the GNU GRUB manual

The GRand Unified Bootloader, version 2.02, 25 April 2017.

Gordon Matzigkeit
Yoshinori K. Okuji
Colin Watson
Colin D. Bennett

This manual is for GNU GRUB (version 2.02, 25 April 2017).

Copyright (© 1999,2000,2001,2002,2004,2006,2008,2009,2010,2011,2012,2013 Free Software
Foundation, Inc.
Permission is granted to copy, distribute and/or modify this document under
the terms of the GNU Free Documentation License, Version 1.2 or any later
version published by the Free Software Foundation; with no Invariant Sections.

Table of Contents

1 Introduction to GRUB......................... 1
1.1 OVEIVIEW oottt et e e e 1
1.2 History of GRUB 1
1.3 Differences from previous versionsccooveieiina... 2
1.4 GRUB features. e 3
1.5 The role of a boot loader.......... i i 5

2 Naming convention............................. 7

3 OS-specific notes about grub tools............ 9

4 Installation................. 11
4.1 Installing GRUB using grub-install 11
4.2 Making a GRUB bootable CD-ROM 12
4.3 The map between BIOS drives and OS devices 13
4.4 BIOS installation i 13

5 Booting.......... 15
5.1 How to boot operating systems.................c.iiiii.. 15

5.1.1 How to boot an OS directly with GRUB.................. 15
5.1.2 Chain-loading an OS i, 15
5.2 Loopback booting......... 16
5.3 Some caveats on OS-specific issuesooL. 16
5.3.1 GNU/Hurdo 16
5.3.2 GNU/LINUX .« .ttt 16
5.3.3 NetBSD ... 17
5.3.4 DOS/WIndowsvuuieiiii e 18

6 Writing your own configuration file.......... 19
6.1 Simple configuration handling................ 19
6.2 Writing full configuration files directly......................... 24
6.3 Multi-boot manual config 27
6.4 Embedding a configuration file into GRUB 29

7 Theme file format 31
7.1 Introduction 31
7.2 Theme Elements 31

721 Colors vt 31
T.2.2 FOnts ... 31
7.2.3 Progress Bar...... ... 31

7.2.4 Circular Progress Indicator................, 32

ii GNU GRUB Manual 2.02

720 Labels ... 32

7.2.6 Boot Menu....... ... 32

727 Styled BOXeS . ..o 32

7.2.8 Creating Styled Box Imagest 33

7.3 Theme File Manual i i i, 33
7.3.1 Global Properties ...t 33

7.3.2 Format..... ..o 33

7.3.3 Global Property Listo i 34

7.3.4 Component Construction................coviiiiiiii... 35

7.3.5 Component List........ ... i 35

7.3.6 Common Propertiesouriieeiieeaieeaan.. 39

8 Booting GRUB from the network............ 41
9 Using GRUB via a serial line................. 43

10 Using GRUB with vendor power-on keys.. 45

11 GRUB imagefiles............................ 47
12 Core image size limitation................... 49
13 Filesystem syntax and semantics............ 51
13.1 How to specify devices ... 51
13.2 How to specify files ... 52
13.3 How to specify block lists ... 52
14 GRUB'’s user interface....................... 53
14.1 The flexible command-line interface 53
14.2 The simple menu interfaceo i, 54
14.3 Editing a menu entry ... 54
15 GRUB environment variables............... 55
15.1 Special environment variables 99
15. 1.1 DIOSIUIN « .ottt e e e e 1)
15.1.2 check_signatureso i i 55
15.1.3 chosen 55
15.1.4 cmdpatho 55
15.1.5 color_highlight 55
15.1.6 color_normal....... e 56
15.1.7 config_directory 56
15.1.8 configfile..... .o 57
15.1.9 debug. ... 57
15.1.10 default. o 57

15.1.12 gfXmode . ..o e 58
15.1.13 gfxpayload. 58
15.1.14 gfxterm_font...... 58
15115 gruboCpU «vv e et 58
15.1.16 grub_platform.........o i 58
15.1.17 GCONAIr. ..ot e 58
15118 Jang ..o 59
15.1.19 Jocale_dir ... 59
15.1.20 menu_color_highlight.........., 59
15.1.21 menu_color_normal............ i 59
15.1.22 net_<interface>_boot_file, 59
15.1.23 net_<interface>_dhcp_server_.name...................... 59
15.1.24 net_<interface>_domain 59
15.1.25 net_<interface>_extensionspath......................... 59
15.1.26 net_<interface>_hostname, 59
15.1.27 mnet_<interface> ip.......oouueeeii i 60
15.1.28 mnet_<interface> mac.c.oueiiiieiiiinannnee... 60
15.1.29 net_<interface> next_Server..................c.ooeiunn... 60
15.1.30 net_<interface>_rootpath............, 60
15.1.31 mnet_default_interface o .l 60
15.1.32 met_default_ip...... ..o 60
15.1.33 mnet_default_mac.................. i 60
15.1.34 mnet_default_server................c i, 60
15,135 PAGET .. v 60
15.1.36 Prefix. ..o 60
15.1.37 pxe_blKSize. ... 60
15.1.38 pxe_default_gateway it 60
15.1.39 pxe_default_server........... i 60
15,140 TOO .« 61
15.1.41 SUPETUSEIS o ot vttt e ettt e et e 61
15.1.42 theme ... 61
15.1.43 timeout..... ... 61
15.1.44 timeout_style 61
15.2 The GRUB environment block 61
16 The list of available commands 63
16.1 The list of commands for the menu only...................... 63
16.1.1 menuentry 63
16.1.2 submenu....... ...t 64
16.2 The list of general commands 64
16.2.1 serial ... 64
16.2.2 terminal_input.......... ... 64
16.2.3 terminal output....... 64
16.2.4 terminfo....... ... 65
16.3 The list of command-line and menu entry commands 65
G703 70 65
16.3.2 ACPI. .« v 65

16.3.3 authenticate 66

iii

iv

16.3.4

16.3.5

16.3.6

16.3.7

16.3.8

16.3.9

16.3.10
16.3.11
16.3.12
16.3.13
16.3.14
16.3.15
16.3.16
16.3.17
16.3.18
16.3.19
16.3.20
16.3.21
16.3.22
16.3.23
16.3.24
16.3.25
16.3.26
16.3.27
16.3.28
16.3.29
16.3.30
16.3.31
16.3.32
16.3.33
16.3.34
16.3.35
16.3.36
16.3.37
16.3.38
16.3.39
16.3.40
16.3.41
16.3.42
16.3.43
16.3.44
16.3.45
16.3.46
16.3.47
16.3.48
16.3.49
16.3.50
16.3.51

GNU GRUB Manual 2.02

background_color 66
background_image i i 66
badramo 66
BloCKLISt . oo 66
DOOt . o 66
=) S 67
chainloader 67
Clear . . 67
CImoOSClean. 67
CINOSAUIND « « + ottt ettt 67
cmostest 67
163 80 0 T 67
configfile.o 68
CPUIA .« ettt 68
1 ¥ PSP 68
cryptomount 68
date .. 68
UK. oo 69
AIStrust . ..o 69
Arivemapt 69
CChO . 69
eval. 70
EXPOTE « o ettt e 70
false . oo 70
gettext. . 70
EPESYIIC . 70
halt. . o 71
hashsum 71
help oo 71
Itrd .o 71
INItrdl6 . .o 71
INSINOA ot 72
keystatus . ..o 72
UK. oo 72
Hnuxl ..o 72
St eV .o 72
list_trustedo o 73
load_env 73
loadfont ... 73
loopback. 73
IS 74
ISfOmbS o 74
ISmod. ... 74
MADSUIL . o oo 74
module 74
multiboot 74
nativedisk. ... 75

NOTINAl. . .ot 75

16.3.52 mnormal_exit....... 75
16.3.53 parttool. 75
16.3.54 passwordooiiii 76
16.3.55 password_pbkdf2..... 76
16.3.56 Play .o ooo e 76
16.3.57 Probe . ..o 76
16.3.58 pxe_unload ... 76
16.3.09 reado 76
16.3.60 1€bOOt ..\t 77
16.3.61 T@ZEXD e 7
16.3.62 1mmod 77
16.3.63 SAVE _EIIV . .\ttt 77
16.3.64 searchc i 7
16.3.65 sendKey. 78
16.3.66 St . it 80
16.3.67 shalsumccooniii e 80
16.3.68 Sha2b0Sumt 81
16.3.69 Shabl2Sumi. ..ot 81
16.3.70 Sleep .o 81
16.3.71 SOUTCE ..ottt et e e e e 81
16.3.72 teSt. .o 81
16.3.73 ATUC ..o 83
16.3.74 AruSt. .ot 83
16.3.75 unset ... oo 83
16.3.76 UPPEIMIEIMottt ettt e e e 83
16.3.77 wverify_detached 83
16.3.78 videoInfo.o 83
16.3.79 Xen_hypervisor.ouuiiiiiiiiiiiiiiean, 84
16.3.80 Xen_LINUXooi i 84
16.3.81 xen_initrd....... ... 84
16.3.82 XOI_XSI . ottt et e 84
16.4 The list of networking commands.............. 84
16.4.1 mnet_add_addr 84
16.4.2 met_add_dns 84
16.4.3 mnet_add_route......... 84
16.4.4 mnet_bootp. ... 85
16.4.5 mnet_del_addr........ 85
16.4.6 met_del_dns....... ... 85
16.4.7 met_del_route)
16.4.8 mnet_get_dhcp_option 86
16.4.9 mnet_ipv6_autoconf......... 86
16.4.10 mnet_Is_addro 86
16.4.11 met_Is_cardS. 86
16.4.12 met_Is_dns ... 86
16.4.13 mnet_Is_routes........ 86
16.4.14 mnet_nslookup. ... 86

vi GNU GRUB Manual 2.02

17 Internationalisation.......................... 87
17.1 Charset 87
17.2 Filesystems 87
17.3 Output terminal 87
17.4 Input terminal....... 88
17.5 Gettext ..o 88
176 RegeXD oo 88
177 OtheT. . oo 88

18 Security.............. ... 91
18.1 Authentication and authorisation in GRUB................... 91
18.2 Using digital signatures in GRUB 92

19 Platform limitations 95

20 Outline............. 99

21 Supported boot targets..................... 101
21,1 Boot tests . oo 103

22 Error messages produced by GRUB....... 105
22.1 GRUB only offers a rescue shell 105

23 Invoking grub-install........................ 107

24 Invoking grub-mkconfig.................... 109

25 Invoking grub-mkpasswd-pbkdf2 111

26 Invoking grub-mkrelpath................ ... 113

27 Invoking grub-mkrescue.................... 115

28 Invoking grub-mount.................... ... 117

29 Invoking grub-probe..................... ... 119

30 Invoking grub-script-check................. 121

Appendix A How to obtain and build GRUB

Appendix B Reporting bugs.................. 125
Appendix C Where GRUB will go........... 127
Appendix D Copying This Manual 129
D.1 GNU Free Documentation License........................... 129
D.1.1 ADDENDUM: How to use this License for your documents
... 135

vii

Chapter 1: Introduction to GRUB 1

1 Introduction to GRUB

1.1 Overview

Briefly, a boot loader is the first software program that runs when a computer starts. It
is responsible for loading and transferring control to an operating system kernel software
(such as Linux or GNU Mach). The kernel, in turn, initializes the rest of the operating
system (e.g. a GNU system).

