101111 .
01010 Languages & Low-Level Programming

XS&’%E%E CS 410/510

Mark P Jones
Portland State University

Fall 2018

Week 3: Segmentation, Protected Mode,
Interrupts, and Exceptions

Copyright Notice

* These slides are distributed under the Creative Commons
Attribution 3.0 License

* You are free:
* to share—to copy, distribute and transmit the work
* to remix—to adapt the work

* under the following conditions:

* Attribution: You must attribute the work (but not in any way that
suggests that the author endorses you or your use of the work) as
follows: “Courtesy of Mark P. Jones, Portland State University”

The complete license text can be found at
http://creativecommons.org/licenses/by/3.0/legalcode

General theme for the next two weeks

*In a complex system ...

APP| |APP| |APP| |APP App
Operating System | | Operating System
Microkernel
Hardware

* Question: how can we protect individual programs from
interference with themselves, or with one another, either
directly or by subverting lower layers?

* General approach: leverage programmable hardware features!

Diagrams and Code

* There are a lot of diagrams on these slides

* Many of these are taken directly from the “Intel® 64 and
|A-32 Architectures Software Developer’s Manual”,
particularly Volume 3

* There is a link to the full pdf file in the Reference section
* There is also a lot of code on these slides

* Remember that you can study these more carefully later if
you need to!

Taking stock: Code samples ... so far

vram Video RAM Simu|ati0n } Vram.tar.gz
hello boot and say hello on bare metal, via heIIo.tar.gz
GRUB
simpleio a simple library for video RAM 1/O
bootinfo display basic boot information from
GRUB

baremetal.tar.gz
mimg memory image bootloader & make tool

example-mimg |display basic boot information from
mimgload

example-gdt basic demo using protected mode
segments (via a Global Descriptor Table)

- —— - prot.tar.gz
example-idt context switching to user mode (via an

Interrupt Descriptor Table)

Segmentation

(or: where do “seg faults” come from?)

Breaking the 64KB barrier ...

* The 8086 and 8088 CPUs in the original IBM PCs were |6 bit
processors: in principle, they could only address 64KB

* Intel used segmentation to increase the amount of
addressable memory from 64KB to |MB:

[I 6 bit segmentj /(|6 bit address]
+ 0
— /(20 bit address]

AN

[Not an Intel diagram!]

General-Purpose Registers

31 0

EAX
EBX
ECX
EDX
sl
€DI

EBP
oF Code: CS
Segment Registers

Data: DS
j Stack ss)
|31Program Status and Control Register |EFLAGS Ex'tra, ES, FS, GS]

31 Instruction Pointer 0
| | er

Figure 3-4. General System and Application Programming Registers

I\

[An Intel diagram!]

How are segments chosen

* The default choice of segment register is determined by the
specific kind of address that is being used:

Table 3-5. Default Segment Selection Rules

Reference Type | Register Used | Segment Used Default Selection Rule
Instructions cS Code Segment Allinstruction fetches.
Stack SS Stack Segment All stack pushes and pops.
Any memory reference which uses the ESP or EBP register as a base
register.
Local Data DS Data Segment All data references, except when relative to stack or string destination.
Destination Strings | ES Data Segment Destination of string instructions.
pointed to with the
ES register

* If a different segment register is required, a single byte
“segment prefix” can be attached to the start of the
instruction

Back to breaking the 64KB barrier ...
640KB User Memory BIOS,Video RAM, etc..

DS CS SS

* Programs can be organized to use multiple segments:
* For example:

* One segment for the stack

* One segment for code

* One segment for data

* We can relocate these segments to different physical
addresses, just by adjusting the segment registers

Back to breaking the 64KB barrier ...

640KB User Memory BIOS,Video RAM, etc..

(&) SS DS

* Programs can be organized to use multiple segments:
* For example:

* One segment for the stack

* One segment for code

* One segment for data

* We can relocate these segments to different physical
addresses, just by adjusting the segment registers

Variations on the theme

* Programs can have multiple code and data segments

* Programmers could use a standard “memory model”

* Or use custom approaches to suit a specific application
* The machine provides special “far call” and “far jump”

instructions that change CS and EIP simultaneously, allowing
control transfers between distinct code segments

* There are six segment registers, so programs can have up to
6 active segments at a time (and more by loading new values
in to the segment registers)

* Segments do not have to be exactly 64KB

* If segments do not overlap, then a stack overflow will not
corrupt the contents of other segments - protection!

