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Copyright Notice
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Loose Ends
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The Week 3 Lab: Context Switching
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Port I/O
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Port I/O in the IA32 instruction set
• The IA32 has a 16 bit I/O Port address space

• The hardware can use the same address bus and data bus 
with a signal to distinguish between memory and port access

• You can write a byte/short/word to an I/O port using:

out[b|w|l] [%al,%ax,%eax], [imm8|%dx]

(use imm8 for 8 bit port numbers, otherwise use %dx)

• You can read a byte/short/word from an I/O port using:

in[b|w|l] [imm8|%dx], [%al,%ax,%eax]
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Port I/O using gcc inline assembly
static inline void outb(short port, byte b) {
  asm volatile("outb  %1, %0\n" : : "dN"(port), "a"(b));
}

static inline byte inb(short port) {
  unsigned char b;
  asm volatile("inb %1, %0\n" : "=a"(b) : "dN"(port));
  return b;
}
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• Arcane syntax, general form:
asm ( template : output operands : input operands : clobbered registers );

• Operand constraints include:
• “d” (use %edx), “a” (use %eax), “N” (imm8 constant), 

“=“ (write only), “r” (register), …



The role of inline assembly
• We can already call assembly code from C and vice versa by 

following calling conventions like the System V ABI

• Inline assembly allows for even tighter integration between C 
and assembly code:  code can be inlined, can have an impact 
on register allocation, etc…

• But there is essentially no checking of the arguments: it’s up 
to the programmer to specify the correct list of clobbered 
registers to ensure correct semantics

• Programmers might want to check the generated code …

• How can a general language provide access to essential 
machine specific instructions and registers?
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Standard port numbers on the PC platform
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Port Range Device

0x00-0x1f First DMA controller (8237)

0x20-0x3f Programmable Interrupt Controller (PIC1) (8259A)

0x40-0x5f Programmable Interval Timer (PIT) (8253/8254)

0x60-0x6f Keyboard (8042)

0x70-0x7f Real Time Clock (RTC)

0x80-0x9f DMA ports, Refresh

0xa0-0xbf Programmable Interrupt Controller (PIC2) (8259A)

0xc0-0xdf Second DMA controller (8237)

… …

0x3f0-0x3f7 Primary floppy disk drive controller

0x3f8-0x3ff Serial Port 1

… …



Serial port output in assembly
        .set    PORTCOM1, 0x3f8
serial_putc:
        pushl   %eax
        pushl   %edx

        movw    $(PORTCOM1+5), %dx
1:      inb     %dx, %al        # Wait for port to be ready
        andb    $0x60, %al
        jz      1b
        movw    $PORTCOM1, %dx  # Output the character
        movb    12(%esp), %al
        outb    %al, %dx

        cmpb    $0xa, %al       # Was it a newline?
        jnz     2f

        movw    $(PORTCOM1+5), %dx
1:      inb     %dx, %al        # Wait again for port to be ready
        andb    $0x60, %al
        jz      1b
        movw    $PORTCOM1, %dx  # Send a carriage return
        movb    $0xd, %al
        outb    %al, %dx

2:      popl    %edx
        popl    %eax
        ret  13

PC platform

why +5?

why 0x60?
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Serial port output in assembly
        .set    PORTCOM1, 0x3f8
serial_putc:
        pushl   %eax
        pushl   %edx

        movw    $(PORTCOM1+5), %dx
1:      inb     %dx, %al        # Wait for port to be ready
        andb    $0x60, %al
        jz      1b
        movw    $PORTCOM1, %dx  # Output the character
        movb    12(%esp), %al
        outb    %al, %dx

        cmpb    $0xa, %al       # Was it a newline?
        jnz     2f

        movw    $(PORTCOM1+5), %dx
1:      inb     %dx, %al        # Wait again for port to be ready
        andb    $0x60, %al
        jz      1b
        movw    $PORTCOM1, %dx  # Send a carriage return
        movb    $0xd, %al
        outb    %al, %dx