GNU GRUB is a very powerful boot loader, which can load a wide variety of free
operating systems, as well as proprietary operating systems with chain-loading'. GRUB
is designed to address the complexity of booting a personal computer; both the program
and this manual are tightly bound to that computer platform, although porting to other
platforms may be addressed in the future.

One of the important features in GRUB is flexibility; GRUB understands filesystems
and kernel executable formats, so you can load an arbitrary operating system the way you
like, without recording the physical position of your kernel on the disk. Thus you can load
the kernel just by specifying its file name and the drive and partition where the kernel
resides.

When booting with GRUB, you can use either a command-line interface (see
Section 14.1 [Command-line interface], page 53), or a menu interface (see Section 14.2
[Menu interface], page 54). Using the command-line interface, you type the drive
specification and file name of the kernel manually. In the menu interface, you just select
an OS using the arrow keys. The menu is based on a configuration file which you prepare
beforehand (see Chapter 6 [Configuration], page 19). While in the menu, you can switch
to the command-line mode, and vice-versa. You can even edit menu entries before using
them.

In the following chapters, you will learn how to specify a drive, a partition, and a file
name (see Chapter 2 [Naming convention], page 7) to GRUB, how to install GRUB on your
drive (see Chapter 4 [Installation], page 11), and how to boot your OSes (see Chapter 5
[Booting], page 15), step by step.

1.2 History of GRUB

GRUB originated in 1995 when Erich Boleyn was trying to boot the GNU Hurd with the
University of Utah’s Mach 4 microkernel (now known as GNU Mach). Erich and Brian
Ford designed the Multiboot Specification (see Section “Motivation” in The Multiboot
Specification), because they were determined not to add to the large number of mutually-
incompatible PC boot methods.

Erich then began modifying the FreeBSD boot loader so that it would understand
Multiboot. He soon realized that it would be a lot easier to write his own boot loader from
scratch than to keep working on the FreeBSD boot loader, and so GRUB was born.

Erich added many features to GRUB, but other priorities prevented him from keeping
up with the demands of its quickly-expanding user base. In 1999, Gordon Matzigkeit and

1 chain-load is the mechanism for loading unsupported operating systems by loading another boot

loader. It is typically used for loading DOS or Windows.

2 GNU GRUB Manual 2.02

Yoshinori K. Okuji adopted GRUB as an official GNU package, and opened its development
by making the latest sources available via anonymous CVS. See Appendix A [Obtaining and
Building GRUB], page 123, for more information.

Over the next few years, GRUB was extended to meet many needs, but it quickly
became clear that its design was not keeping up with the extensions being made to it, and we
reached the point where it was very difficult to make any further changes without breaking
existing features. Around 2002, Yoshinori K. Okuji started work on PUPA (Preliminary
Universal Programming Architecture for GNU GRUB), aiming to rewrite the core of GRUB
to make it cleaner, safer, more robust, and more powerful. PUPA was eventually renamed to
GRUB 2, and the original version of GRUB was renamed to GRUB Legacy. Small amounts
of maintenance continued to be done on GRUB Legacy, but the last release (0.97) was made
in 2005 and at the time of writing it seems unlikely that there will be another.

By around 2007, GNU /Linux distributions started to use GRUB 2 to limited extents,
and by the end of 2009 multiple major distributions were installing it by default.

1.3 Differences from previous versions

GRUB 2 is a rewrite of GRUB (see Section 1.2 [History|, page 1), although it shares many
characteristics with the previous version, now known as GRUB Legacy. Users of GRUB
Legacy may need some guidance to find their way around this new version.

e The configuration file has a new name (‘grub.cfg’ rather than ‘menu.lst’ or
‘grub.conf’), new syntax (see Chapter 6 [Configuration]|, page 19) and many new
commands (see Chapter 16 [Commands], page 63). Configuration cannot be copied
over directly, although most GRUB Legacy users should not find the syntax too
surprising.

e ‘grub.cfg’ is typically automatically generated by grub-mkconfig (see Section 6.1
[Simple configuration], page 19). This makes it easier to handle versioned kernel up-
grades.

e Partition numbers in GRUB device names now start at 1, not 0 (see Chapter 2 [Naming
convention], page 7).

e The configuration file is now written in something closer to a full scripting language:
variables, conditionals, and loops are available.

e A small amount of persistent storage is available across reboots, using the save_env
and load_env commands in GRUB and the grub-editenv utility. This is not available
in all configurations (see Section 15.2 [Environment block|, page 61).

e GRUB 2 has more reliable ways to find its own files and those of target kernels on
multiple-disk systems, and has commands (see Section 16.3.64 [search], page 77) to
find devices using file system labels or Universally Unique Identifiers (UUIDs).

e GRUB 2 is available for several other types of system in addition to the PC BIOS
systems supported by GRUB Legacy: PC EFI, PC coreboot, PowerPC, SPARC, and
MIPS Lemote Yeeloong are all supported.

e Many more file systems are supported, including but not limited to ext4, HFS+, and
NTEFS.

e GRUB 2 can read files directly from LVM and RAID devices.

e A graphical terminal and a graphical menu system are available.

Chapter 1: Introduction to GRUB 3

e GRUB 2’s interface can be translated, including menu entry names.

e The image files (see Chapter 11 [Images|, page 47) that make up GRUB have been
reorganised; Stage 1, Stage 1.5, and Stage 2 are no more.

e GRUB 2 puts many facilities in dynamically loaded modules, allowing the core image
to be smaller, and allowing the core image to be built in more flexible ways.

1.4 GRUB features

The primary requirement for GRUB is that it be compliant with the Multiboot Specification,
which is described in Section “Motivation” in The Multiboot Specification.

The other goals, listed in approximate order of importance, are:
e Basic functions must be straightforward for end-users.
e Rich functionality to support kernel experts and designers.

e Backward compatibility for booting FreeBSD, NetBSD, OpenBSD, and Linux. Propri-
etary kernels (such as DOS, Windows NT, and OS/2) are supported via a chain-loading
function.

Except for specific compatibility modes (chain-loading and the Linux piggyback for-
mat), all kernels will be started in much the same state as in the Multiboot Specification.
Only kernels loaded at 1 megabyte or above are presently supported. Any attempt to load
below that boundary will simply result in immediate failure and an error message reporting
the problem.

In addition to the requirements above, GRUB has the following features (note that
the Multiboot Specification doesn’t require all the features that GRUB supports):

Recognize multiple executable formats
Support many of the a.out variants plus ELF. Symbol tables are also loaded.

Support non-Multiboot kernels
Support many of the various free 32-bit kernels that lack Multiboot compliance
(primarily FreeBSD, NetBSD?, OpenBSD, and Linux). Chain-loading of other
boot loaders is also supported.

Load multiples modules
Fully support the Multiboot feature of loading multiple modules.

Load a configuration file
Support a human-readable text configuration file with preset boot commands.
You can also load another configuration file dynamically and embed a preset
configuration file in a GRUB image file. The list of commands (see Chapter 16
[Commands|, page 63) are a superset of those supported on the command-line.
An example configuration file is provided in Chapter 6 [Configuration|, page 19.

Provide a menu interface
A menu interface listing preset boot commands, with a programmable timeout,
is available. There is no fixed limit on the number of boot entries, and the
current implementation has space for several hundred.

2 The NetBSD /1386 kernel is Multiboot-compliant, but lacks support for Multiboot modules.

4 GNU GRUB Manual 2.02

Have a flexible command-line interface
A fairly flexible command-line interface, accessible from the menu, is available
to edit any preset commands, or write a new boot command set from scratch.
If no configuration file is present, GRUB drops to the command-line.

The list of commands (see Chapter 16 [Commands|, page 63) are a subset of
those supported for configuration files. Editing commands closely resembles the
Bash command-line (see Section “Command Line Editing” in Bash Features),
with TAB-completion of commands, devices, partitions, and files in a directory
depending on context.

Support multiple filesystem types

Support multiple filesystem types transparently, plus a useful explicit blocklist
notation. The currently supported filesystem types are Amiga Fast FileSystem
(AFFS), AtheOS fs, BeFS, BtrFS (including raid0, raidl, raid10, gzip and 1zo),
cpio (little- and big-endian bin, odc and newc variants), Linux ext2/ext3/ext4,
DOS FAT12/FAT16/FAT32, exFAT, HFS, HFS+, ISO9660 (including Joliet,
Rock-ridge and multi-chunk files), JFS, Minix fs (versions 1, 2 and 3), nilfs2,
NTEFS (including compression), ReiserF'S, ROMFS, Amiga Smart FileSystem
(SF'S), Squash4, tar, UDF, BSD UFS/UFS2, XFS, and ZFS (including lzjb,
gzip, zle, mirror, stripe, raidz1/2/3 and encryption in AES-CCM and AES-
GCM). See Chapter 13 [Filesystem], page 51, for more information.

Support automatic decompression
Can decompress files which were compressed by gzip or xz3. This function is
both automatic and transparent to the user (i.e. all functions operate upon the
uncompressed contents of the specified files). This greatly reduces a file size
and loading time, a particularly great benefit for floppies.*

It is conceivable that some kernel modules should be loaded in a compressed
state, so a different module-loading command can be specified to avoid uncom-
pressing the modules.

Access data on any installed device
Support reading data from any or all floppies or hard disk(s) recognized by the
BIOS, independent of the setting of the root device.

Be independent of drive geometry translations
Unlike many other boot loaders, GRUB makes the particular drive translation
irrelevant. A drive installed and running with one translation may be converted
to another translation without any adverse effects or changes in GRUB’s con-
figuration.

Detect all installed RAM
GRUB can generally find all the installed RAM on a PC-compatible machine. It
uses an advanced BIOS query technique for finding all memory regions. As de-
scribed on the Multiboot Specification (see Section “Motivation” in The Multi-

3 Only CRC32 data integrity check is supported (xz default is CRC64 so one should use —check=crc32
option). LZMA BCJ filters are supported.

4 There are a few pathological cases where loading a very badly organized ELF kernel might take
longer, but in practice this never happen.

Chapter 1: Introduction to GRUB 5)

boot Specification), not all kernels make use of this information, but GRUB
provides it for those who do.

Support Logical Block Address mode

In traditional disk calls (called CHS mode), there is a geometry translation
problem, that is, the BIOS cannot access over 1024 cylinders, so the accessible
space is limited to at least 508 MB and to at most 8GB. GRUB can’t univer-
sally solve this problem, as there is no standard interface used in all machines.
However, several newer machines have the new interface, Logical Block Address
(LBA) mode. GRUB automatically detects if LBA mode is available and uses
it if available. In LBA mode, GRUB can access the entire disk.

Support network booting
GRUB is basically a disk-based boot loader but also has network support. You
can load OS images from a network by using the TFTP protocol.

Support remote terminals
To support computers with no console, GRUB provides remote terminal sup-
port, so that you can control GRUB from a remote host. Only serial terminal
support is implemented at the moment.

1.5 The role of a boot loader
The following is a quotation from Gordon Matzigkeit, a GRUB fanatic:

Some people like to acknowledge both the operating system and kernel when
they talk about their computers, so they might say they use “GNU/Linux”
or “GNU/Hurd”. Other people seem to think that the kernel is the most
important part of the system, so they like to call their GNU operating systems
“Linux systems.”

I, personally, believe that this is a grave injustice, because the boot loader is the
most important software of all. I used to refer to the above systems as either
“LILO”® or “GRUB” systems.