Accommodating multiple programs
640KB User Memory BIOS,Video RAM, etc..

A A B A C B B C|C
cS sS CS DS CS DS SS SS DS

* Now we can have multiple programs in memory at the same
time, each with distinct code, data, and stack segments

* But what is to stop the code for one program from accessing
and/or changing the data for another?

* Nothing!

* We would like to “protect” programs for interfering with one
another, either by accident or design ...

ion!
PrOte Ctl O n . Protection Rings
Operating
System
Kernel
Operating System
Services “
Applications

Figure 5-3. Protection Rings

* Ring 0 is sometimes called “supervisor” or “kernel mode”

* Ring 3 is often called “user mode”

Control registers

31(63) 20 181716151413 121110 98 7 6 5 4 3 2 1 0
s s|v
plp|m|P[P| |T|P|V
Reserved M MM cle|c|a|s|B|s|v|M| cR4
E x| X E|ele|e|e|E|p|1]E
E|E
J |— FSGSBASE L|— OSFXSR
OSXSAVE ——— PCIDE OSXMMEXCPT
31(63) 12 11 5432
PlP
. CR3
. clw
Page-Directory Base olT (PDBR)
31(63) 0
Page-Fault Linear Address CR2
31(63) 0
Enables
CR1
protected
313029 28 1918 17 16 15 6543210
mode
P|C|N Al |w N|E[T|E[M|P
G|D|w M| [P E|T|s|m|p|g| CRO
] Resenea | Setby

Figure 2-7. Control Registers

GRUB

—

The current mode

* The current mode is saved in the two least significant bits of
the CS register

* The value in CS can only be changed by a limited set of
instructions (e.g., it cannot be the target of a movw), each of
which performs a privilege check, if necessary, triggering a
CPU exception if a violation occurs

* End result: user mode code cannot change its own privilege
level to move out of Ring 3!

Segments in protected mode

31 242322212019 1615141312 11 8 7 0
D| |A| Seg. D
Base 31:24 G|/|L|v| Limit [P P |S| Type Base 23:16
B Ll 19:16 L
31 16 15 0
Base Address 15:00 Segment Limit 15:00
L — 64-bit code segment (IA-32e mode only)
AVL — Available for use by system software

BASE — Segment base address
D/B — Default operation size (0 = 16-bit segment; 1 = 32-bit segment)

DPL — Descriptor privilege level

G — Granularity

LIMIT — Segment Limit

P — Segment present

S — Descriptor type (0 = system; 1 = code or data)

TYPE — Segment type

Figure 3-8. Segment Descriptor

Data-Segment Descriptor

31 242322 212019 1615141312 11 8 7 0
A it D T
Base3124 |o|Blo|v| HmL lp) p I Base 23:16 |4
L : L 0‘E|W‘ A
31 16 15 0
Base Address 15:00 Segment Limit 15:00 0

Code-Segment Descriptor

31 242322212019 1615 14 13 12 11 8 7 0
Al Limi D Type
Base3124 |c|p|o[v| HML |p) p iz Base23:16 |4
L : L |1 1‘C|R‘A
31 16 15 0
Base Address 15:00 Segment Limit 15:00 0

System-Segment Descriptor

31 242322212019 1615141312 11 8 7 0
imi D
Base 31:24 G| |o :—é’q'g P| P 0| Type Base 23:16 4
: L
31 16 15 0
Base Address 15:00 Segment Limit 15:00 0
A Accessed E Expansion Direction
AVL Available to Sys. Programmer’s G Granularity
B Big R Readable
C Conforming LIMIT Segment Limit
D Default W Writable
DPL Descriptor Privilege Level P Present

[] Reserved

Figure 5-1. Descriptor Fields Used for Protection

Segment registers hold segment selectors

15 3210

”RPL‘

‘ Index

Table Indicator
0=GDT
1=LDT

Requested Privilege Level (RPL)

Figure 3-6. Segment Selector

Logical 13 0 31(63) 0
Address |_Seg. Selector | Offset (Effective Address) |

Descriptor Table

Base Address
Segment | Z95F TIESS My
Descriptor

31(63) 0
| Linear Address |

Figure 3-5. Logical Address to Linear Address Translation

The descriptor cache

Visible Part Hidden Part
Segment Selector Base Address, Limit, Access Information | CS
SS
DS
ES
FS
GS

Figure 3-7. Segment Registers

20

Global and local descriptor tables

Global Local
Descriptor Descriptor
Table (GDT) Table (LDT)
. v v
I Ti=o =1
Segment
Selector
56 56
48 48
40 40
32 32
24 24
16 16
8 8
First Descriptor in
GDT is Not Used 0 0
GDTR Register LDTR Register
Base Address Base Address
Seg. Sel.