2:      popl    %edx
        popl    %eax
        ret  16

Read the line status register

check for available transmitter register 



Reading datasheets
• Datasheets present detailed technical information in a very 

terse format

• Unless you are already familiar with the details, and just 
looking for a reference, it can be hard to find the information 
you need

• But persevere, and practice; this can be a useful skill

• One thing you’ll often see is that computer systems typically 
only use a fraction of the available functionality(/transistors)

• Sample code, from the manufacturers, or on the web, can also 
be very useful!
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Interrupts
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IDT structure

0 16 32 48 … 128 130 … 255

Protected mode
exceptions

Hardware 
IRQs

PIC1 PIC2

… …

System call  
entry points

Initializing the PICs
        .equ    IRQ_BASE,   0x20        # lowest hw irq number

        .equ    PIC_1,      0x20
        .equ    PIC_2,      0xa0

        # Send ICWs (initialization control words) to initialize PIC.
        .macro  initpic port, base, info, init
          movb    $0x11, %al
          outb    %al, $\port     # ICW1: Initialize + will be sending ICW4

          movb    $\base, %al     # ICW2: Interrupt vector offset 
          outb    %al, $(\port+1)

          movb    $\info, %al     # ICW3: configure for two PICs
          outb    %al, $(\port+1)

          movb    $0x01, %al      # ICW4: 8086 mode
          outb    %al, $(\port+1)

          movb    $\init, %al     # OCW1: set initial mask
          outb    %al, $(\port+1)
        .endm

initPIC:initpic PIC_1, IRQ_BASE,   0x04, 0xfb  # all but IRQ2 masked out
        initpic PIC_2, IRQ_BASE+8, 0x02, 0xff
        ret  26



        .equ    IRQ_BASE,   0x20        # lowest hw irq number

        .equ    PIC_1,      0x20
        .equ    PIC_2,      0xa0

        # Send ICWs (initialization control words) to initialize PIC.
        .macro  initpic port, base, info, init
          movb    $0x11, %al
          outb    %al, $\port     # ICW1: Initialize + will be sending ICW4

          movb    $\base, %al     # ICW2: Interrupt vector offset 
          outb    %al, $(\port+1)

          movb    $\info, %al     # ICW3: configure for two PICs
          outb    %al, $(\port+1)

          movb    $0x01, %al      # ICW4: 8086 mode
          outb    %al, $(\port+1)

          movb    $\init, %al     # OCW1: set initial mask
          outb    %al, $(\port+1)
        .endm

initPIC:initpic PIC_1, IRQ_BASE,   0x04, 0xfb  # all but IRQ2 masked out
        initpic PIC_2, IRQ_BASE+8, 0x02, 0xff
        ret

Initializing the PICs
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Interrupts on PIC2 map to 
IDT entries 0x28-0x2f

Interrupts on PIC1 map to 
IDT entries 0x20-0x27

        .equ    IRQ_BASE,   0x20        # lowest hw irq number

        .equ    PIC_1,      0x20
        .equ    PIC_2,      0xa0

        # Send ICWs (initialization control words) to initialize PIC.
        .macro  initpic port, base, info, init
          movb    $0x11, %al
          outb    %al, $\port     # ICW1: Initialize + will be sending ICW4

          movb    $\base, %al     # ICW2: Interrupt vector offset 
          outb    %al, $(\port+1)

          movb    $\info, %al     # ICW3: configure for two PICs
          outb    %al, $(\port+1)

          movb    $0x01, %al      # ICW4: 8086 mode
          outb    %al, $(\port+1)

          movb    $\init, %al     # OCW1: set initial mask
          outb    %al, $(\port+1)
        .endm

initPIC:initpic PIC_1, IRQ_BASE,   0x04, 0xfb  # all but IRQ2 masked out
        initpic PIC_2, IRQ_BASE+8, 0x02, 0xff
        ret