Unfortunately, nobody ever understood what I was talking about; now I just
use the word “GNU” as a pseudonym for GRUB.

So, if you ever hear people talking about their alleged “GNU” systems, remem-
ber that they are actually paying homage to the best boot loader around. ..
GRUB!

We, the GRUB maintainers, do not (usually) encourage Gordon’s level of fanaticism,
but it helps to remember that boot loaders deserve recognition. We hope that you enjoy
using GNU GRUB as much as we did writing it.

5 The LInux LOader, a boot loader that everybody uses, but nobody likes.

Chapter 2: Naming convention 7

2 Naming convention

The device syntax used in GRUB is a wee bit different from what you may have seen
before in your operating system(s), and you need to know it so that you can specify a
drive/partition.

Look at the following examples and explanations:

(£d0)

First of all, GRUB requires that the device name be enclosed with ‘(" and ‘)’. The

‘fd’ part means that it is a floppy disk. The number ‘0’ is the drive number, which is
counted from zero. This expression means that GRUB will use the whole floppy disk.

(hdO,msdos?2)

Here, ‘hd’ means it is a hard disk drive. The first integer ‘0’ indicates the drive
number, that is, the first hard disk, the string ‘msdos’ indicates the partition scheme, while
the second integer, ‘2’, indicates the partition number (or the PC slice number in the BSD
terminology). The partition numbers are counted from one, not from zero (as was the case
in previous versions of GRUB). This expression means the second partition of the first hard
disk drive. In this case, GRUB uses one partition of the disk, instead of the whole disk.

(hd0,msdos5)

This specifies the first extended partition of the first hard disk drive. Note that the
partition numbers for extended partitions are counted from ‘5’ regardless of the actual
number of primary partitions on your hard disk.

(hd1,msdos1,bsdl)

This means the BSD ‘a’ partition on first PC slice number of the second hard disk.

Of course, to actually access the disks or partitions with GRUB, you need to use
the device specification in a command, like ‘set root=(£d0)’ or ‘parttool (hd0,msdos3)
hidden-’. To help you find out which number specifies a partition you want, the GRUB
command-line (see Section 14.1 [Command-line interface], page 53) options have argument
completion. This means that, for example, you only need to type

set root=(

followed by a TAB, and GRUB will display the list of drives, partitions, or file names.
So it should be quite easy to determine the name of your target partition, even with minimal
knowledge of the syntax.

Note that GRUB does not distinguish IDE from SCSI - it simply counts the drive
numbers from zero, regardless of their type. Normally, any IDE drive number is less than
any SCSI drive number, although that is not true if you change the boot sequence by
swapping IDE and SCSI drives in your BIOS.

Now the question is, how to specify a file? Again, consider an example:

(hd0O,msdos1) /vmlinuz

This specifies the file named ‘vmlinuz’, found on the first partition of the first hard
disk drive. Note that the argument completion works with file names, too.

That was easy, admit it. Now read the next chapter, to find out how to actually
install GRUB on your drive.

Chapter 3: OS-specific notes about grub tools 9

3 OS-specific notes about grub tools

On OS which have device nodes similar to Unix-like OS GRUB tools use the OS name. E.g.
for GNU /Linux:

grub-install /dev/sda

On AROS we use another syntax. For volumes:
//:<volume name>

E.g.

// :DHO

For disks we use syntax:

//:<driver name>/unit/flags

E.g.

grub-install //:ata.device/0/0

On Windows we use UNC path. For volumes it’s typically

\\?\Volume{<GUID>}
\\?\<drive letter>:

E.g.

\\?\Volume{17£34d50-cf64-4b02-800e-51d79c3aa2f £}

\\7\C:

For disks it’s

\\?\PhysicalDrive<number>

E.g.

grub-install \\?\PhysicalDrive0

Beware that you may need to further escape the backslashes depending on your shell.

When compiled with cygwin support then cygwin drive names are automatically
when needed. E.g.

grub-install /dev/sda

Chapter 4: Installation 11

4 Installation

In order to install GRUB as your boot loader, you need to first install the GRUB system and
utilities under your UNIX-like operating system (see Appendix A [Obtaining and Building

GRUBJ, page 123). You can do this either from the source tarball, or as a package for your
OS.

After you have done that, you need to install the boot loader on a drive (floppy
or hard disk) by using the utility grub-install (see Chapter 23 [Invoking grub-install],
page 107) on a UNIX-like OS.

GRUB comes with boot images, which are normally put in the di-
rectory ‘/usr/lib/grub/<cpu>-<platform>’ (for BIOS-based machines
‘/usr/lib/grub/i386-pc’). Hereafter, the directory where GRUB images are
initially placed (normally ‘/usr/lib/grub/<cpu>-<platform>’) will be called the image
directory, and the directory where the boot loader needs to find them (usually ‘/boot’)
will be called the boot directory.

4.1 Installing GRUB using grub-install

For information on where GRUB should be installed on PC BIOS platforms, see Section 4.4
[BIOS installation], page 13.

In order to install GRUB under a UNIX-like OS (such as GNU), invoke the program
grub-install (see Chapter 23 [Invoking grub-install], page 107) as the superuser (root).

The usage is basically very simple. You only need to specify one argument to the
program, namely, where to install the boot loader. The argument has to be either a device
file (like ‘/dev/hda’). For example, under Linux the following will install GRUB into the
MBR of the first IDE disk:

grub-install /dev/sda
Likewise, under GNU/Hurd, this has the same effect:
grub-install /dev/hd0

But all the above examples assume that GRUB should put images under the ‘/boot’
directory. If you want GRUB to put images under a directory other than ‘/boot’, you need
to specify the option ‘--boot-directory’. The typical usage is that you create a GRUB
boot floppy with a filesystem. Here is an example:

mke2fs /dev/fd0O

mount -t ext2 /dev/fd0 /mnt

mkdir /mnt/boot

grub-install --boot-directory=/mnt/boot /dev/fd0
umount /mnt

Some BIOSes have a bug of exposing the first partition of a USB drive as a floppy
instead of exposing the USB drive as a hard disk (they call it “USB-FDD” boot). In such
cases, you need to install like this:

losetup /dev/loop0O /dev/sdbl
mount /dev/loop0O /mnt/usb
grub-install --boot-directory=/mnt/usb/bugbios --force --allow-floppy /dev/loopO

12 GNU GRUB Manual 2.02

This install doesn’t conflict with standard install as long as they are in separate
directories.

Note that grub-install is actually just a shell script and the real task is done by
other tools such as grub-mkimage. Therefore, you may run those commands directly to
install GRUB, without using grub-install. Don’t do that, however, unless you are very
familiar with the internals of GRUB. Installing a boot loader on a running OS may be
extremely dangerous.

On EFTI systems for fixed disk install you have to mount EFI System Partition. If
you mount it at ‘/boot/efi’ then you don’t need any special arguments:

grub-install
Otherwise you need to specify where your EFI System partition is mounted:
grub-install --efi-directory=/mnt/efi

4

For removable installs you have to use ‘--removable’ and specify both

‘-—boot-directory’ and ‘--efi-directory’

grub-install --efi-directory=/mnt/usb --boot-directory=/mnt/usb/boot
-removable

4.2 Making a GRUB bootable CD-ROM

GRUB supports the no emulation mode in the El Torito specification!. This means that
you can use the whole CD-ROM from GRUB and you don’t have to make a floppy or hard
disk image file, which can cause compatibility problems.

For booting from a CD-ROM, GRUB uses a special image called ‘cdboot . img’, which
is concatenated with ‘core.img’. The ‘core.img’ used for this should be built with at least
the ‘1509660’ and ‘biosdisk’ modules. Your bootable CD-ROM will usually also need to
include a configuration file ‘grub.cfg’ and some other GRUB modules.

To make a simple generic GRUB rescue CD, you can use the grub-mkrescue program
(see Chapter 27 [Invoking grub-mkrescue], page 115):

$ grub-mkrescue -o grub.iso

You will often need to include other files in your image. To do this, first make a top
directory for the bootable image, say, ‘iso’:

$ mkdir iso

Make a directory for GRUB:

$ mkdir -p iso/boot/grub

If desired, make the config file ‘grub.cfg’ under ‘iso/boot/grub’ (see Chapter 6
[Configuration], page 19), and copy any files and directories for the disc to the directory
‘iso/’.

Finally, make the image:

$ grub-mkrescue -o grub.iso iso

This produces a file named ‘grub.iso’, which then can be burned into a CD (or a
DVD), or written to a USB mass storage device.

L El Torito is a specification for bootable CD using BIOS functions.

Chapter 4: Installation 13

The root device will be set up appropriately on entering your ‘grub.cfg’ configura-
tion file, so you can refer to file names on the CD without needing to use an explicit device
name. This makes it easier to produce rescue images that will work on both optical drives
and USB mass storage devices.

4.3 The map between BIOS drives and OS devices

If the device map file exists, the GRUB utilities (grub-probe, etc.) read it to map BIOS
drives to OS devices. This file consists of lines like this:

(device) file

device is a drive specified in the GRUB syntax (see Section 13.1 [Device syntax],
page 51), and file is an OS file, which is normally a device file.

Historically, the device map file was used because GRUB device names had to be
used in the configuration file, and they were derived from BIOS drive numbers. The map
between BIOS drives and OS devices cannot always be guessed correctly: for example,
GRUB will get the order wrong if you exchange the boot sequence between IDE and SCSI
in your BIOS.

Unfortunately, even OS device names are not always stable. Modern versions of
the Linux kernel may probe drives in a different order from boot to boot, and the prefix
(‘/dev/hd*’ versus ‘/dev/sd*’) may change depending on the driver subsystem in use. As
a result, the device map file required frequent editing on some systems.

GRUB avoids this problem nowadays by using UUIDs or file system labels when
generating ‘grub.cfg’, and we advise that you do the same for any custom menu entries
you write. If the device map file does not exist, then the GRUB utilities will assume a
temporary device map on the fly. This is often good enough, particularly in the common
case of single-disk systems.

However, the device map file is not entirely obsolete yet, and it is used for overriding
when current environment is different from the one on boot. Most common case is if you
use a partition or logical volume as a disk for virtual machine. You can put any comments
in the file if needed, as the GRUB utilities assume that a line is just a comment if the first
character is ‘#’.

4.4 BIOS installation

MBR

The partition table format traditionally used on PC BIOS platforms is called the Master
Boot Record (MBR) format; this is the format that allows up to four primary partitions
and additional logical partitions. With this partition table format, there are two ways to
install GRUB: it can be embedded in the area between the MBR and the first partition
(called by various names, such as the "boot track", "MBR gap", or "embedding area", and
which is usually at least 31 KiB), or the core image can be installed in a file system and a
list of the blocks that make it up can be stored in the first sector of that partition.

Each of these has different problems. There is no way to reserve space in the em-
bedding area with complete safety, and some proprietary software is known to use it to
make it difficult for users to work around licensing restrictions; and systems are sometimes

14 GNU GRUB Manual 2.02

partitioned without leaving enough space before the first partition. On the other hand,
installing to a filesystem means that GRUB is vulnerable to its blocks being moved around
by filesystem features such as tail packing, or even by aggressive fsck implementations, so
this approach is quite fragile; and this approach can only be used if the ‘/boot’ filesystem
is on the same disk that the BIOS boots from, so that GRUB does not have to rely on
guessing BIOS drive numbers.