Figure 3-10. Global and Local Descriptor Tables

21

Achieving protection

* The global and local descriptor tables are created by the
kernel and cannot be changed by user mode programs

* The CPU raises an exception if a user mode program
attempts to access:
* a segment index outside the bounds of the GDT or LDT
* a segment that is not marked for user mode access
* an address beyond the limit of the associated segment

* The kernel can associate a different LDT with each process,
providing each process with a distinct set of segments

22

Segments and capabilities

* The GDT and LDT for a given user mode program determine
precisely which regions of memory that program can access

* As such, these entries are an example of a capability
mechanism

* The user mode program refers to segments by their index in
one of these tables, but it has no access to the table itself:

* It cannot, in general, determine which regions of physical
memory they are accessing

* It cannot “fake” access to other regions of memory

* The principle of least privilege: limit access to the
minimal set of resources that are required to perform a task

23

What if we don’t want to use segments!?

» Segmentation cannot be disabled in protected mode
 But we can come pretty close by using segments with:

* base address 0

* length = 4GB
0
NULL Intel Reqd
e A common GDT structure: 6 g }
. . . reserve
(e.g., in Linux, etc., with no 5
LDT) reserved

24

TSS segment

3

N

KERNEL_CS DPL =0
all span the “ KERNEL DS -
4GB address < . USER (_IS
space .. = DPL =3
USER_DS

24

Storage for the GDT

.set GDT_ENTRIES, 8
.set GDT SIZE, 8*GDT_ENTRIES # 8 bytes for each descriptor
.data
.align 128
gdt: .space GDT SIZE, 0
.align 8 gdt
gdtptr: .short GDT SIZE-1 4———*6
.long gdt
8
gdtptr 16
. 7 O
ready to begin! 63 .
lgdt gdtptr 2
get 9aEp $gdt 32
40
48
56

25

Calculating GDT descriptors

.macro gdtset name, slot, base, limit, gran, dpl, type <[macro assembler
.set \name, (\slot<<3)|\dpl
.globl \name
movl $\base, %eax # eax = bhi # bmd # blo
movl $\limit, %ebx # ebx = ~ # 1lhi # 1llo
31 242322212019 161514 1312 11 8 7 0
mov %eax, %edx # edx = base p| |Aa| Seg. D
shl $16, %eax # eax = blo # 0 Base 31:24 G é, L \If 1Lérr’1]|(t3 P E S| Type Base 23:16 4
mov %bx, %ax # eax = blo # 1llo
movl %eax, gdt+(8+*\slot) 31 1615 0
shr $16, %edx # edx = 0 # bhi # bmd Base Address 15:00 Segment Limit 15:00 0
mov %edx, %ecx # ecx = 0 # bhi # bmd
andl $0xff, %ecx #ecx =0 #0 # bmd
xorl %ecx, %edx # edx = 0 # bhi # bmd
shl $16,%edx # edx = bhi # 0
orl %ecx, %edx # edx = bhi # 0 # bmd
andl $0xf0000, %ebx # ebx = 0 # lhi # 0
orl %ebx, %edx # edx = bhi # 0 # 1lhi # 0 # bmd
#
The constant 0x4080 used below is a combination of:
0x4000 sets the D/B bit to indicate a 32-bit segment
0x0080 sets the P bit to indicate that descriptor is present
(\gran<<15) puts the granularity bit into place
(\dpl<<5) puts the protection level into place
\type is the 5 bit type, including the S bit as its MSB
#
orl $(((\gran<<15) | 0x4080 | (\dpl<<5) | \type)<<8), %edx

g$edx, gdt + (4 + 8*\slot)

