
Mark P Jones 
Portland State University

Languages & Low-Level Programming

CS 410/510

Week 2: Bare Metal and the Boot Process

Fall 2018

�1

Copyright Notice
• These slides are distributed under the Creative Commons

Attribution 3.0 License

• You are free:

• to share—to copy, distribute and transmit the work

• to remix—to adapt the work

• under the following conditions:

• Attribution: You must attribute the work (but not in any way that
suggests that the author endorses you or your use of the work) as
follows: “Courtesy of Mark P. Jones, Portland State University”

 
The complete license text can be found at  
http://creativecommons.org/licenses/by/3.0/legalcode

 2

Bare Metal Programming

 3

A conventional computing environment
• The standard applications that we run on our computers do

so with the support of an underlying operating system:

• These applications benefit enormously from the functionality
that the operating system provides:
• Memory management
• I/O
• File systems
• Networking
• etc…

 4

Compiler

Hardware

Operating System

Browser Editor

A bare metal environment
• What if we ran applications directly on the hardware, without

an underlying operating system?

• Applications like this are said to be “running on bare metal”

• Direct access to and manipulation of hardware

• Potential to reduce complexity and cost

• Less suited to general purpose computing …

• Although conventional operating systems are bare metal
systems that enable a general purpose environment ….

 5

Hardware

Browser EditorCompiler

The boot process
• When your computer is running, it looks something like this:

• The CPU is initialized

• The memory contains the apps and data that we need

• The devices are initialized and operational

• How did that happen?

 6

OS Data App AppApp DataOS

Memory✓
CPU Devices

Disk Network Graphics

Initializing the CPU
• The CPU will typically initialize itself when power is first

applied or when the system is reset:

• Basic self-test

• Initialize registers to known states

• … including the instruction pointer/program counter

• On IA32, for example, execution starts at 0xFFFFFFF0

• So the computer can begin executing programs …

• And those programs can initialize the devices …

• But only if those programs are in memory!

 7

where does
this

information
come from?

Building a Simple Computer System

 8

Building a basic computer system
• Let’s review some basic techniques that are used to construct

a typical computer

• For the purposes of this exercise, we’ll assume a 16 bit
processor … but the same ideas apply to other architectures

• Key goal: understand how physical memory might be
organized and addressed

 9

0

15

CPU 
(16 bit)

0

8

address/16

data/8

64KB ROM

/16

0 8KB 16KB 24KB 32KB 40KB 48KB 56KB 64KB

Read
Only
Memory

/8

Memory Map

CPU 
(16 bit)

0

8

address/16

data/8

64KB ROM

/16

0

15

0 8KB 16KB 24KB 32KB 40KB 48KB 56KB 64KB

Read
Only
Memory

/8

0

15

CPU 
(16 bit)

0

8

0 8KB 16KB 24KB 32KB 40KB 48KB 56KB 64KB

ROM

address/16

data/8

64KB ROM

/16

Read
Only
Memory

/8

0

15

CPU 
(16 bit)

0

8

address/16

data/8

8KB ROM

/13

0 8KB 16KB 24KB 32KB 40KB 48KB 56KB 64KB

ROM ROM ROM ROM ROM ROM ROM ROM

/8

0

15

CPU 
(16 bit)

8KB ROM

0

8

0 8KB 16KB 24KB 32KB 40KB 48KB 56KB 64KB

ROM ROM ROM ROM ROM ROM ROM ROM

address/16

data/8

/13

/8

0

15

CPU 
(16 bit)

8KB ROM

0

8

enable

0 8KB 16KB 24KB 32KB 40KB 48KB 56KB 64KB

ROM ROM ROM ROM

address/16

data/8

/13

/8

0

15

CPU 
(16 bit)

8KB ROM

0

8

enable

0 8KB 16KB 24KB 32KB 40KB 48KB 56KB 64KB

ROM ROM ROM ROM

4KB RAM

enable

address/16

data/8

/13 /12

Random
Access 
Memory

/8 /8

0

15

CPU 
(16 bit)