Initializing the PICs
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Enabling and disabling individual IRQs
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• Individual IRQs are enabled by clearing the mask bit in the 
corresponding PIC:

static inline void enableIRQ(byte irq) {
  if (irq&8) {
    outb(0xa1, ~(1<<(irq&7)) & inb(0xa1));
  } else {
    outb(0x21, ~(1<<(irq&7)) & inb(0x21));
  }
}

• IRQs are disabled by setting the mask bit in the 
corresponding PIC:

static inline void disableIRQ(byte irq) {
  if (irq&8) {
    outb(0xa1, (1<<(irq&7)) | inb(0xa1));
  } else {
    outb(0x21, (1<<(irq&7)) | inb(0x21));
  }
}

IRQ handling lifecycle 
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• Install handler for IRQ in IDT

• Use the PIC to enable that specific IRQ (the CPU will still 
ignore the interrupt if the IF flag is clear)

• If the interrupt is triggered, disable the IRQ and send an EOI 
(end of interrupt) to reenable the PIC for other IRQs:
static inline void maskAckIRQ(byte irq) {
  if (irq&8) {
    outb(0xa1, (1<<(irq&7)) | inb(0xa1));
    outb(0xa0, 0x60|(irq&7)); // EOI to PIC2
    outb(0x20, 0x62);         // EOI for IRQ2 on PIC1
  } else {
    outb(0x21, (1<<(irq&7)) | inb(0x21));
    outb(0x20, 0x60|(irq&7)); // EOI to PIC1
  }
}

• When the interrupt has been handled, reenable the IRQ



Timers
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The programmable interval timer (PIT)
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• The IBM PC included an Intel 8253/54 programmable interval 
timer (PIT) chip

• The PIT was clocked at 1,193,181.8181Hz, for compatibility 
with the NTSC TV standard

• The PIT provides three counter/timers.  On the PC, these 
were used to handle:

• Counter 0: Timer interrupts

• Counter 1: DRAM refresh

• Counter 2: Playing tones via the PC’s speaker



… continued
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• The PIT is programmed by sending a control word to port 
0x43 followed by a two byte counter value (lsb first) to port 
0x40.

• Each timer/counter runs in one of six modes.

Example: Programming the PIT
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To configure for timer interrupts:
#define HZ            100           // Frequency of timer interrupts
#define PIT_INTERVAL  ((1193182 + (HZ/2)) / HZ)
#define TIMERIRQ      0

static inline void startTimer() {
  outb(0x43, 0x34);  // PIT control (0x43), counter 0, 2 bytes, mode 2, binary
  outb(0x40, PIT_INTERVAL        & 0xff);  // counter 0, lsb
  outb(0x40, (PIT_INTERVAL >> 8) & 0xff);  // counter 0, msb
  enableIRQ(TIMERIRQ);
}



Time stamp counter
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• Modern Intel CPUs include a 64 bit time stamp counter that 
tracks the number of cycles since reset

• The current TSC value can be read in edx:eax using the 
rdtsc instruction

• rdtsc is privileged, but the CPU can be configured to allow 
access to rdtsc in user level code

• Can use differences in TSC value before and after an event to 
measure elapsed time

• But beware of complications related to multiprocessor 
systems; power management (e.g., variable clock speed);  …

• … and virtualization …. (e.g., QEMU, VirtualBox, …)

 36http://www.minuszerodegrees.net/5150/early/5150_early.htm
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Volatile Memory
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The first user program

 38

  unsigned flag = 0;

  for (i=0; i<600; i++) {
    ...
  }
  printf("My flag is at 0x%x\n", &flag);
  while (flag==0) {
     /* do nothing */
  }
  printf("Somebody set my flag to %d!\n", flag);
  ...

user

“My flag is at 0x4025b0”

• According to the semantics of C, there is no way for the 
value of the variable flag to change during the while loop …

• … so there is no way that the “Somebody set my flag …” 
message could appear

• … the compiler could delete the code after the while loop …



The second user program
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  unsigned flag = 0;

  for (i=0; i<600; i++) {
    ...
  }
  printf("My flag is at 0x%x\n", &flag);
  while (flag==0) {
     /* do nothing */
  }
  printf("Somebody set my flag to %d!\n", flag);
  ...

