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Copyright Notice
• These slides are distributed under the Creative Commons 

Attribution 3.0 License 

• You are free:

• to share—to copy, distribute and transmit the work

• to remix—to adapt the work 

• under the following conditions: 
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suggests that the author endorses you or your use of the work) as 
follows:   “Courtesy of Mark P. Jones, Portland State University”

 
The complete license text can be found at  
http://creativecommons.org/licenses/by/3.0/legalcode
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Bare Metal Programming
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A conventional computing environment
• The standard applications that we run on our computers do 

so with the support of an underlying operating system:

• These applications benefit enormously from the functionality 
that the operating system provides:
• Memory management
• I/O
• File systems
• Networking
• etc…
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A bare metal environment
• What if we ran applications directly on the hardware, without 

an underlying operating system?

• Applications like this are said to be “running on bare metal”

• Direct access to and manipulation of hardware

• Potential to reduce complexity and cost

• Less suited to general purpose computing …

• Although conventional operating systems are bare metal 
systems that enable a general purpose environment ….
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The boot process
• When your computer is running, it looks something like this:

• The CPU is initialized

• The memory contains the apps and data that we need

• The devices are initialized and operational

• How did that happen?
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Initializing the CPU
• The CPU will typically initialize itself when power is first 

applied or when the system is reset:

• Basic self-test

• Initialize registers to known states

• … including the instruction pointer/program counter

• On IA32, for example, execution starts at 0xFFFFFFF0

• So the computer can begin executing programs …

• And those programs can initialize the devices …

• But only if those programs are in memory!
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where does 
this 

information 
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Building a Simple Computer System
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Building a basic computer system
• Let’s review some basic techniques that are used to construct 

a typical computer

• For the purposes of this exercise, we’ll assume a 16 bit 
processor … but the same ideas apply to other architectures

• Key goal: understand how physical memory might be 
organized and addressed
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Introducing the BIOS (Basic I/O System)
• The original IBM PC had a 20 bit address bus, so it could 

address up to 1MB of data:

• The CPU starts executing programs at an address close to 
the top of the address space …

• … so we can install a ROM at that address:

• The ROM contains the BIOS, or basic I/O system, for the 
computer 
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… continued
• The rest of the address space can be used for RAM (who 

would need more than 640KB, eh?):

• Video RAM is also mapped within the region above 640KB (at 
address 0xb8000), so it doesn’t interfere with lower memory:

• But the BIOS does need to use some of that memory for its 
own purposes:
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The master boot record (MBR)
• We don’t want the BIOS to make too many assumptions 

about the operating system that it is booting

• Instead, the BIOS searches the available hardware for a 
“bootable” disk that contains a 512 byte “Master Boot 
Record” or MBR:
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446 bytes of code partition table (4x16 bytes) identifies as 
bootable

Master Boot Record (MBR), 1 sector = 512 bytes

RAM BIOS, Video RAM, …

640KB 1MB0KB
IVT BDA

1KB 4ff 32KB7c00

… booting, continued
• Now the program from the MBR can continue the process of 

loading the rest of the operating system …

• … taking advantage of BIOS routines …

• … but without relying on a BIOS that is hardwired to that 
particular OS
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Boot loaders
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Boot scenarios

• Simple, single purpose programmed 
system, app in ROM
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… continued
• App on disk or media, leveraging an 

underlying operating system
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• … possibly supporting multiple applications …
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… continued
• Boot time configuration that is not 

required once the system is properly 
initialized
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CPU

BIOS
• Typical uses:

• initialize and test a device

• decrypt/decompress a file system

• free resources (e.g., memory) that are not 
required once the system is booted

init

OS

App2
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App2
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… continued
• Potential to boot into one of multiple 

operating systems, selected at runtime
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• The role of a boot loader is to:

• prepare the next stage to run 
(includes selecting between 
multiple possible “next stages”)

• collect and pass on configuration 
details

Introducing GRUB
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(The GNU GRand Universal Bootloader)



Booting via GRUB
• After reset, the CPU starts executing code in the BIOS ROM

• The BIOS loads and transfers control to the MBR code

• The MBR code loads GRUB from a known location on the 
disk (using BIOS routines)
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… continued

• The main GRUB program (interpreting the higher-level file 
system on the boot disk) searches for a configuration file, 
reading and acting on its contents

• Once a boot option has been identified (possibly with user 
input), GRUB will load an appropriate “kernel” file, together 
with a sequence of zero or more “modules”, in to memory 
and then transfer control to the kernel 