0

8

4KB RAM8KB ROM

enable enable

0 8KB 16KB 24KB 32KB 40KB 48KB 56KB 64KB

ROM ROM ROM ROM

address/16

data/8

/13 /12

Random
Access 
Memory

/8 /8

0

15

CPU 
(16 bit)

0

8

4KB RAM8KB ROM

enable enable

0 8KB 16KB 24KB 32KB 40KB 48KB 56KB 64KB

ROM ROM ROM ROM

address/16

data/8

/13 /12

Random
Access 
Memory

/8 /8

0

15

CPU 
(16 bit)

0

8

4KB RAM8KB ROM

enable enable

RAM RAM RAM RAMRAM RAM RAM RAM

0 8KB 16KB 24KB 32KB 40KB 48KB 56KB 64KB

ROM ROM ROM ROM

address/16

data/8

/13 /12

Random
Access 
Memory

/8 /8

0

15

CPU 
(16 bit)

0

8

4KB RAM8KB ROM

enable enable

RAM RAMRAM RAMRAM RAMRAM RAM

0 8KB 16KB 24KB 32KB 40KB 48KB 56KB 64KB

ROM ROMROM ROM

address/16

data/8

/13 /12

/8 /8

0

15

CPU 
(16 bit)

0

8

4KB RAM8KB ROM

enable enable

RAM RAMRAM RAMRAM RAMRAM RAM

0 8KB 16KB 24KB 32KB 40KB 48KB 56KB 64KB

ROM

address/16

data/8

/13 /12

/8 /8

4KB RAM

0

15

CPU 
(16 bit)

8KB ROM

0

8

enable enable

RAM

0 8KB 16KB 24KB 32KB 40KB 48KB 56KB 64KB

ROM

address/16

data/8

/13 /12

/8 /8

4KB RAM

0

15

CPU 
(16 bit)

8KB ROM

0

8

enable enable

RAM

0 8KB 16KB 24KB 32KB 40KB 48KB 56KB 64KB

ROM

address/16

data/8

/13 /12

/8 /8

4KB RAM

0

15

CPU 
(16 bit)

8KB ROM

0

8

enable enable

RAM

0 8KB 16KB 24KB 32KB 40KB 48KB 56KB 64KB

ROM

address/16

data/8

/13 /12

/8 /8

I/O

enable

/12

I/O

4KB RAM

0

15

CPU 
(16 bit)

8KB ROM

0

8

enable enable

RAM

0 8KB 16KB 24KB 32KB 40KB 48KB 56KB 64KB

ROM

address/16

data/8

/13 /12

/8 /8

Video

/12

VRAM

busy

Booting a PC

 26

Introducing the BIOS (Basic I/O System)
• The original IBM PC had a 20 bit address bus, so it could

address up to 1MB of data:

• The CPU starts executing programs at an address close to
the top of the address space …

• … so we can install a ROM at that address:

• The ROM contains the BIOS, or basic I/O system, for the
computer

 27

1MB0KB

ROM

640KB 1MB0KB

… continued
• The rest of the address space can be used for RAM (who

would need more than 640KB, eh?):

• Video RAM is also mapped within the region above 640KB (at
address 0xb8000), so it doesn’t interfere with lower memory:

• But the BIOS does need to use some of that memory for its
own purposes:

 28

RAM BIOS

640KB 1MB0KB

RAM BIOS, Video RAM, …
640KB 1MB0KB

RAM BIOS, Video RAM, …

640KB 1MB0KB
IVT BDA

BIOS  
Data Area

1KB 4ff

Interrupt  
Vector Table

0xa0000

The master boot record (MBR)
• We don’t want the BIOS to make too many assumptions

about the operating system that it is booting

• Instead, the BIOS searches the available hardware for a
“bootable” disk that contains a 512 byte “Master Boot
Record” or MBR:

 29

55 AA

446 bytes of code partition table (4x16 bytes) identifies as 
bootable

Master Boot Record (MBR), 1 sector = 512 bytes

RAM BIOS, Video RAM, …

640KB 1MB0KB
IVT BDA

1KB 4ff 32KB7c00

… booting, continued
• Now the program from the MBR can continue the process of

loading the rest of the operating system …

• … taking advantage of BIOS routines …

• … but without relying on a BIOS that is hardwired to that
particular OS

 30

Boot loaders

 31

Boot scenarios

• Simple, single purpose programmed
system, app in ROM

 32

CPU

App

• Single purpose programmed system, app on disk
or other media

CPU

BIOS

App

App• Custom hardware

App2
App1 App3App2

… continued
• App on disk or media, leveraging an

underlying operating system

 33

CPU

BIOS

• … possibly supporting multiple applications …
OS

… continued
• Boot time configuration that is not

required once the system is properly
initialized

 34

CPU

BIOS
• Typical uses:

• initialize and test a device

• decrypt/decompress a file system

• free resources (e.g., memory) that are not
required once the system is booted

init

OS

App2
App1 App3App2

App2
App1 App3App2

… continued
• Potential to boot into one of multiple

operating systems, selected at runtime

 35

boot loader

CPU

BIOS

OS1 init

OS2

App

• The role of a boot loader is to:

• prepare the next stage to run
(includes selecting between
multiple possible “next stages”)

• collect and pass on configuration
details

Introducing GRUB

 36

(The GNU GRand Universal Bootloader)

Booting via GRUB
• After reset, the CPU starts executing code in the BIOS ROM

• The BIOS loads and transfers control to the MBR code

• The MBR code loads GRUB from a known location on the
disk (using BIOS routines)

 37

BIOS, Video RAM, …

640KB 1MB
RAM

0KB
“Upper Memory”

4GB

RAM BIOS, Video RAM, …

640KB 1MB0KB

IVT BDA

1KB 4ff
MBR

32KB7c00
“Upper Memory”EBDA

4GB

(Extended BIOS Data Area)

varies

RAM BIOS, Video RAM, …

640KB 1MB0KB

IVT BDA

1KB 4ff
MBR

32KB7c00
“Upper Memory”EBDA

4GBvaries
GRUB

… continued

• The main GRUB program (interpreting the higher-level file
system on the boot disk) searches for a configuration file,
reading and acting on its contents

• Once a boot option has been identified (possibly with user
input), GRUB will load an appropriate “kernel” file, together
with a sequence of zero or more “modules”, in to memory
and then transfer control to the kernel

• The kernel begins the process of initializing the OS/App/…

 38

RAM BIOS, Video RAM, …

640KB 1MB0KB
IVT BDA

1KB 4ff
MBR

32KB7c00
“Upper Memory”EBDA

4GBvaries
GRUB

RAM BIOS, Video RAM, …
640KB 1MB0KB

IVT BDA

1KB 4ff
MBR

32KB7c00
EBDA

4GBvaries
GRUB Kernel M

Details: Loading the kernel
• The kernel must contain a “multiboot header” in the first 8KB

 39

“kernel”

1BADB002

Magic Flags Chksm Address Fields Graphics Fields

8KB

use address fields

load modules on 4KB boundaries
memory map required

video required

16 2 1 0

Where should the kernel be loaded?
• GRUB is able to parse kernel files in ELF format, and will load

the different sections of the file in to the appropriate
addresses

• If the kernel is not in ELF format, then flag bit 16 must be set
and the address fields must be used to specify where the
kernel will be loaded

• Either way, GRUB will not allow the kernel to be loaded
below 1MB (so GRUB is free to use that memory)

• End result:

 40

 UpperLower mod1

1MB0MB 4GB

mod2kernel

Header Section1 Section2 Section3FLE7F

Kernel in control!
• GRUB’s work is done, and it jumps to the specified entry

point for the kernel:

• eax will contain 0x2BADB002

• ebx will contain the address of the “multiboot information
structure”

• Values in other registers are also set to appropriate
constant values, as described by the multiboot specification

• What will the “kernel” do next?