The GRUB development team generally recommends embedding GRUB before the
first partition, unless you have special requirements. You must ensure that the first partition
starts at least 31 KiB (63 sectors) from the start of the disk; on modern disks, it is often a
performance advantage to align partitions on larger boundaries anyway, so the first partition
might start 1 MiB from the start of the disk.

GPT

Some newer systems use the GUID Partition Table (GPT) format. This was specified as
part of the Extensible Firmware Interface (EFI), but it can also be used on BIOS platforms
if system software supports it; for example, GRUB and GNU/Linux can be used in this
configuration. With this format, it is possible to reserve a whole partition for GRUB, called
the BIOS Boot Partition. GRUB can then be embedded into that partition without the risk
of being overwritten by other software and without being contained in a filesystem which
might move its blocks around.

When creating a BIOS Boot Partition on a GPT system, you should make sure that
it is at least 31 KiB in size. (GPT-formatted disks are not usually particularly small, so we
recommend that you make it larger than the bare minimum, such as 1 MiB, to allow plenty
of room for growth.) You must also make sure that it has the proper partition type. Using
GNU Parted, you can set this using a command such as the following:

parted /dev/disk set partition-number bios_grub on
If you are wusing gdisk, set the partition type to ‘OxEF02’. With

partitioning programs that require setting the GUID directly, it should be
‘21686148-6449-6e6f-744e656564454649’.

Caution: Be very careful which partition you select! When GRUB finds a BIOS Boot
Partition during installation, it will automatically overwrite part of it. Make sure that the
partition does not contain any other data.

Chapter 5: Booting 15

5 Booting

GRUB can load Multiboot-compliant kernels in a consistent way, but for some free operating
systems you need to use some OS-specific magic.

5.1 How to boot operating systems

GRUB has two distinct boot methods. One of the two is to load an operating system directly,
and the other is to chain-load another boot loader which then will load an operating system
actually. Generally speaking, the former is more desirable, because you don’t need to install
or maintain other boot loaders and GRUB is flexible enough to load an operating system
from an arbitrary disk/partition. However, the latter is sometimes required, since GRUB
doesn’t support all the existing operating systems natively.

5.1.1 How to boot an OS directly with GRUB

Multiboot (see Section “Motivation” in The Multiboot Specification) is the native format
supported by GRUB. For the sake of convenience, there is also support for Linux, FreeBSD,
NetBSD and OpenBSD. If you want to boot other operating systems, you will have to
chain-load them (see Section 5.1.2 [Chain-loading], page 15).

FIXME: this section is incomplete.
1. Run the command boot (see Section 16.3.8 [boot], page 66).

However, DOS and Windows have some deficiencies, so you might have to use more
complicated instructions. See Section 5.3.4 [DOS/Windows|, page 18, for more information.

5.1.2 Chain-loading an OS

Operating systems that do not support Multiboot and do not have specific support in
GRUB (specific support is available for Linux, FreeBSD, NetBSD and OpenBSD) must be
chain-loaded, which involves loading another boot loader and jumping to it in real mode.

The chainloader command (see Section 16.3.10 [chainloader], page 67) is used to set
this up. It is normally also necessary to load some GRUB modules and set the appropriate
root device. Putting this together, we get something like this, for a Windows system on the
first partition of the first hard disk:

menuentry "Windows" {
insmod chain
insmod ntfs
set root=(hd0,1)
chainloader +1

On systems with multiple hard disks, an additional workaround may be required.
See Section 5.3.4 [DOS/Windows|, page 18.

Chain-loading is only supported on PC BIOS and EFI platforms.

16 GNU GRUB Manual 2.02

5.2 Loopback booting

GRUB is able to read from an image (be it one of CD or HDD) stored on any of its
accessible storages (refer to see Section 16.3.43 [loopback], page 73 command). However the
OS itself should be able to find its root. This usually involves running a userspace program
running before the real root is discovered. This is achieved by GRUB loading a specially
made small image and passing it as ramdisk to the kernel. This is achieved by commands
kfreebsd_module, knetbsd_module_elf, kopenbsd_ramdisk, initrd (see Section 16.3.33
[initrd], page 71), initrd16 (see Section 16.3.33 [initrd], page 71), multiboot_module,
multiboot2_module or xnu_ramdisk depending on the loader. Note that for knetbsd the
image must be put inside miniroot.kmod and the whole miniroot.kmod has to be loaded.
In kopenbsd payload this is disabled by default. Aditionally behaviour of initial ramdisk
depends on command line options. Several distributors provide the image for this purpose
or it’s integrated in their standard ramdisk and activated by special option. Consult your
kernel and distribution manual for more details. Other loaders like appleloader, chainloader
(BIOS, EFI, coreboot), freedos, ntldr and plan9 provide no possibility of loading initial
ramdisk and as far as author is aware the payloads in question don’t support either initial
ramdisk or discovering loopback boot in other way and as such not bootable this way. Please
consider alternative boot methods like copying all files from the image to actual partition.
Consult your OS documentation for more details

5.3 Some caveats on OS-specific issues

Here, we describe some caveats on several operating systems.

5.3.1 GNU/Hurd

Since GNU /Hurd is Multiboot-compliant, it is easy to boot it; there is nothing special about
it. But do not forget that you have to specify a root partition to the kernel.

1. Set GRUB’s root device to the same drive as GNU/Hurd’s. The command search
--set=root --file /boot/gnumach.gz or similar may help you (see Section 16.3.64
[search], page 77).

2. Load the kernel and the modules, like this:

grub> multiboot /boot/gnumach.gz root=device:hd0Os1

grub> module /hurd/ext2fs.static ext2fs --readonly \
--multiboot-command-line=’${kernel-command-line}’ \
--host-priv-port=’${host-port}’ \
--device-master-port="${device-port}’ \
--exec-server-task=’${exec-task}’ -T typed ’${root}’ \
’$(task-create)’ ’$(task-resume)’

grub> module /1ib/ld.so.1 exec /hurd/exec ’$(exec-task=task-create)’

3. Finally, run the command boot (see Section 16.3.8 [boot], page 66).

5.3.2 GNU /Linux

It is relatively easy to boot GNU/Linux from GRUB, because it somewhat resembles to
boot a Multiboot-compliant OS.

Chapter 5: Booting 17

1. Set GRUB’s root device to the same drive as GNU/Linux’s. The command search
--set=root --file /vmlinuz or similar may help you (see Section 16.3.64 [search],
page 77).

2. Load the kernel using the command linux (see Section 16.3.37 [linux|, page 72):

grub> linux /vmlinuz root=/dev/sdal
If you need to specify some kernel parameters, just append them to the command. For
example, to set ‘acpi’ to ‘off’, do this:

grub> linux /vmlinuz root=/dev/sdal acpi=off
See the documentation in the Linux source tree for complete information on the avail-
able options.
With 1inux GRUB uses 32-bit protocol. Some BIOS services like APM or EDD aren’t
available with this protocol. In this case you need to use 1linux16

grub> linux16 /vmlinuz root=/dev/sdal acpi=off

3. If you use an initrd, execute the command initrd (see Section 16.3.33 [initrd], page 71)
after 1inux:

grub> initrd /initrd
If you used 1inux16 you need to use initrd16:
grub> initrd16 /initrd
4. Finally, run the command boot (see Section 16.3.8 [boot|, page 66).
Caution: If you use an initrd and specify the ‘mem=" option to the kernel to let it use
less than actual memory size, you will also have to specify the same memory size to GRUB.

To let GRUB know the size, run the command uppermem before loading the kernel. See
Section 16.3.76 [uppermem)], page 83, for more information.

5.3.3 NetBSD

Booting a NetBSD kernel from GRUB is also relatively easy: first set GRUB’s root device,
then load the kernel and the modules, and finally run boot.

1. Set GRUB’s root device to the partition holding the NetBSD root file system. For a
disk with a NetBSD disk label, this is usually the first partition (a:). In that case, and
assuming that the partition is on the first hard disk, set GRUB’s root device as follows:

grub> insmod part_bsd
grub> set root=(hd0,netbsd1)
For a disk with a GUID Partition Table (GPT), and assuming that the NetBSD root
partition is the third GPT partition, do this:
grub> insmod part_gpt
grub> set root=(hd0,gpt3)
2. Load the kernel using the command knetbsd:
grub> knetbsd /netbsd
Various options may be given to knetbsd. These options are, for the most part, the

same as in the NetBSD boot loader. For instance, to boot the system in single-user
mode and with verbose messages, do this:

grub> knetbsd /netbsd -s -v

18 GNU GRUB Manual 2.02

3. If needed, load kernel modules with the command knetbsd_module_elf. A typical
example is the module for the root file system:

grub> knetbsd_module_elf /stand/amd64/6.0/modules/ffs/ffs.kmod
4. Finally, run the command boot (see Section 16.3.8 [boot|, page 66).

5.3.4 DOS/Windows

GRUB cannot boot DOS or Windows directly, so you must chain-load them (see
Section 5.1.2 [Chain-loading], page 15). However, their boot loaders have some critical
deficiencies, so it may not work to just chain-load them. To overcome the problems,
GRUB provides you with two helper functions.

If you have installed DOS (or Windows) on a non-first hard disk, you have to use
the disk swapping technique, because that OS cannot boot from any disks but the first one.
The workaround used in GRUB is the command drivemap (see Section 16.3.23 [drivemap],
page 69), like this:

drivemap -s (hd0) (hd1)
This performs a virtual swap between your first and second hard drive.

Caution: This is effective only if DOS (or Windows) uses BIOS to access the swapped
disks. If that OS uses a special driver for the disks, this probably won’t work.

Another problem arises if you installed more than one set of DOS/Windows onto
one disk, because they could be confused if there are more than one primary partitions for
DOS/Windows. Certainly you should avoid doing this, but there is a solution if you do
want to do so. Use the partition hiding/unhiding technique.

If GRUB hides a DOS (or Windows) partition (see Section 16.3.53 [parttool],
page 75), DOS (or Windows) will ignore the partition. If GRUB unhides a DOS (or
Windows) partition, DOS (or Windows) will detect the partition. Thus, if you have
installed DOS (or Windows) on the first and the second partition of the first hard disk,
and you want to boot the copy on the first partition, do the following;:

parttool (hd0,1) hidden-
parttool (hd0,2) hidden+
set root=(hd0,1)
chainloader +1

parttool ${root} boot+
boot

Chapter 6: Writing your own configuration file 19

6 Writing your own configuration file

GRUB is configured using ‘grub.cfg’, usually located under ‘/boot/grub’. This file is quite
flexible, but most users will not need to write the whole thing by hand.

6.1 Simple configuration handling

The program grub-mkconfig (see Chapter 24 [Invoking grub-mkconfig], page 109) generates
‘grub.cfg’ files suitable for most cases. It is suitable for use when upgrading a distribution,
and will discover available kernels and attempt to generate menu entries for them.

grub-mkconfig does have some limitations. While adding extra custom menu en-
tries to the end of the list can be done by editing ‘/etc/grub.d/40_custom’ or creat-
ing ‘/boot/grub/custom.cfg’, changing the order of menu entries or changing their titles
may require making complex changes to shell scripts stored in ‘/etc/grub.d/’. This may
be improved in the future. In the meantime, those who feel that it would be easier to
write ‘grub.cfg’ directly are encouraged to do so (see Chapter 5 [Booting], page 15, and
Section 6.2 [Shell-like scripting], page 24), and to disable any system provided by their
distribution to automatically run grub-mkconfig.