user

  for (i=0; i<1200; i++) {
    ...
  }
  unsigned* flagAddr = (unsigned*)0x4025b0;
  printf("flagAddr = 0x%x\n", flagAddr);
  *flagAddr = 1234;
  printf("\n\nUser2 code does not return\n");
  for (;;) { /* Don't return! */
  }

user2

“My flag is at 0x4025b0”

Marking the flag as volatile
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  volatile unsigned flag = 0;

  for (i=0; i<600; i++) {
    ...
  }
  printf("My flag is at 0x%x\n", &flag);
  while (flag==0) {
     /* do nothing */
  }
  printf("Somebody set my flag to %d!\n", flag);
  ...

user

  for (i=0; i<1200; i++) {
    ...
  }
  unsigned* flagAddr = (unsigned*)0x4025b0;
  printf("flagAddr = 0x%x\n", flagAddr);
  *flagAddr = 1234;
  printf("\n\nUser2 code does not return\n");
  for (;;) { /* Don't return! */
  }

user2

“My flag is at 0x4025b0”

“Somebody set my flag to 1234!”



The volatile modifier
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• Under normal circumstances, a C compiler can treat an  
expression like x+x as being equivalent to 2*x:

• There is no way for the value in x to change from one side 
of the + to the other (no intervening assignments)

• The compiler can replace two attempts to read x with a 
single read, without changing the behavior of the code

• Marking a variable as volatile indicates that the compiler 
should allow for the possibility that the stored value might 
change from one read to the next

• The volatile modifier is often necessary when working 
with memory mapped I/O

Unresolved issues

 42



Issues with the Week 3 lab example
• Although we are running in protected mode, we are using  

segments that span the full address space, so there is no 
true protection between the different programs

• Address space layout is ad hoc: different programs load and 
run at different addresses; there is no consistency

• We had to choose different (but essentially arbitrary) start 
addresses for user and user2, even when they were just two 
copies of the same program

• Why should worries about low level memory layout & size 
propagate in to the design of higher-level applications?

• Our user programs included duplicate code (e.g., each one 
has its own implementation of printf).  How can we support 
sharing of common code or data between multiple programs?
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Paging
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virtual address

Paging
• “All problems in computer science can be solved by another 

level of indirection” (David Wheeler)

• Partition the address space in to a collection of “pages”

• Translate between addresses in some idealized “virtual 
address space” and “physical addresses” to memory.
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offsetpage number

physical address

translate copy

Example
• Suppose that we partition our memory into 8 pages:
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Virt Phys
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Practical reality
• IA32 partitions the 32-bit, 4GB address space in to 4KB pages

• It also allows the address space to be viewed as 4MB “super 
pages”

• We need a table with 210 entries to translate virtual super 
page numbers in to physical page numbers

• With 4 bytes/entry, this table, called a page directory, 
takes 212 bytes - one 4K page!

 47

12 bits

offset

20 bits

page number

22 bits

offset

10 bits

super page number

Paging with 4MB super pages
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Vol. 3A 4-9

PAGING

Figure 4-4 gives a summary of the formats of CR3 and the paging-structure entries with 32-bit paging. For the 
paging structure entries, it identifies separately the format of entries that map pages, those that reference other 
paging structures, and those that do neither because they are “not present”; bit 0 (P) and bit 7 (PS) are high-
lighted because they determine how such an entry is used.

