

(22/54) s (6) 0 r w x

Special fpage encodings describe the complete user address space and the nilpage, an fpage which has no base address
and a size of 0:

complete
0 (22/54) s = 1 (6) 0 r w x

nilpage
0 (32/64)

Access Rights

rwx The rwx bits define the accessibility of the fpage:

r readable
w writable
x executable

A bit set to one permits the corresponding access to the newly-mapped/granted page provided
that the mapper itself possesses that access right. If the mapper does not have the access right
itself or if the bit is set to zero the mapped/granted page will not get the corresponding access
right.
Note that processor architectures may impose restrictions on the access-right combinations.
However, read-only (including execute), rwx = 101, and read/write/execute, rwx = 111,
should be valid for any processor architecture. The kernel interface page (see page 3) specifies
which access rights are supported in the processor architecture.

Generic Programming Interface

#include <l4/space.h>

struct FPAGE {Word raw }

Word Readable

Word Writable

36 FPAGE

4.1 Fpage [Data Type]

Fpages (Flexpages) are regions of the virtual address space. An fpage consists of all pages mapped actually in this region
sans kernel mapped objects, i.e., kernel interface page and UTCBs. Fpages have a size of at least 1 K. For specific
processors, the minimal fpage size may be larger; e.g., a Pentium processor offers a minimal page size of 4 K while the
Alpha processor offers smallest pages of 8 K. Fpages smaller than the minimal page size are treated as nilpages. The
kernel interface page (see page 3) specifies which page sizes are supported by the hardware/kernel. An fpage of size 2s

has a 2s-aligned base address b, i.e., b ⌘ 0 (mod 2s), where s�10 for all architectures.
Mapped fpages are considered inseparable objects. That is, if an fpage is mapped, the mapper can not later partially

unmap the mapped page; the whole fpage must be unmapped in a single operation. The mappee can, however, separate
the fpage and map fpages (objects) of smaller size. Partially unmapping an fpage might or might not work on some
systems. The kernel will give no indication as to whether such an operation succeeded or not.

fpage (b, 2s)
b/210

(22/54) s (6) 0 r w x

Special fpage encodings describe the complete user address space and the nilpage, an fpage which has no base address
and a size of 0:

complete
0 (22/54) s = 1 (6) 0 r w x

nilpage
0 (32/64)

Access Rights

rwx The rwx bits define the accessibility of the fpage:

r readable
w writable
x executable

A bit set to one permits the corresponding access to the newly-mapped/granted page provided
that the mapper itself possesses that access right. If the mapper does not have the access right
itself or if the bit is set to zero the mapped/granted page will not get the corresponding access
right.
Note that processor architectures may impose restrictions on the access-right combinations.
However, read-only (including execute), rwx = 101, and read/write/execute, rwx = 111,
should be valid for any processor architecture. The kernel interface page (see page 3) specifies
which access rights are supported in the processor architecture.

Generic Programming Interface

#include <l4/space.h>

struct FPAGE {Word raw }

Word Readable

Word Writable

receiver address space

map

• Address spaces in L4 are constructed by mapping or granting
regions of memory between address spaces

Mapping and granting

 51

physical memory

sender address space

page table 
mappings

page table 
mappings

receiver address space

grant

physical memory

sender address space

page table 
mappings

MapItems and GrantItems
• A MapItem specifies a region of memory in the sender’s

address space that will be mapped in to the receiver’s address
space

• A GrantItem specifies a region of memory that will be
removed from the sender’s address space and added to the
receiver’s address space

• Base values are used for mapping between fpages of different
sizes; we will mostly ignore them for now

 52

50 MAPITEM

5.2 MapItem [Data Type]

An fpage (see page 36) or IO fpage that should be mapped is sent to the mappee as part of a message. A map operation
is a no-op within the same address space. The fpage is specified by a two-word descriptor:

snd fpage (28/60) 0 r w x MR i+1

snd base / 1024 (22/54) 0 (6) 1 0 0 0 MR i

access rights rwx The effective access rights for the newly mapped page are calculated by bitwise AND-ing the
access rights specified in the snd fpage and the access rights that the mapper itself has on that
fpage. As such, the mapper can restrict the effective access rights but not widen them.

snd base The send base specifies the semantics of the map operation if the size of the snd fpage is larger
or smaller than the window in which the receiver is willing to accept a mapping (see page 53).
If the size of the snd fpage, 2s, is larger than the receive window, 2r , the send base indicates
which region of the snd fpage is transmitted. More precisely:

send region = fpage (addrs + 2rk, 2r), for some k � 0 :

addrs + 2rk  addrs + (snd base mod 2s) < addrs + 2rk + 2r

and where addrs is the base address of the snd fpage. If the size of the snd fpage, 2s, is smaller
than the receive window, 2r , the send base indicates where in the receive window the snd fpage
is mapped. More precisely:

receive region = fpage (addrr + 2sk, 2s), for some k � 0 :

addrr + 2sk  addrr + (snd base mod 2r) < addrr + 2sk + 2s

and where addrr is the base address of the receive window.