The file ‘/etc/default/grub’ controls the operation of grub-mkconfig. It is sourced
by a shell script, and so must be valid POSIX shell input; normally, it will just be a sequence
of ‘/KEY=value’ lines, but if the value contains spaces or other special characters then it must
be quoted. For example:

GRUB_TERMINAL_INPUT="console serial"
Valid keys in ‘/etc/default/grub’ are as follows:

‘GRUB_DEFAULT’
The default menu entry. This may be a number, in which case it identifies
the Nth entry in the generated menu counted from zero, or the title of a menu
entry, or the special string ‘saved’. Using the id may be useful if you want to
set a menu entry as the default even though there may be a variable number of
entries before it.
For example, if you have:

menuentry ’Example GNU/Linux distribution’ --class gnu-linux --id

}

then you can make this the default using:
GRUB_DEFAULT=example-gnu-linux

Previously it was documented the way to use entry title. While this still works
it’s not recommended since titles often contain unstable device names and may
be translated

If you set this to ‘saved’, then the default menu entry will be that saved by
‘GRUB_SAVEDEFAULT’ or grub-set-default. This relies on the environment
block, which may not be available in all situations (see Section 15.2 [Environ-
ment block], page 61).

The default is ‘0’.

example-gnu-lin

20 GNU GRUB Manual 2.02

‘GRUB_SAVEDEFAULT’
If this option is set to ‘true’, then, when an entry is selected, save it as
a new default entry for use by future runs of GRUB. This is only useful if
‘GRUB_DEFAULT=saved’; it is a separate option because ‘GRUB_DEFAULT=saved’
is useful without this option, in conjunction with grub-set-default. Unset
by default. This option relies on the environment block, which may not be
available in all situations (see Section 15.2 [Environment block], page 61).

‘GRUB_TIMEQOUT’
Boot the default entry this many seconds after the menu is displayed, unless
a key is pressed. The default is ‘56’. Set to ‘0’ to boot immediately without
displaying the menu, or to ‘-1’ to wait indefinitely.

If ‘GRUB_TIMEOUT_STYLE’ is set to ‘countdown’ or ‘hidden’, the timeout is in-
stead counted before the menu is displayed.

‘GRUB_TIMEQUT_STYLE’
If this option is unset or set to ‘menu’, then GRUB will display the menu and
then wait for the timeout set by ‘GRUB_TIMEOUT’ to expire before booting the
default entry. Pressing a key interrupts the timeout.

If this option is set to ‘countdown’ or ‘hidden’, then, before displaying the
menu, GRUB will wait for the timeout set by ‘GRUB_TIMEOUT to expire. If
ESC is pressed during that time, it will display the menu and wait for input.
If a hotkey associated with a menu entry is pressed, it will boot the associated
menu entry immediately. If the timeout expires before either of these happens,
it will boot the default entry. In the ‘countdown’ case, it will show a one-line
indication of the remaining time.

‘GRUB_DEFAULT_BUTTON’

‘GRUB_TIMEOUT_BUTTON’

‘GRUB_TIMEQUT_STYLE_BUTTON’

‘GRUB_BUTTON_CMOS_ADDRESS’
Variants of the corresponding variables without the ‘_BUTTON’ suffix, used to
support vendor-specific power buttons. See Chapter 10 [Vendor power-on keys|,
page 45.

‘GRUB_DISTRIBUTOR’
Set by distributors of GRUB to their identifying name. This is used to generate
more informative menu entry titles.

‘GRUB_TERMINAL_INPUT’
Select the terminal input device. You may select multiple devices here, sepa-
rated by spaces.

Valid terminal input names depend on the platform, but may include ‘console’
(native platform console), ‘serial’ (serial terminal), ‘serial_<port>’ (serial
terminal with explicit port selection), ‘at_keyboard’ (PC AT keyboard), or
‘usb_keyboard’ (USB keyboard using the HID Boot Protocol, for cases where
the firmware does not handle this).

The default is to use the platform’s native terminal input.

Chapter 6: Writing your own configuration file 21

‘GRUB_TERMINAL_QUTPUT’
Select the terminal output device. You may select multiple devices here, sepa-
rated by spaces.

Valid terminal output names depend on the platform, but may in-
clude ‘console’ (native platform console), ‘serial’ (serial terminal),
‘serial_<port>’ (serial terminal with explicit port selection), ‘gfxterm’
(graphics-mode output), ‘vga_text’ (VGA text output), ‘mda_text’ (MDA
text output), ‘morse’ (Morse-coding using system beeper) or ‘spkmodem’
(simple data protocol using system speaker).

‘spkmodem’ is useful when no serial port is available. Connect the output of
sending system (where GRUB is running) to line-in of receiving system (usu-
ally developer machine). On receiving system compile ‘spkmodem-recv’ from
‘util/spkmodem-recv.c’ and run:

parecord --channels=1 --rate=48000 --format=sl16le | ./spkmodem-recv

The default is to use the platform’s native terminal output.

‘GRUB_TERMINAL’
If this option is set, it overrides both ‘GRUB_TERMINAL_INPUT’ and
‘GRUB_TERMINAL_QUTPUT’ to the same value.

‘GRUB_SERIAL_COMMAND’
A command to configure the serial port when using the serial console. See
Section 16.2.1 [serial|, page 64. Defaults to ‘serial’.

‘GRUB_CMDLINE_LINUX’
Command-line arguments to add to menu entries for the Linux kernel.

‘GRUB_CMDLINE_LINUX_DEFAULT’
Unless ‘GRUB_DISABLE_RECOVERY’ is set to ‘true’, two menu entries will be
generated for each Linux kernel: one default entry and one entry for recovery
mode. This option lists command-line arguments to add only to the default
menu entry, after those listed in ‘GRUB_CMDLINE_LINUX’ .

‘GRUB_CMDLINE_NETBSD’

‘GRUB_CMDLINE_NETBSD_DEFAULT’
As ‘GRUB_CMDLINE_LINUX’ and ‘GRUB_CMDLINE_LINUX_DEFAULT’, but for
NetBSD.

‘GRUB_CMDLINE_GNUMACH’
As ‘GRUB_CMDLINE_LINUX’, but for GNU Mach.

‘GRUB_CMDLINE_XEN’

‘GRUB_CMDLINE_XEN_DEFAULT’
The values of these options are passed to Xen hypervisor Xen menu entries, for
all respectively normal entries.

‘GRUB_CMDLINE_LINUX_XEN_REPLACE’

‘GRUB_CMDLINE_LINUX_XEN_REPLACE_DEFAULT’
The values of these options replace the values of ‘GRUB_CMDLINE_LINUX’ and
‘GRUB_CMDLINE_LINUX_DEFAULT’ for Linux and Xen menu entries.

22 GNU GRUB Manual 2.02

‘GRUB_DISABLE_LINUX_UUID’
Normally, grub-mkconfig will generate menu entries that use universally-
unique identifiers (UUIDs) to identify the root filesystem to the Linux kernel,
using a ‘root=UUID=...’" kernel parameter. This is usually more reliable, but
in some cases it may not be appropriate. To disable the use of UUIDs, set this
option to ‘true’.

‘GRUB_DISABLE_RECOVERY’
If this option is set to ‘true’, disable the generation of recovery mode menu
entries.

‘GRUB_VIDEO_BACKEND’
If graphical video support is required, either because the ‘gfxterm’ graphi-
cal terminal is in use or because ‘GRUB_GFXPAYLOAD_LINUX’ is set, then grub-
mkconfig will normally load all available GRUB video drivers and use the one
most appropriate for your hardware. If you need to override this for some
reason, then you can set this option.

After grub-install has been run, the available video drivers are listed in
‘/boot/grub/video.lst’.

‘GRUB_GFXMODE’
Set the resolution used on the ‘gfxterm’ graphical terminal. Note that you can
only use modes which your graphics card supports via VESA BIOS Extensions
(VBE), so for example native LCD panel resolutions may not be available. The
default is ‘auto’, which tries to select a preferred resolution. See Section 15.1.12
[gfxmode], page 58.

‘GRUB_BACKGROUND’
Set a background image for use with the ‘gfxterm’ graphical terminal. The
value of this option must be a file readable by GRUB at boot time, and it must
end with ‘.png’, ‘.tga’, ‘. jpg’, or ‘. jpeg’. The image will be scaled if necessary
to fit the screen.

‘GRUB_THEME’
Set a theme for use with the ‘gfxterm’ graphical terminal.

‘GRUB_GFXPAYLOAD_LINUX’
Set to ‘text’ to force the Linux kernel to boot in normal text mode,
‘keep’ to preserve the graphics mode set using ‘GRUB_GFXMODE’,
‘widthxheight’['xdepth’] to set a particular graphics mode, or a sequence of
these separated by commas or semicolons to try several modes in sequence.
See Section 15.1.13 [gfxpayload], page 58.

Depending on your kernel, your distribution, your graphics card, and the phase
of the moon, note that using this option may cause GNU/Linux to suffer from
various display problems, particularly during the early part of the boot se-
quence. If you have problems, set this option to ‘text’ and GRUB will tell
Linux to boot in normal text mode.

‘GRUB_DISABLE_OS_PROBER’
Normally, grub-mkconfig will try to use the external os-prober program, if
installed, to discover other operating systems installed on the same system and

Chapter 6: Writing your own configuration file 23

generate appropriate menu entries for them. Set this option to ‘true’ to disable
this.

‘GRUB_OS_PROBER_SKIP_LIST’
List of space-separated FS UUIDs of filesystems to be ignored from os-prober
output. For efi chainloaders it’s <UUID>@<EFI FILE>

‘GRUB_DISABLE_SUBMENU’

Normally, grub-mkconfig will generate top level menu entry for the kernel with
highest version number and put all other found kernels or alternative menu en-
tries for recovery mode in submenu. For entries returned by os—prober first en-
try will be put on top level and all others in submenu. If this option is set to ‘y’,
flat menu with all entries on top level will be generated instead. Changing this
option will require changing existing values of ‘GRUB_DEFAULT’, ‘fallback’ (see
Section 15.1.11 [fallback|, page 57) and ‘default’ (see Section 15.1.10 [default],
page 57) environment variables as well as saved default entry using grub-set-
default and value used with grub-reboot.

‘GRUB_ENABLE_CRYPTODISK’
If set to ‘y’, grub-mkconfig and grub-install will check for encrypted disks
and generate additional commands needed to access them during boot. Note
that in this case unattended boot is not possible because GRUB will wait for
passphrase to unlock encrypted container.

‘GRUB_INIT_TUNE’
Play a tune on the speaker when GRUB starts. This is particularly useful for
users unable to see the screen. The value of this option is passed directly to
Section 16.3.56 [play], page 76.

‘GRUB_BADRAM’
If this option is set, GRUB will issue a Section 16.3.6 [badram], page 66 com-
mand to filter out specified regions of RAM.

‘GRUB_PRELOAD_MODULES’
This option may be set to a list of GRUB module names separated by spaces.
FEach module will be loaded as early as possible, at the start of ‘grub.cfg’.

The following options are still accepted for compatibility with existing configurations,
but have better replacements:

‘GRUB_HIDDEN_TIMEQUT’
Wait this many seconds before displaying the menu. If ESC is pressed during
that time, display the menu and wait for input according to ‘GRUB_TIMEOUT’.
If a hotkey associated with a menu entry is pressed, boot the associated menu
entry immediately. If the timeout expires before either of these happens, display
the menu for the number of seconds specified in ‘GRUB_TIMEQUT’ before booting
the default entry.