26

base limit

Deja vu? NRREENEN L[[TTTT]

mov1l base, %eax Seax &mm’ %ebx &I”V
movl limit, sebx [| [[IO oJo[o [T T T]
. <§1 shl 16 1

mov %eax, %edx wTi“ ‘ “ ‘ “

mov 0|0|0]0
shl $16, %eax
mov $bx, %ax Sedx %eax m movw
movl %eax, low LLTT PR B [][] et 20
h 1 . Sedx &shr 16 oy %ecx
. $egxe2i§x lofofofo[[[T J=>[ofofofo] [[][] [ana oxcooo0
andl SOxff, %ecx sedx @Xor secx {}aﬂd Oxff
xorl Becx, bed [olofo o] ToJo]<=[s[o[s o o[o[]
shl $16,%edx) @sm116
orl %ecx, %edx fedx
andl $0xf0000, %ebx | | lofofo]ofo]o]
orl %ebx, %edx Q§§3 sedx or %ebx Y
orl $0x503200, $edx (T Tolo[o[e[T [o]o[o] To]o[e]o]
movl $edx, high gh%ak or

oo [T T T L[To[Jofo[T]
¢ odx or 0x503200
wion [T LRI

L[] [s[2] [] i
27

Initializing the GDT entries

initGDT:# Kernel code segment:
gdtset name=KERN CS, slot=4, dpl=0, type=GDT_CODE, \
base=0, limit=0xffffff, gran=1

Kernel data segment:
gdtset name=KERN DS, slot=5, dpl=0, type=GDT DATA, \
base=0, limit=0xffffff, gran=1

User code segment
gdtset name=USER CS, slot=6, dpl=3, type=GDT CODE, \
base=0, limit=0xffffff, gran=1

User data segment
gdtset name=USER DS, slot=7, dpl=3, type=GDT_DATA, \
base=0, limit=0xffffff, gran=1

TSS

gdtset name=TSS, slot=3, dpl=0, type=GDT TSS32, \
base=tss, limit=tss len-1, gran=0

28

Activating the GDT

lgdt gdtptr

1jmp $KERN CS, $1f # load code segment
1:

mov $KERN_DS, %ax # load data segments

mov %ax, %ds

mov %$ax, %es

mov %ax, %ss

mov %ax, %gs

mov gax, %fs

mov $TSS, %ax # load task register

ltr %ax

ret

The Task State Segment

Code
’_> Segment
Task-State Data
Segment —\—> Segment
(TSS) Stack
«| Segment
“1 (Current Priv.
Level)
Stack Seg.
»| Priv. Level 0
Stack Seg.
E » Priv. Level 1
Task Register Stack
— > _Segment
CR3 (Priv. Level 2)

Figure 7-1. Structure of a Task

The Task State Segment

31 15 0
1/0 Map Base Address Reserved T|100
Reserved LDT Segment Selector 96
Reserved GS 92
Reserved FS 88
Reserved DS 84
Reserved SS 80
Reserved cs 76
Reserved ES 72
EDI 68
ESI 64
EBP 60
ESP 56
EBX 52
EDX 48
ECX 44
EAX 40
EFLAGS 36
EIP 32
CR3 (PDBR) 28
Reserved | S82 24
ESP2 20
Reserved | SS1 16
ESP1 12
Reserved | SS0 8
ESPO 4
Reserved | Previous Task Link 0
l:l Reserved bits. Set to 0.

Figure 7-2. 32-Bit Task-State Segment (TSS)

31

Implementing the TSS

.data
.short
.long
.short
.long
.short
.long
.short
.long
.long
.long
.short
.short
.short
.short
.short
.short
.short
.short
.short
.set

tss:
esp0:

0, RESERVED
0
KERN_DS, RESERVED

RESERVED

~

RESERVED
0, 0

0, 0, 0, O
0, 0
RESERVED
RESERVED
RESERVED
RESERVED
RESERVED
RESERVED
RESERVED

~ 0~

~

N N N N SN SN

[« elNeNelNeNeNeNoNeNoNeNoNoNe]
~

~

0
1000

tss_len, .-tss

FhoFh oF H o o Y O WO W W WK HHHH

previous task link

esp0

ss0

espl

ssl

esp2

ss2

cr3 (pdbr), eip, eflags
eax, ecx, edx, ebx, esp
ebp, esi, edi

es

cs

ss

ds

fs

gs

1dt segment selector

T bit

I/0 bit map base address

32

Interrupts and exceptions

33

Exceptions

* What happens if the program you run on a conventional
desktop computer attempts:

* division by zero?