Pages already mapped in the mappee’s address space that would conflict with new mappings are implicitly unmapped
before new pages are mapped. For performance reasons extension of access rights is possible without prior unmapping,
iff the very same mapping already exists. This is the case, when

• the mapper maps from the same address space as the existing mapping; and

• the mapper maps from the same virtual source address as the existing mapping; and

• the mapper maps to the same virtual destination address as the existing mapping; and

• the object (physical address) is the same as the existing mapping.

Access rights can not be revoked by mapping. The access rights of the resulting mapping are a bitwise OR of the existing
and the new mapping’s access rights. Access rights are not extended recursively.

Generic Programming Interface

#include <l4/ipc.h>

struct MAPITEM {Word raw [2] }

MapItem MapItem (Fpage f, Word SndBase)
Delivers a map item with the specified fpage and send base.

52 GRANTITEM

5.3 GrantItem [Data Type]

An fpage (see page 36) or IO fpage that should be granted is sent to the mappee as part of a message. It is specified by a
two-word descriptor:

snd fpage (28/60) 0 r w x MR i+1

snd base / 1024 (22/54) 0 (6) 1 0 1 0 MR i

access rights rwx The effective access rights for the granted page are calculated by bitwise anding the access rights
specified in the snd fpage and the access rights that the mapper itself has on that fpage. As such,
the granter can restrict the effective access rights but not widen them.

snd base The send base specifies the semantics of the map operation if the size of the snd fpage is larger
or smaller than the window in which the receiver is willing to accept a mapping (see page 53).
If the size of the snd fpage, 2s, is larger than the receive window, 2r , the send base indicates
which region of the snd fpage is transmitted. More precisely:

send region = fpage (addrs + 2rk, 2r), for some k � 0 :

addrs + 2rk  addrs + (snd base mod 2s) < addrs + 2rk + 2r

and where addrs is the base address of the snd fpage. If the size of the snd fpage, 2s, is smaller
than the receive window, 2r , the send base indicates where in the receive window the snd fpage
is mapped. More precisely:

receive region = fpage (addrr + 2sk, 2s), for some k � 0 :

addrr + 2sk  addrr + (snd base mod 2r) < addrr + 2sk + 2s

and where addrr is the base address of the receive window.

Pages already mapped in the grantee’s address space that would conflict with new mappings are implicitly unmapped
before new pages are mapped.

Generic Programming Interface

#include <l4/ipc.h>

struct GRANTITEM {Word raw [2] }

GrantItem GrantItem (Fpage f, Word SndBase)
Delivers a grant item with the specified fpage and send base.

Bool GrantItem (GrantItem g) [IsGrantItem]
Delivers true if grant item is valid. Otherwise delivers false.

Fpage SndFpage (GrantItem g) [GrantItemSndFpage]

Word SndBase (GrantItem g) [GrantItemSndBase]
Delivers fpage/send base of grant item.

Typed items in IPC messages

 53

• An IPC message can contain multiple “typed items” (either
MapItem or GrantItem values), that will create mappings in
the receiver based on mappings in the sender

• The receiver sets an “acceptor” fpage in its UTCB to specify
where newly received mappings should be received

• To receive anywhere, set the acceptor to “complete”

• To receive nowhere, set the acceptor to “nilpage”

• When a thread triggers a page fault, the kernel translates that
event into an IPC to the thread’s pager:

• The pager can respond by sending back a reply with a new
mapping … that also restarts the faulting thread:

Page faults

 54

72 PAGEFAULT PROTOCOL

7.3 Pagefault Protocol [Protocol]

A thread generating a pagefault will cause the kernel to transparently generate a pagefault IPC to the faulting thread’s
pager. The behavior of the faulting thread is undefined if the pager does not exactly follow this protocol.