If you set ‘GRUB_HIDDEN_TIMEQUT’, you should also set ‘GRUB_TIMEQUT=0’ so
that the menu is not displayed at all unless ESC is pressed.

This option is unset by default, and is deprecated in favour of the less confusing
‘GRUB_TIMEQUT_STYLE=countdown’ or ‘GRUB_TIMEOUT_STYLE=hidden’.

24 GNU GRUB Manual 2.02

‘GRUB_HIDDEN_TIMEQUT_QUIET’
In conjunction with ‘GRUB_HIDDEN_TIMEQUT’, set this to ‘true’ to suppress the
verbose countdown while waiting for a key to be pressed before displaying the
ment.

This option is unset by default, and is deprecated in favour of the less confusing
‘GRUB_TIMEQUT_STYLE=countdown’.

‘GRUB_HIDDEN_TIMEQUT_BUTTON’
Variant of ‘GRUB_HIDDEN_TIMEQOUT’, used to support vendor-specific power but-
tons. See Chapter 10 [Vendor power-on keys|, page 45.

This option is unset by default, and is deprecated in favour of the less confusing
‘GRUB_TIMEQUT_STYLE=countdown’ or ‘GRUB_TIMEOUT_STYLE=hidden’.

For more detailed customisation of grub-mkconfig’s output, you may edit the scripts
in ‘/etc/grub.d’ directly. ‘/etc/grub.d/40_custom’ is particularly useful for adding entire
custom menu entries; simply type the menu entries you want to add at the end of that file,
making sure to leave at least the first two lines intact.

6.2 Writing full configuration files directly

‘grub.cfg’ is written in GRUB’s built-in scripting language, which has a syntax quite
similar to that of GNU Bash and other Bourne shell derivatives.

Words

A word is a sequence of characters considered as a single unit by GRUB. Words are separated
by metacharacters, which are the following plus space, tab, and newline:

{1l &$; <>

Quoting may be used to include metacharacters in words; see below.

Reserved words

Reserved words have a special meaning to GRUB. The following words are recognised as
reserved when unquoted and either the first word of a simple command or the third word
of a for command:

1l {3

case do done elif else esac fi for function

if in menuentry select then time until while

Not all of these reserved words have a useful purpose yet; some are reserved for future
expansion.

Quoting

Quoting is used to remove the special meaning of certain characters or words. It can be used
to treat metacharacters as part of a word, to prevent reserved words from being recognised
as such, and to prevent variable expansion.

There are three quoting mechanisms: the escape character, single quotes, and double
quotes.

Chapter 6: Writing your own configuration file 25

A non-quoted backslash (\) is the escape character. It preserves the literal value of
the next character that follows, with the exception of newline.

Enclosing characters in single quotes preserves the literal value of each character
within the quotes. A single quote may not occur between single quotes, even when preceded
by a backslash.

Enclosing characters in double quotes preserves the literal value of all characters
within the quotes, with the exception of ‘¢’ and ‘\’. The ‘$’ character retains its special
meaning within double quotes. The backslash retains its special meaning only when followed
by one of the following characters: ‘$’, ‘"’ ‘\’, or newline. A backslash-newline pair is
treated as a line continuation (that is, it is removed from the input stream and effectively
ignored!). A double quote may be quoted within double quotes by preceding it with a
backslash.

Variable expansion

The ‘$’ character introduces variable expansion. The variable name to be expanded may
be enclosed in braces, which are optional but serve to protect the variable to be expanded
from characters immediately following it which could be interpreted as part of the name.

Normal variable names begin with an alphabetic character, followed by zero or more
alphanumeric characters. These names refer to entries in the GRUB environment (see
Chapter 15 [Environment|, page 55).

Positional variable names consist of one or more digits. They represent parameters
passed to function calls, with ‘$1’ representing the first parameter, and so on.

The special variable name ‘?” expands to the exit status of the most recently executed
command. When positional variable names are active, other special variable names ‘@, ‘*’
and ‘#’ are defined and they expand to all positional parameters with necessary quoting,
positional parameters without any quoting, and positional parameter count respectively.

Comments

A word beginning with ‘#’ causes that word and all remaining characters on that line to be
ignored.

Simple commands

A simple command is a sequence of words separated by spaces or tabs and terminated
by a semicolon or a newline. The first word specifies the command to be executed. The
remaining words are passed as arguments to the invoked command.

The return value of a simple command is its exit status. If the reserved word ! pre-
cedes the command, then the return value is instead the logical negation of the command’s
exit status.

! Currently a backslash-newline pair within a variable name is not handled properly, so use this feature
with some care.

26 GNU GRUB Manual 2.02

Compound commands

A compound command is one of the following:

for name in word . . .; do list; done
The list of words following in is expanded, generating a list of items. The
variable name is set to each element of this list in turn, and list is executed
each time. The return value is the exit status of the last command that executes.
If the expansion of the items following in results in an empty list, no commands
are executed, and the return status is 0.

if list; then list; [elif list; then list;] . .. [else list;] fi
The if list is executed. If its exit status is zero, the then list is executed.
Otherwise, each elif list is executed in turn, and if its exit status is zero, the
corresponding then list is executed and the command completes. Otherwise,
the else list is executed, if present. The exit status is the exit status of the
last command executed, or zero if no condition tested true.

while cond; do list; done

until cond; do list; done
The while command continuously executes the do list as long as the last com-
mand in cond returns an exit status of zero. The until command is identical
to the while command, except that the test is negated; the do list is executed
as long as the last command in cond returns a non-zero exit status. The exit
status of the while and until commands is the exit status of the last do Iist
command executed, or zero if none was executed.

function name { command; ... }
This defines a function named name. The body of the function is the list of
commands within braces, each of which must be terminated with a semicolon or
a newline. This list of commands will be executed whenever name is specified
as the name of a simple command. Function definitions do not affect the exit
status in $7. When executed, the exit status of a function is the exit status of
the last command executed in the body.

menuentry title [‘--class=class’ ...| [‘--users=users’] [‘~-unrestricted’]
[‘--hotkey=key’] [‘--id=id’| { command; ... }
See Section 16.1.1 [menuentry|, page 63.

Built-in Commands

Some built-in commands are also provided by GRUB script to help script writers perform
actions that are otherwise not possible. For example, these include commands to jump out
of a loop without fully completing it, etc.

break [n] Exit from within a for, while, or until loop. If n is specified, break n levels. n
must be greater than or equal to 1. If n is greater than the number of enclosing
loops, all enclosing loops are exited. The return value is 0 unless n is not greater
than or equal to 1.

continue [n]
Resume the next iteration of the enclosing for, while or until loop. If n is
specified, resume at the nth enclosing loop. n must be greater than or equal to

Chapter 6: Writing your own configuration file 27

1. If n is greater than the number of enclosing loops, the last enclosing loop
(the top-level loop) is resumed. The return value is 0 unless n is not greater
than or equal to 1.

return [n] Causes a function to exit with the return value specified by n. If n is omitted,
the return status is that of the last command executed in the function body. If
used outside a function the return status is false.

setparams [arg] . ..
Replace positional parameters starting with $1 with arguments to setparams.

shift [n] The positional parameters from n+1 ... are renamed to $1.... Parameters
represented by the numbers $# down to $#-n+1 are unset. n must be a non-
negative number less than or equal to $#. If n is 0, no parameters are changed.
If n is not given, it is assumed to be 1. If n is greater than $#, the positional
parameters are not changed. The return status is greater than zero if n is
greater than $# or less than zero; otherwise 0.

6.3 Multi-boot manual config

Currently autogenerating config files for multi-boot environments depends on os-prober and
has several shortcomings. While fixing it is scheduled for the next release, meanwhile you
can make use of the power of GRUB syntax and do it yourself. A possible configuration is
detailed here, feel free to adjust to your needs.

First create a separate GRUB partition, big enough to hold GRUB. Some of the
following entries show how to load OS installer images from this same partition, for that
you obviously need to make the partition large enough to hold those images as well. Mount
this partition on/mnt/boot and disable GRUB in all OSes and manually install self-compiled
latest GRUB with:

grub-install --boot-directory=/mnt/boot /dev/sda

In all the OSes install GRUB tools but disable installing GRUB in bootsector, so
you’ll have menu.lst and grub.cfg available for use. Also disable os-prober use by setting:

GRUB_DISABLE_OS_PROBER=true
in /etc/default/grub
Then write a grub.cfg (/mnt/boot/grub/grub.cfg):

menuentry "O0S using grub2" {
insmod xfs
search --set=root --label 0S1 --hint hdO,msdos8
configfile /boot/grub/grub.cfg

menuentry "OS using grub2-legacy" {
insmod ext2
search --set=root --label 0S2 --hint hdO,msdos6
legacy_configfile /boot/grub/menu.lst

28

GNU GRUB Manual 2.02

menuentry "Windows XP" {
insmod ntfs
search --set=root --label WINDOWS_XP --hint hdO,msdosl
ntldr /ntldr

menuentry "Windows 7" {
insmod ntfs
search --set=root --label WINDOWS_7 --hint hdO,msdos2
ntldr /bootmgr

menuentry "FreeBSD" {
insmod zfs
search —--set=root --label freepool --hint hdO,msdos7
kfreebsd /freebsd@/boot/kernel/kernel
kfreebsd_module_elf /freebsd@/boot/kernel/opensolaris.ko
kfreebsd_module_elf /freebsd@/boot/kernel/zfs.ko
kfreebsd_module /freebsd@/boot/zfs/zpool.cache type=/boot/zfs/zpool.cache
set kFreeBSD.vfs.root.mountfrom=zfs:freepool/freebsd
set kFreeBSD.hw.psm.synaptics_support=1

menuentry "experimental GRUB" {
search --set=root --label GRUB --hint hdO,msdosb5
multiboot /experimental/grub/i386-pc/core.img

menuentry "Fedora 16 installer" {
search --set=root --label GRUB --hint hdO,msdosb5
linux /fedora/vmlinuz lang=en_US keymap=sg resolution=1280x800
initrd /fedora/initrd.img

menuentry "Fedora rawhide installer" {
search --set=root --label GRUB --hint hdO,msdosb
linux /fedora/vmlinuz repo=ftp://mirror.switch.ch/mirror/fedora/linux/develo
initrd /fedora/initrd.img

menuentry "Debian sid installer" {
search --set=root --label GRUB --hint hdO,msdos5
linux /debian/dists/sid/main/installer-amd64/current/images/hd-media/vmlinuz
initrd /debian/dists/sid/main/installer-amd64/current/images/hd-media/initrd

Chapter 6: Writing your own configuration file 29

Notes:

e Argument to search after —label is FS LABEL. You can also use UUIDs with —fs-uuid
UUID instead of —label LABEL. You could also use direct root=hd0,msdosX but this
is not recommended due to device name instability.

6.4 Embedding a configuration file into GRUB

GRUB supports embedding a configuration file directly into the core image, so that it is
loaded before entering normal mode. This is useful, for example, when it is not straightfor-
ward to find the real configuration file, or when you need to debug problems with loading
that file. grub-install uses this feature when it is not using BIOS disk functions or when
installing to a different disk from the one containing ‘/boot/grub’, in which case it needs
to use the search command (see Section 16.3.64 [search], page 77) to find ‘/boot/grub’.

To embed a configuration file, use the ‘~c’ option to grub-mkimage. The file is copied
into the core image, so it may reside anywhere on the file system, and may be removed after
running grub-mkimage.