Figure 4-3.  Linear-Address Translation to a 4-MByte Page using 32-Bit Paging
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Address of page directory1
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Figure 4-4.  Formats of CR3 and Paging-Structure Entries with 32-Bit Paging
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• The cr3 register points to the “current” page directory

• Individual page directory entries (PDEs) specify a 10 bit 
physical super page address plus some additional control bits



Page tables
• A table describing translations for all 4KB pages would 

require 220 entries

• With four bytes per entry, a full page table would take 4MB

• Most programs are small, at least in comparison to the full 
address space

⟹ most address spaces are fairly sparse

• is there a more compact way to represent their page tables?
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Example
• Suppose that our memory is 

partitioned in to 64 pages

• But we are only use a small  
number of those pages…

• … in fact, only a small number  
of the rows

• Then we can represent the full table more compactly as a 
tree:
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0 1 2 3 4 5 6 7

8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23

24 25 26 27 28 29 30 31

32 33 34 35 36 37 38 39

40 41 42 43 44 45 46 47

48 49 50 51 52 53 54 55

56 57 58 59 60 61 62 63

0 8 16 24 32 40 48 56

8 9 10 11 12 13 14 15 32 33 34 35 36 37 38 39



Paging with 4KB pages
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— Bits 1:0 are 0.

• Because a PTE is identified using bits 31:12 of the linear address, every PTE maps a 4-KByte page (see 
Table 4-6). The final physical address is computed as follows:

— Bits 39:32 are all 0.

— Bits 31:12 are from the PTE.

— Bits 11:0 are from the original linear address.

If a paging-structure entry’s P flag (bit 0) is 0 or if the entry sets any reserved bit, the entry is used neither to refer-
ence another paging-structure entry nor to map a page. There is no translation for a linear address whose transla-
tion would use such a paging-structure entry; a reference to such a linear address causes a page-fault exception 
(see Section 4.7).

With 32-bit paging, there are reserved bits only if CR4.PSE = 1:

• If the P flag and the PS flag (bit 7) of a PDE are both 1, the bits reserved depend on MAXPHYADDR whether the 
PSE-36 mechanism is supported:1

— If the PSE-36 mechanism is not supported, bits 21:13 are reserved.

— If the PSE-36 mechanism is supported, bits 21:(M–19) are reserved, where M is the minimum of 40 and 
MAXPHYADDR.

• If the PAT is not supported:2

— If the P flag of a PTE is 1, bit 7 is reserved.

— If the P flag and the PS flag of a PDE are both 1, bit 12 is reserved.

(If CR4.PSE = 0, no bits are reserved with 32-bit paging.)

A reference using a linear address that is successfully translated to a physical address is performed only if allowed 
by the access rights of the translation; see Section 4.6.

1. See Section 4.1.4 for how to determine MAXPHYADDR and whether the PSE-36 mechanism is supported.

2. See Section 4.1.4 for how to determine whether the PAT is supported.

Figure 4-2.  Linear-Address Translation to a 4-KByte Page using 32-Bit Paging
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• A typical address space can now be described by a page 
directory plus one or two page tables (i.e., 4-12KB)

• Can mix pages and super pages for more flexibility

CR3, PDEs, PTEs
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Figure 4-4 gives a summary of the formats of CR3 and the paging-structure entries with 32-bit paging. For the 
paging structure entries, it identifies separately the format of entries that map pages, those that reference other 
paging structures, and those that do neither because they are “not present”; bit 0 (P) and bit 7 (PS) are high-
lighted because they determine how such an entry is used.

Figure 4-3.  Linear-Address Translation to a 4-MByte Page using 32-Bit Paging
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Figure 4-4.  Formats of CR3 and Paging-Structure Entries with 32-Bit Paging
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Details
• Paging structures use physical addresses

• P(resent) bit 0 is used to mark valid entries (an OS can use 
the remaining “ignored” fields to store extra information)

• Hardware updates D(irty) and A(ccessed) bits to track usage

• R/W bits allow regions of memory to be marked “read only”

• S/U bits allow regions of memory to be restricted to 
“supervisor” access only (rather than general “user”)

• G(lobal) bit allows pages to be marked as appearing in every 
address space

• PCD and PWD bits control caching behavior

 53

The translation lookaside buffer (TLB)
• Recall that the IA32 tracks current segment base and limit 

values in hidden registers to allow for faster access

• A more sophisticated form of cache, called the translation 
lookaside buffer (TLB), is used to keep track of active 
mappings within the CPU’s memory management unit

• Programmers typically ignore the TLB: “it just works”

• But not so in programs that modify page directories and page 
tables: extra steps are required to ensure that the TLB is 
updated to reflect changes in the page table

• Loading a value in to CR3 will flush the TLB

• the “invlpg addr” instruction removes TLB entries for a 
specific address
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Segmentation and paging
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If paging is not used, the linear address space of the processor is mapped directly into the physical address space 
of processor. The physical address space is defined as the range of addresses that the processor can generate on 
its address bus.