* to use an invalid segment selector?

* to reference memory beyond the limits of a segment?
. etc...

* What happens when there is no operating system to catch
you!?

34

Table 6-1. Protected-Mode Exceptions and Interrupts

Vector Mne- Description Type Error Source
No. monic Code
0 #DE Divide Error Fault No DIV and IDIV instructions.
1 #DB RESERVED Fault/ Trap No For Intel use only.
2 - NMI Interrupt Interrupt No Nonmaskable external interrupt.
3 #BP Breakpoint Trap No INT 3 instruction.
4 #OF Overflow Trap No INTO instruction.
5 #BR BOUND Range Exceeded Fault No BOUND instruction.
6 #UD Invalid Opcode (Undefined Opcode) | Fault No UD2 instruction or reserved 0|:ac0de.1
7 #NM Device Not Available (No Math Fault No Floating-point or WAIT/FWAIT instruction.
Coprocessor)
8 #DF Double Fault Abort Yes Any instruction that can generate o [FauIl€s can genera| |y be
(zero) exception, an NMI, or an INTR. .
9 Coprocessor Segment Overrun Fault No Floating-point instruction.? cor‘rected, restarti ng the
d .
(resened) program at the faulting
10 #TS Invalid TSS Fault Yes Task switch or TSS access. . .
11 #NP Segment Not Present Fault Yes Loading segment registers or acc Instruction
system segments. * Traps allow execution to be
12 #SS Stack-Segment Fault Fault Yes Stack operations and SS register | restarte d a fter the tra in
13 #GP General Protection Fault Yes Any memory reference and other| PP g
protection checks. instruction
14 #PF Page Fault Fault Yes Any memory reference. ° Aborts dO not aIIow a restart
15 - (Intel reserved. Do not use.) No
16 #MF x87 FPU Floating-Point Error (Math | Fault No x87 FPU floating-point or WAIT/FWAIT
Fault) instruction.
17 #AC Alignment Check Fault Yes Any data reference in memory.3
(Zero)
18 #MC Machine Check Abort No Error codes (if any) and source are model
dependent#
19 #XM SIMD Floating-Point Exception Fault No SSE/SSE2/SSE3 floating-point
instructions®
20 #VE Virtualization Exception Fault No EPT violations®
21-31 - Intel reserved. Do not use.
32-255 - User Defined (Non-reserved) Interrupt External interrupt or INT ninstruction.
Interrupts

35

Hardware and software interrupts

 Hardware: devices often generate interrupt signals to
inform the kernel that a certain event has occurred:

* a timer has fired
* a key has been pressed
* a buffer of data has been transferred

» Software: User programs often request services from an
underlying operating system:
* read data from a file
* terminate this program
* send a message

* These can all be handled in the same way ...

36

The interrupt vector

Figure 6-2. IDT Gate Descriptors

Destination
IDT Code Segment
Interrupt
Offset Procedure
Interrupt Interrupt or 4’@ >
Vector Trap Gate
Segment Selector
GDT or LDT
Base
Address
- Segment
- Descriptor
Figure 6-3. Interrupt Procedure Call
37
Task Gate
31 1615 14 13 12 8 7
D
Pl P 0010 1
L
31 1615
TSS Segment Selector
Interrupt Gate
31 1615 14 13 12 8 7 5 4
D
Offset 31..16 PP |OD110/000
L
31 1615
Segment Selector Offset 15..0
Trap Gate
31 1615 14 13 12 8 7 5 4
D
Offset 31..16 Pl P|OD111/000
L
31 16 15
Segment Selector Offset 15..0
DPL Descriptor Privilege Level
Offset Offset to procedure entry point
P Segment Present flag
Selector Segment Selector for destination code segment
D Size of gate: 1 = 32 bits; 0 = 16 bits
|:| Reserved
38