After the embedded configuration file (if any) is executed, GRUB will load the
‘normal’ module (see Section 16.3.51 [normal], page 75), which will then read the real config-
uration file from ‘$prefix/grub.cfg’. By this point, the root variable will also have been
set to the root device name. For example, prefix might be set to ‘(hd0,1)/boot/grub’,
and root might be set to ‘hd0,1’. Thus, in most cases, the embedded configuration file
only needs to set the prefix and root variables, and then drop through to GRUB’s normal
processing. A typical example of this might look like this:

search.fs_uuid 01234567-89ab-cdef-0123-456789abcdef root
set prefix=($root)/boot/grub

(The ‘search_fs_uuid’ module must be included in the core image for this example
to work.)

In more complex cases, it may be useful to read other configuration files directly
from the embedded configuration file. This allows such things as reading files not called
‘grub.cfg’, or reading files from a directory other than that where GRUB’s loadable mod-
ules are installed. To do this, include the ‘configfile’ and ‘normal’ modules in the core
image, and embed a configuration file that uses the configfile command to load another
file. The following example of this also requires the echo, search_label, and test modules
to be included in the core image:

search.fs_label grub root
if [-e /boot/grub/example/testl.cfg]; then
set prefix=($root)/boot/grub
configfile /boot/grub/example/testl.cfg
else
if [-e /boot/grub/example/test2.cfg]; then
set prefix=($root)/boot/grub
configfile /boot/grub/example/test2.cfg
else
echo "Could not find an example configuration file!"
fi
fi

30 GNU GRUB Manual 2.02

The embedded configuration file may not contain menu entries directly, but may
only read them from elsewhere using configfile.

Chapter 7: Theme file format 31

7 Theme file format

7.1 Introduction

The GRUB graphical menu supports themes that can customize the layout and appearance
of the GRUB boot menu. The theme is configured through a plain text file that specifies
the layout of the various GUI components (including the boot menu, timeout progress bar,
and text messages) as well as the appearance using colors, fonts, and images. Example is
available in docs/example_theme.txt

7.2 Theme Elements

7.2.1 Colors

Colors can be specified in several ways:

e HTML-style “4#RRGGBB” or “#RGB” format, where *R*, *G*, and *B* are hex-
adecimal digits (e.g., “#8899FF”)

e as comma-separated decimal RGB values (e.g., “128, 128, 255”)

e with “SVG 1.0 color names” (e.g., “cornflowerblue”) which must be specified in lower-
case.

7.2.2 Fonts

The fonts GRUB uses “PFF2 font format” bitmap fonts. Fonts are specified with full font
names. Currently there is no provision for a preference list of fonts, or deriving one font
from another. Fonts are loaded with the “loadfont” command in GRUB (Section 16.3.42
[loadfont], page 73). To see the list of loaded fonts, execute the “Isfonts” command
(Section 16.3.45 [Isfonts], page 74). If there are too many fonts to fit on screen, do “set
pager=1" before executing “lsfonts”.

7.2.3 Progress Bar

Figure 7.1

Figure 7.2

Progress bars are used to display the remaining time before GRUB boots the default
menu entry. To create a progress bar that will display the remaining time before automatic
boot, simply create a “progress_bar” component with the id “__timeout__”. This indicates
to GRUB that the progress bar should be updated as time passes, and it should be made
invisible if the countdown to automatic boot is interrupted by the user.

Progress bars may optionally have text displayed on them. This text is controlled by
variable “text” which contains a printf template with the only argument %d is the number of
seconds remaining. Additionally special values “@TIMEOUT_NOTIFICATION_SHORT®”,
“@TIMEOUT_NOTIFICATION_MIDDLE@”, “@TIMEOUT_NOTIFICATION_LONG®@”

are replaced with standard and translated templates.

32 GNU GRUB Manual 2.02

7.2.4 Circular Progress Indicator

The circular progress indicator functions similarly to the progress bar. When given an id of
“__timeout__", GRUB updates the circular progress indicator’s value to indicate the time
remaining. For the circular progress indicator, there are two images used to render it: the
*center™ image, and the *tick* image. The center image is rendered in the center of the
component, while the tick image is used to render each mark along the circumference of the
indicator.

7.2.5 Labels

Text labels can be placed on the boot screen. The font, color, and horizontal alignment can
be specified for labels. If a label is given the id “__timeout__”, then the “text” property for
that label is also updated with a message informing the user of the number of seconds re-
maining until automatic boot. This is useful in case you want the text displayed somewhere
else instead of directly on the progress bar.

7.2.6 Boot Menu

The boot menu where GRUB displays the menu entries from the “grub.cfg” file. It is a
list of items, where each item has a title and an optional icon. The icon is selected based
on the *classes* specified for the menu entry. If there is a PNG file named “myclass.png”
in the “grub/themes/icons” directory, it will be displayed for items which have the class
myclass. The boot menu can be customized in several ways, such as the font and color
used for the menu entry title, and by specifying styled boxes for the menu itself and for the
selected item highlight.

7.2.7 Styled Boxes

One of the most important features for customizing the layout is the use of *styled boxes*.
A styled box is composed of 9 rectangular (and potentially empty) regions, which are used
to seamlessly draw the styled box on screen:

Northwest (nw) North (n) Northeast (ne)
West (w) Center (c) East (e)
Southwest (sw) South (s) Southeast (se)

To support any size of box on screen, the center slice and the slices for the top,
bottom, and sides are all scaled to the correct size for the component on screen, using the
following rules:

1. The edge slices (north, south, east, and west) are scaled in the direction of the edge
they are adjacent to. For instance, the west slice is scaled vertically.

2. The corner slices (northwest, northeast, southeast, and southwest) are not scaled.

3. The center slice is scaled to fill the remaining space in the middle.

As an example of how an image might be sliced up, consider the styled box used for
a terminal view.

Figure 7.3

Chapter 7: Theme file format 33

7.2.8 Creating Styled Box Images

The Inkscape_ scalable vector graphics editor is a very useful tool for creating styled box
images. One process that works well for slicing a drawing into the necessary image slices is:

1.
2.

Create or open the drawing you’d like use.

Create a new layer on the top of the layer stack. Make it visible. Select this layer as
the current layer.

Draw 9 rectangles on your drawing where you’d like the slices to be. Clear the fill
option, and set the stroke to 1 pixel wide solid stroke. The corners of the slices must
meet precisely; if it is off by a single pixel, it will probably be evident when the styled
box is rendered in the GRUB menu. You should probably go to File | Document
Properties | Grids and enable a grid or create a guide (click on one of the rulers next
to the drawing and drag over the drawing; release the mouse button to place the guide)
to help place the rectangles precisely.

Right click on the center slice rectangle and choose Object Properties. Change the

"Id" to “slice_c“ and click Set. Repeat this for the remaining 8 rectangles, giving them

Id values of “slice_n*, “slice_ne“, “slice_e*, and so on according to the location.

5. Save the drawing.

6. Select all the slice rectangles. With the slice layer selected, you can simply press Ctrl+A

to select all rectangles. The status bar should indicate that 9 rectangles are selected.

Click the layer hide icon for the slice layer in the layer palette. The rectangles will
remain selected, even though they are hidden.

Choose File | Export Bitmap and check the *Batch export 9 selected objects*® box.
Make sure that *Hide all except selected™® is unchecked. click *Export*. This will
create PNG files in the same directory as the drawing, named after the slices. These
can now be used for a styled box in a GRUB theme.

7.3 Theme File Manual

The theme file is a plain text file. Lines that begin with “#*“ are ignored and considered
comments. (Note: This may not be the case if the previous line ended where a value was
expected.)

1.
2.

The theme file contains two types of statements:
Global properties.

Component construction.

7.3.1 Global Properties

7.3.2 Format

Global properties are specified with the simple format:

e namel: valuel

e name2: "value which may contain spaces"
e name3: #88F

In this example, name3 is assigned a color value.

34 GNU GRUB Manual 2.02

7.3.3 Global Property List

title-text Specifies the text to display at the top center of the
screen as a title.

title-font Defines the font used for the title message at the top
of the screen.

title-color Defines the color of the title message.

message-font Currently unused. Left for backward compatibility.

message-color Currently unused. Left for backward compatibility.

message-bg-color Currently unused. Left for backward compatibility.

desktop-image Specifies the image to use as the background. It

will be scaled to fit the screen size or proportionally
scaled depending on the scale method.

desktop-image-scale- Specifies the scaling method for the *desktop-
method image*. Options are “stretch®, “crop®, “padding®,
“fitwidth“, “fitheight“. “stretch“ for fitting the

screen size. Otherwise it is proportional scaling of
a part of *desktop-image* to the part of the screen.
“crop“ part of the *desktop-image* will be propor-
tionally scaled to fit the screen sizes. “padding*
the entire *desktop-image* will be contained on the
screen. “fitwidth* for fitting the *desktop-image™*’s
width with screen width. “fitheight“ for fitting the
*desktop-image™’s height with the screen height. De-
fault is “stretch*.

desktop-image-h-align Specifies the horizontal alignment of the *desktop-
image* if *desktop-image-scale-method* isn’t equeal
to “stretch“. Options are “left“, “center®, “right*.
Default is “center“.

desktop-image-v-align Specifies the vertical alignment of the *desktop-
image™ if *desktop-image-scale-method* isn’t equeal
to “stretch“. Options are “top*, “center”, “bottom “.
Default is “center“.

desktop-color Specifies the color for the background if *desktop-
image™ is not specified.

terminal-box Specifies the file name pattern for the styled box
slices used for the command line terminal window.
For example, “terminal-box: terminal_*.png* will
use the images “terminal_c.png“ as the center area,
“terminal_n.png“ as the north (top) edge, “termi-
nal_nw.png“ as the northwest (upper left) corner,
and so on. If the image for any slice is not found, it
will simply be left empty.

terminal-border Specifies the border width of the terminal window.

terminal-left Specifies the left coordinate of the terminal window.

terminal-top Specifies the top coordinate of the terminal window.

Chapter 7: Theme file format 35

terminal-width Specifies the width of the terminal window.
terminal-height Specifies the height of the terminal window.

7.3.4 Component Construction

Greater customizability comes is provided by components. A tree of components forms the
user interface. *Containers® are components that can contain other components, and there
is always a single root component which is an instance of a *canvas* container.

Components are created in the theme file by prefixing the type of component with a
'+’ sign:
+ label { text="GRUB" font="aqui 11" color="#8FF" }

properties of a component are specified as "name = value" (whitespace surrounding
tokens is optional and is ignored) where *value* may be:

e a single word (e.g., “align = center®, “color = #FF8080%),
e a quoted string (e.g., “text = "Hello, World!" “), or
e a tuple (e.g., “preferred_size = (120, 80)*).

7.3.5 Component List

The following is a list of the components and the properties they support.

e label A label displays a line of text.

Properties:

id Set to “__timeout__* to display the time elapsed to an auto-
matical boot of the default entry.

text The text to display. If “id“ is set to “__timeout__*
and no “text“ property is set then the amount of sec-
onds will be shown. If set to “@KEYMAP_SHORT®@*,
“eKEYMAP_MIDDLE@“ or “eKEYMAP_LONG@* then pre-
defined hotkey information will be shown.

font The font to use for text display.

color The color of the text.

align The horizontal alignment of the text within the component.
Options are “left“, “center“ and “right“.

visible Set to “false“ to hide the label.

e image A component that displays an image. The image is scaled to fit the component.
Properties:
file The full path to the image file to load.

e progress_bar Displays a horizontally oriented progress bar. It can be rendered using
simple solid filled rectangles, or using a pair of pixmap styled boxes.