Because multitasking computing systems commonly define a linear address space much larger than it is economi-
cally feasible to contain all at once in physical memory, some method of “virtualizing” the linear address space is 
needed. This virtualization of the linear address space is handled through the processor’s paging mechanism.

Paging supports a “virtual memory” environment where a large linear address space is simulated with a small 
amount of physical memory (RAM and ROM) and some disk storage. When using paging, each segment is divided 
into pages (typically 4 KBytes each in size), which are stored either in physical memory or on the disk. The oper-
ating system or executive maintains a page directory and a set of page tables to keep track of the pages. When a 
program (or task) attempts to access an address location in the linear address space, the processor uses the page 
directory and page tables to translate the linear address into a physical address and then performs the requested 
operation (read or write) on the memory location. 

If the page being accessed is not currently in physical memory, the processor interrupts execution of the program 
(by generating a page-fault exception). The operating system or executive then reads the page into physical 
memory from the disk and continues executing the program. 

When paging is implemented properly in the operating-system or executive, the swapping of pages between phys-
ical memory and the disk is transparent to the correct execution of a program. Even programs written for 16-bit IA-
32 processors can be paged (transparently) when they are run in virtual-8086 mode.

3.2 USING SEGMENTS
The segmentation mechanism supported by the IA-32 architecture can be used to implement a wide variety of 
system designs. These designs range from flat models that make only minimal use of segmentation to protect 

Figure 3-1.  Segmentation and Paging
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Protection and address space layout
• A typical operating system adopts a virtual memory layout 

something like the following for all address spaces:

• The operating system is in every address space; it’s pages are 
protected from user programs by limiting those parts of the 
page directory to “supervisor” access

• The OS portion of the page directory can take advantage of 
G(lobal) bits so that TLB entries for kernel space are retained 
when we switch between address spaces
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Protection and address space layout
• A typical operating system adopts a virtual memory layout 

something like the following for all address spaces:

• User code and data mappings differ from one address space 
to the next

• there is no way for one user program to access memory 
regions for another program …

• … unless the OS provides the necessary mappings

• user programs do not have a capability to access 
unauthorized regions of memory
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• CR8 — Provides read and write access to the Task Priority Register (TPR). It specifies the priority threshold 
value that operating systems use to control the priority class of external interrupts allowed to interrupt the 
processor. This register is available only in 64-bit mode. However, interrupt filtering continues to apply in 
compatibility mode.

When loading a control register, reserved bits should always be set to the values previously read. The flags in 
control registers are:

PG Paging (bit 31 of CR0) — Enables paging when set; disables paging when clear. When paging is 
disabled, all linear addresses are treated as physical addresses. The PG flag has no effect if the PE flag (bit 
0 of register CR0) is not also set; setting the PG flag when the PE flag is clear causes a general-protection 
exception (#GP). See also: Chapter 4, “Paging.”

On Intel 64 processors, enabling and disabling IA-32e mode operation also requires modifying CR0.PG.

CD Cache Disable (bit 30 of CR0) — When the CD and NW flags are clear, caching of memory locations for 
the whole of physical memory in the processor’s internal (and external) caches is enabled. When the CD 
flag is set, caching is restricted as described in Table 11-5. To prevent the processor from accessing and 
updating its caches, the CD flag must be set and the caches must be invalidated so that no cache hits can 
occur.

See also: Section 11.5.3, “Preventing Caching,” and Section 11.5, “Cache Control.”