Storage for the IDT

.set IDT ENTRIES, 256 # Allow for all poss. interrupts
.set IDT SIZE, 8*IDT ENTRIES # Eight bytes for each idt desc.
.set IDT INTR, 0x000 # Type for interrupt gate
.set IDT TRAP, 0x100 # Type for trap gate
.data
.align 8
idt: .space IDT SIZE, O idt
0
idtptr: .short IDT SIZE-1
.long idt 8
idtptr 16
ready to begin!? O 5047
i i 2
lidt idtptr sidt . . .
2040
2044
0

39

Calculating IDT descriptors

.macro idtcalc handler, slot, dpl=0, type=IDT INTR, seg=KERN CS

type = 0x000 (IDT_INTR) => interrupt gate
type = 0x100 (IDT TRAP) => trap gate
#
The following comments use # for concatenation of bitdata
#
mov $\seg, %ax # eax = ? # seg
shl $16, %eax # eax = seqg # 0
movl $\handler, %edx # edx = hhi # hlo
mov %dx, %ax # eax = seg # hlo
mov $(0x8e00 | (\dpl<<13) | \type), %dx
mov1l $eax, idt + (8*\slot)
mov1l gedx, idt + (4 + 8*\slot)
.endm
31 16 1514 1312 8 7 5 4 0
D
Offset 31..16 Pl P |O0OD110|000 4
L
31 16 15 0

Segment Selector Offset 15..0 0

40

Initializing and activating the IDT

initIDT:# Fill in IDT entries

Add descriptors for protected mode exceptions:
.irp num, 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,16,17,18,19

idtcalc exc\num, slot=\num
.endr ﬁ macro loop J

Add descriptors for hardware irgs:
... except there aren’t any here (yet)

Add descriptors for system calls:

These are the only idt entries that we will allow to be
called from user mode without generating a general

protection fault, so they are tagged with dpl=3.
idtcalc handler=kputc, slot=0x80, dpl=3

Install the new IDT:
lidt idtptr
ret

41

Transferring control to a handler

Stack Usage with No
Privilege-Level Change
Interrupted Procedure’s
and Handler’s Stack

<— ESP Before

EFLAGS Transfer to Handler
CS
EIP

Error Code [«——ESP After
Transfer to Handler

Stack Usage with
Privilege-Level Change

Interrupted Procedure’s Handler’s Stack
Stack

<<——ESP Before
Transfer to Handler sSS
ESP
EFLAGS
CS
EIP

ESP After——>» Error Code
Transfer to Handler

Figure 6-4. Stack Usage on Transfers to Interrupt and Exception-Handling Routines

42

Contexts

(oo o

43

Contexts

esp

esp0

err

eip

cs

efl

esp

SS

}i

|

struct Iret {
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned

error;
eip;
cs;
eflags;
esp;
ss;

Automatic (CPU)

Contexts

esp0
esp l
v
ds |es | fs | gs |err|eip| cs |efl|esp| ss
struct Segments { struct Iret {
unsigned ds; unsigned error;
unsigned es; unsigned eip;
unsigned fs; unsigned cs;
unsigned gs; unsigned eflags;
}: unsigned esp;
unsigned ss;
}i
push %gs
push gfs
push ges Automatic (CPU)
push %ds
45
Contexts esp0
lesp l
edi|esi|ebp|esp|ebx|ecx|edx|eax| ds | es | £fs | gs |err|eip| cs |efl|esp| ss
struct Registers { struct Segments { struct Iret {
unsigned edi; unsigned ds; unsigned error;
unsigned esi; unsigned es; unsigned eip;
unsigned ebp; unsigned fs; unsigned cs;
unsigned esp; unsigned dgs; unsigned eflags;
unsigned ebx; Y unsigned esp;
unsigned edx; unsigned ss;
unsigned ecx; }i
unsigned eax;
}i
push %gs
push gfs
pusha push ges Automatic (CPU)
push %ds