 41

 UpperLower mod1

1MB0MB 4GB

mod2kernel

Multiboot Information

 42

flags
0

boot_device12

symbols
28

etc…

52

mem_upper8 upper memory in KB (if flags[0])

cmdline16 pointer to command line string (if flags[2])

mods_count20 number of modules (if flags[3])

mods_addr24 address of first module descriptor (if flags[3])

mmap_length
44 length of memory map buffer (if flags[6])

mmap_addr48 address of first memory map entry (if flags[6])

mem_lower4 lower memory in KB (if flags[0])

Multiboot Information, continued

For each “module”

 43

For each memory map entry:

mod_start

mod_end

string

reserved

0

4

8

12

size

base_lo

base_hi

len_lo

-4

0

4

8

len_hi
12

type
16

…
20

type = 1 ⟹ available RAM

Let’s look at this in practice …

 44

Hardware

hello Mac OS X

Virtual Box

hello

QEMU

Linux

hello

Introducing mimgload and mimgmake

 46

GRUB is great …
• It can load a “kernel” in one of several executable formats, as

well as a collection of uninterpreted “modules”

• It supports booting from a variety of different media and file
systems

• It supports network booting

• It can load from compressed kernel/module images

• It provides a boot-time menu and allows customization

• It gathers useful data about the machine and makes it available
to the kernel

• Widely used, “multiboot standard”, open source, …

 47

But, of course, it has limits too …
• It can only load one executable

• Possible workarounds include merging multiple ELF files
into a single file, or using a kernel that can unpack
executables from modules …

• The address at which modules are loaded cannot be
controlled or predicted

• The location of the multiboot information structures is not
specified, and is not even guaranteed to be stored in a
contiguous block of memory

• There are limits on where GRUB can load data (e.g., it does
not appear to be able to load into lower memory)

 48

1MB0MB 4GB

Memory Images
• Think about what we want the memory layout to look like

immediately after the boot process completes:

• Package up those components in a (compressed) module:

• Boot from GRUB into a small program that can unpack the
image, move the pieces to the required locations (including
boot data), and transfer control to the main program:

 49

Upper
1MB0MB 4GB

Lower

image image.gz

imagemimgload

mimgmake and mimgload
• mimgmake builds image files (in a full Linux environment):
 ../mimg/mimgmake image \
 noload:../mimg/mimgload \
 bootdata:0x0000-0x3fff \
 $(KERNEL)/pork \
 user/sigma0/sigma0 \
 user/l4ka-pingpong/pingpong

• mimgload loads images (on bare metal):
 menuentry "InsertKernelNameHere" {
 multiboot /mimgload
 module /image.gz
 }

• No particular claim to originality: this was just a tool that I
built as a learning experience/to meet a practical need

 50

The mimg file format
• Memory images are stored as binary files using a simple

format that is like a greatly simplified version of ELF:

• Individual sections:

• if type is DATA (1) or BOOTDATA(2), payload will contain
(last-first+1) bytes

• if type is ZERO (0), or RESERVED (3), payload is empty

 51

Section1 Section2 Section3gmim versn entry

magic number

header

first last 0 type payload

A quick look at mimg in
practice

 52

CPU

BIOS

mimgload

kernel

App2
App1 App3App2

GRUB

Exercises
• Add a function to the code for “hello” that can be used to

output an integer value (hexadecimal notation is probably
easiest, and most useful too). Test to make sure it works
correctly

• Integrate your assembly code for cls into “hello” …

• Adapt the code from “hello” or “bootinfo” to print out a
summary of the details that GRUB passes on to the “kernel”
via the multiboot information structure. (Start simple, and
add more fields as you go.)

• Experiment with different virtual machine settings to see
what impact this has on the information in the multiboot
structure.

 53