NW Not Write-through (bit 29 of CR0) — When the NW and CD flags are clear, write-back (for Pentium 4, 
Intel Xeon, P6 family, and Pentium processors) or write-through (for Intel486 processors) is enabled for 
writes that hit the cache and invalidation cycles are enabled. See Table 11-5 for detailed information about 
the affect of the NW flag on caching for other settings of the CD and NW flags.

AM Alignment Mask (bit 18 of CR0) — Enables automatic alignment checking when set; disables alignment 
checking when clear. Alignment checking is performed only when the AM flag is set, the AC flag in the 
EFLAGS register is set, CPL is 3, and the processor is operating in either protected or virtual-8086 mode.

Figure 2-7.  Control Registers
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Initialization
• How do we get from physical memory, after booting:

• to virtual address spaces with paging enabled?

• Two key steps

• Create an initial page directory

• Enable the CPU paging mechanisms
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Creating a 1:1 mapping
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• While running at lower addresses, create an initial page 
directory that maps the lower 1GB of memory in two 
different regions of the virtual address space

• Turn on paging …

• jump to an address in the upper 1GB of virtual memory …

• and then proceed without the lower mapping …

0 1GB 2GB 3GB 4GB

kernel spaceuser space

0 512MB 1GB

%eip

OS OS



Working with physical & virtual addresses
• It is convenient to work with page directories and page tables 

as regular data structures (virtual addresses):
struct Pdir { unsigned pde[1024]; };
struct Ptab { unsigned pte[1024]; };

/*-------------------------------------------------------------------------
 * Return a pointer to the page table for the ith entry of the specified
 * pdir, or NULL if it is not present (0x1) or is a super page (0x80).
 */
static inline struct Ptab* getPagetab(struct Pdir* pdir, unsigned i) {
  return ((pdir->pde[i]&0x81)==0x1)
          ? fromPhys(struct Ptab*, align(pdir->pde[i], PAGESIZE)) : 0;
}

• But sometimes we have to work with physical addresses:
/*-------------------------------------------------------------------------
 * Set the page directory control register to a specific value.
 */
static inline void setPdir(unsigned pdir) {
  asm("  movl  %0, %%cr3\n" : : "r"(pdir));
}
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From physical to virtual, and back again
• Because we map the top 1GB of virtual memory to the 

bottom 1GB of physical memory, it is easy to convert 
between virtual and physical addresses:  
 
 

 
KERNEL_SPACE = 0xc0000000  
 

#define fromPhys(t, addr) ((t)(((unsigned)addr)+KERNEL_SPACE))
#define toPhys(ptr)       ((unsigned)(ptr) - KERNEL_SPACE)

• (But how can we do this in a type safe language … ?)
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Details (Part 1)
• Constants to describe the virtual address space

KERNEL_SPACE    = 0xc0000000      # Kernel space starts at 3GB
KERNEL_LOAD     = 0x00100000      # Kernel loads at 1MB

• The kernel is configured to load at a low physical address but 
run at a high virtual address:

OUTPUT_FORMAT(elf32-i386)
ENTRY(physentry)

SECTIONS {

  physentry = entry - KERNEL_SPACE;
  . = KERNEL_LOAD + KERNEL_SPACE;

  .text ALIGN(0x1000) : AT(ADDR(.text) - KERNEL_SPACE) {
    _text_start = .; *(.text) *(.handlers) _text_end = .;
    *(.rodata*)
    *(.data)
    _start_bss = .; *(COMMON) *(.bss) _end_bss = .;
  }
}
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Details (Part 2)
• Reserve space for an initial page directory structure:

        .data
        .align  (1<<PAGESIZE)
initdir:.space  4096           # Initial page directory