46

Contexts esp0

esp

edi|esi|ebp|esp|ebx|ecx|edx|eax| ds | es | £s | gs |err|eip| cs |efl|esp| ss

J
Vv
struct Registers { struct Segments { struct Iret {
unsigned edi; unsigned ds; unsigned error;
unsigned esi; unsigned es; unsigned eip;
unsigned ebp; unsigned fs; unsigned cs;
unsigned esp; unsigned gs; unsigned eflags;
unsigned ebx; Y unsigned esp;
unsigned edx; unsigned ss;
unsigned ecx; }i
unsigned eax;
}i
C struct Context {
aptunesthe struct Registers regs;
“context”’ of the struct Segments segs;
: struct Iret iret;
interrupted program bs !
’
47
Table 6-1. Protected-Mode Exceptions and Interrupts
Vector Mne- Description Type Source
No. monic
0 #DE Divide Error Fault DIV and IDIV instructions.
1 #DB RESERVED Fault/ Trap For Intel use only.
2 - NMI Interrupt Interrupt Nonmaskable external interrupt.
3 #BP Breakpoint Trap INT 3 instruction.
4 #OF Overflow Trap INTO instruction.
5 #BR BOUND Range Exceeded Fault BOUND instruction.
6 #UD Invalid Opcode (Undefined Opcode) | Fault UD2 instruction or reserved 0pc0de.1
7 #NM Device Not Available (No Math Fault Floating-point or WAIT/FWAIT instruction.
Coprocessor)
8 #DF Double Fault Abort Any instruction that can generate o [FauUIl€S can genera| |y be
exception, an NMI, or an INTR. .
9 Coprocessor Segment Overrun Fault Floating-point instruction.? correCted’ restarti ng the
(reserved) program at the faulting
10 #TS Invalid TSS Fault Task switch or TSS access. . .
11 #NP Segment Not Present Fault Loading segment registers or acc Instruction
system segments. * Traps allow execution to be
12 #SS Stack-Segment Fault Fault Stack operations and SS register | .
13 #GP General Protection Fault Any memory reference and other| restarted aﬁer the trapplng
protection checks. instruction
14 #PF Page Fault Fault Any memory reference. ° Aborts dO not aIIow a restart
15 - (Intel reserved. Do not use.)
16 #MF x87 FPU Floating-Point Error (Math | Fault x87 FPU floating-point or WAIT/FWAIT
Fault) instruction.
17 #AC Alignment Check Fault Any data reference in memory.3
18 #MC Machine Check Abort Error codes (if any) and source are model
dependent.#
19 #XM SIMD Floating-Point Exception Fault SSE/SSE2/SSE3 floating-point
instructions®
20 #VE Virtualization Exception Fault EPT violations®
21-31 - Intel reserved. Do not use.
32-255 - User Defined (Non-reserved) Interrupt External interrupt or INT ninstruction.
Interrupts

48

Exception handler

.macro
exc\num:.if
subl
.endif
push
push
push
push
pusha

push
movl
call
addl

popa
popl
popl
popl
popl
addl
iret

handler num,
\errorcode==
$4, %esp

%gs
gfs
ges
%ds

%esp

$\num,
\func
$4, %esp

geax

%ds
%es
gfs
%gs

$4, %esp

func,

.endm

errorcode=0

Some exceptions
do not generate an
error code ...

Fake an error code if necessary

Save segments

Save registers

Push pointer to frame for handler

call func(struct Context *esp)

with num in eax

Restore registers

Restore segments

remove error code

‘—“-_“*““““\\“returnfkonwinterrupt”i)

49

Defining a family of (non) handlers

Protected-mode exceptions and interrupts:

#

handler
handler
handler
handler
handler
handler
handler
handler
handler
handler
handler
handler
handler
handler
handler
handler
handler
handler
handler

num=0,
num=1,
num=2,
num=3,
num=4,
num=5,
num=6,
num=7,
num=8,
num=9,
num=10,
num=11,
num=12,
num=13,
num=14,
num=16,
num=17,
num=18,
num=19,

func=nohandler
func=nohandler
func=nohandler
func=nohandler
func=nohandler
func=nohandler
func=nohandler
func=nohandler
func=nohandler,
func=nohandler
func=nohandler,
func=nohandler,
func=nohandler,
func=nohandler,
func=nohandler,
func=nohandler
func=nohandler,
func=nohandler
func=nohandler

errorcode=1

errorcode=1
errorcode=1
errorcode=1
errorcode=1
errorcode=1

errorcode=1

HFHHFHFHFHFHFHRHRHRHRHRHRHRHRHRHRHRH

divide error

debug

NMTI

breakpoint

overflow

bound

undefined opcode
nomath

doublefault

coproc seg overrun
invalid tss

segment not present
stack-segment fault
general protection
page fault

math fault
alignment check
machine check

SIMD fp exception

50

Defining a family of (non) handlers

nohandler: # dummy interrupt handler
movl 4 (%esp), %ebx # get frame pointer
pushl %ebx
pushl geax
pushl Sexcepted
call printf

call printf (excepted, num, ctxt)]

addl $12, %esp
1: hlt
jmp 1b
ret
excepted:
.asciz "Exception 0x%x, frame=0x%x\n"