• The kernel begins the process of initializing the OS/App/…
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Details: Loading the kernel
• The kernel must contain a “multiboot header” in the first 8KB
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“kernel”

1BADB002

Magic Flags Chksm Address Fields Graphics Fields

8KB

use address fields

load modules on 4KB boundaries
memory map required

video required

16 2 1 0

Where should the kernel be loaded?
• GRUB is able to parse kernel files in ELF format, and will load 

the different sections of the file in to the appropriate 
addresses

• If the kernel is not in ELF format, then flag bit 16 must be set 
and the address fields must be used to specify where the 
kernel will be loaded

• Either way, GRUB will not allow the kernel to be loaded 
below 1MB (so GRUB is free to use that memory)

• End result:
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Kernel in control!
• GRUB’s work is done, and it jumps to the specified entry 

point for the kernel:

• eax will contain 0x2BADB002

• ebx will contain the address of the “multiboot information 
structure”

• Values in other registers are also set to appropriate 
constant values, as described by the multiboot specification

• What will the “kernel” do next?
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Multiboot Information
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flags
0

boot_device12

symbols
28

etc…

52

mem_upper8 upper memory in KB (if flags[0])

cmdline16 pointer to command line string (if flags[2])

mods_count20 number of modules (if flags[3])

mods_addr24 address of first module descriptor (if flags[3])

mmap_length
44 length of memory map buffer (if flags[6])

mmap_addr48 address of first memory map entry (if flags[6])

mem_lower4 lower memory in KB (if flags[0])



Multiboot Information, continued

For each “module”
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For each memory map entry:

mod_start

mod_end

string

reserved

0

4

8

12

size

base_lo

base_hi

len_lo

-4

0

4

8

len_hi
12

type
16

…
20

type = 1  ⟹  available RAM

Let’s look at this in practice …
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Introducing mimgload and mimgmake
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GRUB is great …
• It can load a “kernel” in one of several executable formats, as 

well as a collection of uninterpreted “modules”

• It supports booting from a variety of different media and file 
systems

• It supports network booting

• It can load from compressed kernel/module images

• It provides a boot-time menu and allows customization

• It gathers useful data about the machine and makes it available 
to the kernel

• Widely used, “multiboot standard”, open source, …
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But, of course, it has limits too …
• It can only load one executable

• Possible workarounds include merging multiple ELF files 
into a single file, or using a kernel that can unpack 
executables from modules …

• The address at which modules are loaded cannot be 
controlled or predicted

• The location of the multiboot information structures is not 
specified, and is not even guaranteed to be stored in a 
contiguous block of memory

• There are limits on where GRUB can load data (e.g., it does 
not appear to be able to load into lower memory)
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Memory Images
• Think about what we want the memory layout to look like 

immediately after the boot process completes:

• Package up those components in a (compressed) module:

• Boot from GRUB into a small program that can unpack the 
image, move the pieces to the required locations (including 
boot data), and transfer control to the main program:
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mimgmake and mimgload
• mimgmake builds image files (in a full Linux environment):
        ../mimg/mimgmake image          \ 
                noload:../mimg/mimgload \ 
                bootdata:0x0000-0x3fff  \ 
                $(KERNEL)/pork          \ 
                user/sigma0/sigma0      \ 
                user/l4ka-pingpong/pingpong 

• mimgload loads images (on bare metal):
         menuentry "InsertKernelNameHere" { 
           multiboot /mimgload 
           module    /image.gz 
         } 

• No particular claim to originality: this was just a tool that I 
built as a learning experience/to meet a practical need
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The mimg file format
• Memory images are stored as binary files using a simple 

format that is like a greatly simplified version of ELF:

• Individual sections:

• if type is DATA (1) or BOOTDATA(2), payload will contain 
(last-first+1) bytes

• if type is ZERO (0), or RESERVED (3), payload is empty
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A quick look at mimg in 
practice
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Exercises
• Add a function to the code for “hello” that can be used to 

output an integer value (hexadecimal notation is probably 
easiest, and most useful too).  Test to make sure it works 
correctly

• Integrate your assembly code for cls into “hello” … 

• Adapt the code from “hello” or “bootinfo” to print out a 
summary of the details that GRUB passes on to the “kernel” 
via the multiboot information structure.  (Start simple, and 
add more fields as you go.)

• Experiment with different virtual machine settings to see 
what impact this has on the information in the multiboot 
structure.
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