• Zero all entries in the table:
        leal    (initdir-KERNEL_SPACE), %edi
        movl    %edi, %esi      # save in %esi

        movl    $1024, %ecx     # Zero out complete page directory
        movl    $0, %eax
1:      movl    %eax, (%edi)
        addl    $4, %edi
        decl    %ecx
        jnz     1b
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Details (Part 3)
• Install the lower and upper mappings in the initial page 

directory structure:
        movl    %esi, %edi      # Set up 1:1 and kernelspace mappings
        movl    $(PHYSMAP>>SUPERSIZE), %ecx
        movl    $(PERMS_KERNELSPACE),  %eax

1:      movl    %eax, (%edi)
        movl    %eax, (4*(KERNEL_SPACE>>SUPERSIZE))(%edi)
        addl    $4, %edi        # move to next page dir slots
        addl    $(4<<20), %eax  # entry for next superpage to be mapped
        decl    %ecx
        jnz     1b

• Load the CR3 register:
        movl    %esi, %cr3      # Set page directory

        mov     %cr4, %eax      # Enable super pages (CR4 bit 4)
        orl     $(1<<4), %eax
        movl    %eax, %cr4
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Details (Part 4)
• Turn on paging:

        movl    %cr0, %eax              # Turn on paging (1<<31)
        orl     $((1<<31)|(1<<0)), %eax # and protection (1<<0)
        movl    %eax, %cr0

        movl    $high, %eax             # Make jump into kernel space
        jmp     *%eax
high:                                   # Now running at high addresses
        leal    kernelstack, %esp       # Set up initial kernel stack

• And now that’s out of the way, the kernel can get down to 
work …
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Page faults
• If program tries to access an address that is either not 

mapped, or that it is not permitted to use, then a page fault 
exception (14) occurs

• The address triggering the exception is loaded in to CR2

• Details of the fault are in the error code in the context:
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4.7 PAGE-FAULT EXCEPTIONS
Accesses using linear addresses may cause page-fault exceptions (#PF; exception 14). An access to a linear 
address may cause page-fault exception for either of two reasons: (1) there is no translation for the linear address; 
or (2) there is a translation for the linear address, but its access rights do not permit the access.

As noted in Section 4.3, Section 4.4.2, and Section 4.5, there is no translation for a linear address if the translation 
process for that address would use a paging-structure entry in which the P flag (bit 0) is 0 or one that sets a 
reserved bit. If there is a translation for a linear address, its access rights are determined as specified in Section 
4.6.

Figure 4-12 illustrates the error code that the processor provides on delivery of a page-fault exception. The 
following items explain how the bits in the error code describe the nature of the page-fault exception:

• P flag (bit 0).
This flag is 0 if there is no translation for the linear address because the P flag was 0 in one of the paging-
structure entries used to translate that address.

• W/R (bit 1).
If the access causing the page-fault exception was a write, this flag is 1; otherwise, it is 0. This flag describes 
the access causing the page-fault exception, not the access rights specified by paging.

• U/S (bit 2).
If a user-mode access caused the page-fault exception, this flag is 1; it is 0 if a supervisor-mode access did so. 
This flag describes the access causing the page-fault exception, not the access rights specified by paging. User-
mode and supervisor-mode accesses are defined in Section 4.6.

• RSVD flag (bit 3).
This flag is 1 if there is no translation for the linear address because a reserved bit was set in one of the paging-
structure entries used to translate that address. (Because reserved bits are not checked in a paging-structure 
entry whose P flag is 0, bit 3 of the error code can be set only if bit 0 is also set.)

Bits reserved in the paging-structure entries are reserved for future functionality. Software developers should 
be aware that such bits may be used in the future and that a paging-structure entry that causes a page-fault 
exception on one processor might not do so in the future.

• I/D flag (bit 4).
This flag is 1 if (1) the access causing the page-fault exception was an instruction fetch; and (2) either 
(a) CR4.SMEP = 1; or (b) both (i) CR4.PAE = 1 (either PAE paging or IA-32e paging is in use); and 
(ii) IA32_EFER.NXE = 1. Otherwise, the flag is 0. This flag describes the access causing the page-fault 
exception, not the access rights specified by paging.

 

Figure 4-12.  Page-Fault Error Code
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Ok, kernel, over to you …
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