Initializing a context

struct Context user;
initContext (&user, userEntry, 0);

void initContext(struct Context* ctxt, unsigned eip, unsigned esp) {
extern char USER DS[];
extern char USER _CS[];
printf("user data segment is 0x%x\n", (unsigned)USER DS);
printf("user code segment is 0x%x\n", (unsigned)USER CS);

ctxt->segs.ds = (unsigned)USER _DS;
ctxt->segs.es = (unsigned)USER DS;
ctxt->segs.fs = (unsigned)USER DS;

ctxt->segs.gs
ctxt->iret.ss

(unsigned)USER_DS;
(unsigned)USER_DS;

ctxt->iret.esp = esp;
ctxt->iret.cs = (unsigned)USER CS;
ctxt->iret.eip = eip;

ctxt->iret.eflags INIT USER FLAGS;

Initializing the flags

#define INIT USER _FLAGS (3<<12 | 1<<9 | 1<<1)

31 222120191817 16 15 31211 9 87 6543 10

I
V|V
I A|V|R[4|N| © O|DIL T|S|zZ||Al,|PI, C
Reserved (setto 0) | é ; clmlelol Tl 5 (FlElE elFIFIO|EIO|EIL F
L
ID — Identification Flag
VIP — Virtual Interrupt Pending
VIF — Virtual Interrupt Flag
AC — Alignment Check
VM — Virtual-8086 Mode
RF — Resume Flag
NT — Nested Task Flag
IOPL— 1/O Privilege Level
IF — Interrupt Enable Flag
TF — Trap Flag
[::] Reserved
Figure 2-5. System Flags in the EFLAGS Register
53
From C:
extern int switchToUser (struct Context* ctxt);
To Assembly:
.set CONTEXT SIZE, 72
.globl switchToUser
switchToUser:
movl 4(%esp), %eax # Load address of the user context
movl %eax, %esp # Reset stack to base of user context
addl SCONTEXT SIZE, %eax
movl geax, espl # Set stack address for kernel reentry
popa # Restore registers
pop %ds # Restore segments
pop ges
pop %fs
pop %gs
addl $4, %esp # Skip error code

iret # Return from interrupt

54

Entering a system call (kernel view)

Initialize IDT entry:

idtcalc handler=kputc, slot=0x80, dpl=3

Define a stub to handle the interrupt:

.text
kputc: subl $4, %esp # Fake an error code
push %gs # Save segments
push %fs
push ges
push %ds
pusha # Save registers
leal stack, %esp # Switch to kernel stack
jmp kputc_imp

Provide a handler implementation:

void kputc_imp() { /* A trivial system call */
putchar (user.regs.eax);

switchToUser (suser); Why is this line so important?}

}

55

Entering a system call (user view)

From C:

extern void kputc(unsigned);

To Assembly:

.globl kputc
kputc: pushl geax

mov 8(%esp), %eax
int $128
popl geax

ret

56

A recipe for adding a new system call

* Pick an unused interrupt number.
* Add code to initialize the corresponding IDT entry.

* Write and assembly code stub that saves the user program
context and jumps to the handler code.

* Write the implementation of the handler. Be sure to use
switchToUser (or equivalent) when the handler is done.

* Add user-level code to access the new system call. This often
requires an assembly code fragment using the int
instruction, and a declaration/prototype in the C code

* Color key for example-idt:
kernel/init.s kernel/kernel.c user/userlib.s user/user.c

57

Reflections

* Bare Metal
* Segmentation, protection, exceptions and interrupts

* Programming/Languages

* Representation transparency, facilitates interlanguage
interoperability

* Memory areas

* Vendor-defined layout: GDT, GDTTR,TSS, IDT, IDTR,
IRet, Registers, ...

* Self-defined: Context, ...
* “Bitdata”
* Segment and interrupt descriptors, eflags, crO, ...
* Does the need for a “recipe” suggest a language weakness!?

58

Let’s see how all the pieces fit
together ...