To Pager
faulting user-level IP (32/64) MR 2

fault address (32/64) MR 1

�2 (12/44) 0 r w x 0 (4) t = 0 (6) u = 2 (6) MR 0

rwx The rwx bits specify the fault reason:

r read fault
w write fault
x execute fault

A bit set to one reports the type of the attempted access. On processors that do not differentiate
between read and execute accesses, x is never set. Read and execute accesses will both be
reported by the r bit.

Acceptor [TCR]
0 (22/54) s = 1 (6) 0 0 0 0

The acceptor covers the complete user address space. The kernel accepts mappings or grants
into this region on behalf of the faulting thread. The received message is discarded.

From Pager

MapItem / GrantItem MR 1,2

0 (16/48) 0 (4) t = 2 (6) u = 0 (6) MR 0

72 PAGEFAULT PROTOCOL

7.3 Pagefault Protocol [Protocol]

A thread generating a pagefault will cause the kernel to transparently generate a pagefault IPC to the faulting thread’s
pager. The behavior of the faulting thread is undefined if the pager does not exactly follow this protocol.

To Pager
faulting user-level IP (32/64) MR 2

fault address (32/64) MR 1

�2 (12/44) 0 r w x 0 (4) t = 0 (6) u = 2 (6) MR 0

rwx The rwx bits specify the fault reason:

r read fault
w write fault
x execute fault

A bit set to one reports the type of the attempted access. On processors that do not differentiate
between read and execute accesses, x is never set. Read and execute accesses will both be
reported by the r bit.

Acceptor [TCR]
0 (22/54) s = 1 (6) 0 0 0 0

The acceptor covers the complete user address space. The kernel accepts mappings or grants
into this region on behalf of the faulting thread. The received message is discarded.

From Pager

MapItem / GrantItem MR 1,2

0 (16/48) 0 (4) t = 2 (6) u = 0 (6) MR 0

The “recursive address space model”

 55

σ0
pager

root

• created by the kernel at
boot time

• threads in these address
spaces are “privileged”

all physical memory
is mapped in σ0

• In a dynamic system, we need the ability to revoke previous
mappings … this will get interesting …

Let’s look at an example …

 56

A demo using “pork”

 57

σ0 (at 4MB)

pager pager

Thread (48,1)

pager

root (at 5MB)

Thread (49,1)

ping

spawn

Thread (100,1)

pong

spawn

Thread (200,1)

ipc

kbd

Thread (1,1)

ipc

all physical memory
is mapped in σ0

Initialization code in root.c:
 printf("This is a root server!\n");
 showKIP();

 ping = L4_GlobalId(100,1);
 pong = L4_GlobalId(200,1);

 //startPing();
 spawn("ping", ping, // Name & thread id
 0, ping, // utcbNo & space spec
 L4_Myself(), // Scheduler
 L4_Pager(), // Pager
 (L4_Word_t)ping_thread, // eip
 ((L4_Word_t)pingstack) + PINGSTACKSIZE); // esp

 //startPong();
 spawn("pong", pong, // Name & thread id
 0, pong, // utcbNo & space spec
 L4_Myself(), // Scheduler
 L4_Pager(), // Pager
 (L4_Word_t)pong_thread, // eip
 ((L4_Word_t)pongstack) + PONGSTACKSIZE); // esp

 //keyboard listener
 L4_ThreadId_t keyId = L4_GlobalId(1, 1); // Keyboard on IRQ1
 L4_ThreadId_t rootId = L4_MyGlobalId(); // My id

 printf("keyboard id = %x, my id = %x\n", keyId, rootId);
 printf("associate produces %x\n",
 L4_AssociateInterrupt(keyId, rootId));

 58

Event loop code in root.c:
 L4_MsgTag_t tag = L4_Receive(keyId);
 for (;;) {
 printf("received msg (tag=%x) from %x\n", tag, keyId);
 if (L4_IpcSucceeded(tag) &&
 L4_UntypedWords(tag)==0 &&
 L4_TypedWords(tag) ==0) {
 printf("Scancode = 0x%x\n", inb(0x60));
 L4_LoadMR(0, 0); // tag: Empty message, ping back to interrupt thread
 tag = L4_Call(keyId);
 printf("root's Call completed ...\n");
 } else {
 printf("Ignoring message/failure, trying again ...\n");
 tag = L4_Receive(keyId);
 }
 }
 printf("This message won't appear!\n");

 59