Properties:

id Set to “__timeout__“ to display the time elapsed to an auto-
matical boot of the default entry.

fg_color The foreground color for plain solid color rendering.

bg_color The background color for plain solid color rendering.

border_color The border color for plain solid color rendering.

36

text_color
bar_style

highlight_style

highlight_overlay

font
text

GNU GRUB Manual 2.02

The text color.

The styled box specification for the frame of the progress
bar. Example: “progress_frame_*.png“ If the value is equal
to “highlight_style“ then no styled boxes will be shown.

The styled box specification for the highlighted region of the
progress bar. This box will be used to paint just the high-
lighted region of the bar, and will be increased in size as
the bar nears completion. Example: “progress_hl_*.png*. If
the value is equal to “bar_style“ then no styled boxes will be
shown.

If this option is set to “true“ then the highlight box side slices
(every slice except the center slice) will overlay the frame box
side slices. And the center slice of the highlight box can move
all the way (from top to bottom), being drawn on the center
slice of the frame box. That way we can make a progress
bar with round-shaped edges so there won’t be a free space
from the highlight to the frame in top and bottom scrollbar
positions. Default is “false.

The font to use for progress bar.

The text to display on the progress bar. If the progress
bar’s ID is set to “__timeout__“ and the value of this prop-
erty is set to “@TIMEOUT_NOTIFICATION_SHORT®“,
“@TIMEOUT_NOTIFICATION_MIDDLE@* or “@TIME-
OUT_NOTIFICATION_LONGG@“, then GRUB will update
this property with an informative message as the timeout
approaches.

circular_progress Displays a circular progress indicator. The appearance of this compo-
nent is determined by two images: the *center* image and the *tick* image. The center
image is generally larger and will be drawn in the center of the component. Around the
circumference of a circle within the component, the tick image will be drawn a certain
number of times, depending on the properties of the component.

Properties:

id Set to “__timeout__“ to display the time elapsed to
an automatical boot of the default entry.

The file name of the image to draw in the center of
the component.

center_bitmap

The file name of the image to draw for the tick
marks.

tick_bitmap

The number of ticks that make up a full circle.
Boolean value indicating whether tick marks should
progressively appear, or progressively disappear as
value approaches *end*. Specify “true* or “false.
Default is “false“.

num_ticks
ticks_disappear

Chapter 7: Theme file format 37

The position of the first tick mark to appear or dis-
appear. Measured in "parrots", 1 "parrot" = 1 /
256 of the full circle. Use values “xxx deg“ or “xxx
\xc2\xb0* to set the angle in degrees.

start_angle

boot_menu Displays the GRUB boot menu. It allows selecting items and executing

them.
Properties:

item_font
selected_item_font

item_color
selected_item_color

icon_width
icon_height
item_height
item_padding
item_icon_space

item_spacing

menu_pixmap_style

item_pixmap_style
selected_item_pixmap_style

scrollbar

scrollbar_frame

scrollbar_thumb

The font to use for the menu item titles.
The font to use for the selected menu item,
or “inherit“ (the default) to use “item_font“
for the selected menu item as well.

The color to use for the menu item titles.
The color to use for the selected menu
item, or “inherit® (the default) to use
“item_color“ for the selected menu item as
well.

The width of menu item icons. Icons are
scaled to the specified size.

The height of menu item icons.

The height of each menu item in pixels.
The amount of space in pixels to leave on
each side of the menu item contents.

The space between an item’s icon and the
title text, in pixels.

The amount of space to leave between menu
items, in pixels.

The image file pattern for the menu frame
styled box. Example: “menu_*.png*“ (this
will use images such as “menu_c.png”,
“menu_w.png“, ‘menu_nw.png*, etc.)

The image file pattern for the item styled
box.

The image file pattern for the selected item
highlight styled box.

Boolean value indicating whether the scroll
bar should be drawn if the frame and thumb
styled boxes are configured.

The image file pattern for the entire scroll
bar. Example: “scrollbar_*.png*

The image file pattern for the scroll bar
thumb (the part of the scroll bar that moves
as scrolling occurs). Example: “scroll-
bar_thumb_*.png*

GNU GRUB Manual 2.02

scrollbar_thumb_overlay If this option is set to “true* then the scroll-
bar thumb side slices (every slice except
the center slice) will overlay the scrollbar
frame side slices. And the center slice of
the scrollbar_thumb can move all the way
(from top to bottom), being drawn on the
center slice of the scrollbar frame. That
way we can make a scrollbar with round-
shaped edges so there won’t be a free space
from the thumb to the frame in top and bot-
tom scrollbar positions. Default is “false®.

scrollbar_slice The menu frame styled box’s slice in which
the scrollbar will be drawn. Possible val-
ues are “west“, “center, “east® (default).
“west“ - the scrollbar will be drawn in
the west slice (right-aligned). “east® - the
scrollbar will be drawn in the east slice
(left-aligned). “center“ - the scrollbar will
be drawn in the center slice. Note: in case
of “center slice: a) If the scrollbar should
be drawn then boot menu entry’s width is
decreased by the scrollbar’s width and the
scrollbar is drawn at the right side of the
center slice. b) If the scrollbar won’t be
drawn then the boot menu entry’s width is
the width of the center slice. ¢) We don’t
necessary need the menu pixmap box to dis-
play the scrollbar.

scrollbar_left_pad The left scrollbar padding in pixels. Un-
used if “scrollbar_slice® is “west“.

scrollbar_right_pad The right scrollbar padding in pixels. Un-
used if “scrollbar_slice is “east“.
scrollbar_top_pad The top scrollbar padding in pixels.
scrollbar_bottom_pad The bottom scrollbar padding in pixels.
visible Set to “false“ to hide the boot menu.

canvas Canvas is a container that allows manual placement of components within it.
It does not alter the positions of its child components. It assigns all child components
their preferred sizes.

hbox The *hbox* container lays out its children from left to right, giving each one
its preferred width. The height of each child is set to the maximum of the preferred
heights of all children.

vbox The *vbox™ container lays out its children from top to bottom, giving each one
its preferred height. The width of each child is set to the maximum of the preferred
widths of all children.

Chapter 7: Theme file format 39

7.3.6 Common properties

The following properties are supported by all components:

‘left’ The distance from the left border of container to left border of the object in
either of three formats:

X Value in pixels
p% Percentage
p%+x mixture of both

The distance from the left border of container to left border of the object in
same format.

‘width’ The width of object in same format.
‘height’” The height of object in same format.

ad’ The identifier for the component. This can be any arbitrary string. The ID can
be used by scripts to refer to various components in the GUI component tree.
Currently, there is one special ID value that GRUB recognizes:

“__timeout__“ Component with this ID will be updated by GRUB and will
indicate time elapsed to an automatical boot of the default
entry. Affected components: “label®, “circular_progress*,
“progress_bar“.

Chapter 8: Booting GRUB from the network 41

8 Booting GRUB from the network

The following instructions don’t work for *-emu, i386-qemu, i386-coreboot, 1386-multiboot,

mips_loongson, mips-arc and mips_gemu_mips
To generate a netbootable directory, run:
grub-mknetdir --net-directory=/srv/tftp --subdir=/boot/grub -d /usr/lib/grub/<platform
E.g. for i386-pc:
grub-mknetdir --net-directory=/srv/tftp --subdir=/boot/grub -d /usr/lib/grub/i386-pc
Then follow instructions printed out by grub-mknetdir on configuring your DHCP

server.

After GRUB has started, files on the TFTP server will be accessible via the ‘(tftp)’
device.

The server IP address can be controlled by changing the ‘(tftp)’ device name to
‘(tftp,server-ip)’. Note that this should be changed both in the prefix and in any
references to the device name in the configuration file.

GRUB provides several environment variables which may be used to inspect or

change the behaviour of the PXE device. In the following description <interface> is place-
holder for the name of network interface (platform dependent):

‘net_<interface>_ip’
The network interface’s IP address. Read-only.

‘net_<interface>_mac’
The network interface’s MAC address. Read-only.

‘net_<interface>_hostname’
The client host name provided by DHCP. Read-only.

‘net_<interface>_domain’
The client domain name provided by DHCP. Read-only.

‘net_<interface>_rootpath’
The path to the client’s root disk provided by DHCP. Read-only.

‘net_<interface>_extensionspath’
The path to additional DHCP vendor extensions provided by DHCP. Read-only.

‘net_<interface>_boot_file’
The boot file name provided by DHCP. Read-only.

‘net_<interface>_dhcp_server_name’
The name of the DHCP server responsible for these boot parameters. Read-
only.

‘net_<interface>_next_server’
The TP address of the next (usually, TF'TP) server provided by DHCP. Read-
only.

‘net_default_interface’
Initially set to name of network interface that was used to load grub. Read-
write, although setting it affects only interpretation of ‘net_default_ip’ and
‘net_default_mac’

42 GNU GRUB Manual 2.02

‘net_default_ip’
The IP address of default interface. Read-only. This is alias for the
‘net_${net_default_interface}_ip’.

‘net_default_mac’
The default interface’s MAC address. Read-only. This is alias for the
‘net_${net_default_interface}_mac’.

‘net_default_server’
The default server used by network drives (see Section 13.1 [Device syntax],
page 51). Read-write, although setting this is only useful before opening a
network device.

Chapter 9: Using GRUB via a serial line 43

9 Using GRUB via a serial line

This chapter describes how to use the serial terminal support in GRUB.

If you have many computers or computers with no display/keyboard, it could be very
useful to control the computers through serial communications. To connect one computer
with another via a serial line, you need to prepare a null-modem (cross) serial cable, and
you may need to have multiport serial boards, if your computer doesn’t have extra serial
ports. In addition, a terminal emulator is also required, such as minicom. Refer to a manual
of your operating system, for more information.

As for GRUB, the instruction to set up a serial terminal is quite simple. Here is an
example:

grub> serial --unit=0 --speed=9600

grub> terminal_input serial; terminal_output serial

The command serial initializes the serial unit 0 with the speed 9600bps. The serial
unit 0 is usually called ‘COM1’, so, if you want to use COM2, you must specify ‘--unit=1’
instead. This command accepts many other options, so please refer to Section 16.2.1 [serial],
page 64, for more details.

The commands terminal_input (see Section 16.2.2 [terminal_input|, page 64) and
terminal_output (see Section 16.2.3 [terminal_output], page 64) choose which type of
terminal you want to use. In the case above, the terminal will be a serial terminal, but
you can also pass console to the command, as ‘terminal_input serial console’. In this
case, a terminal in which you press any key will be selected as a GRUB terminal. In the
example above, note that you need to put both commands on the same command line, as
you will lose the ability to type commands on the console after the first command.

However, note that GRUB assumes that your terminal emulator is compatible with
VT100 by default. This is true for most terminal emulators nowadays, but you should pass
the option ‘==dumb’ to the command if your terminal emulator is not VT100-compatible or
implements few VT100 escape sequences. If you specify this option then GRUB provides
you with an alternative menu interface, because the normal menu requires several fancy
features of your terminal.

Chapter 10: Using GRUB with vendor power-on keys 45

10 Using GRUB with vendor power-on keys

Some laptop vendors provide an additional power-on button which boots another OS. GRUB
supports such buttons with the ‘GRUB_TIMEOUT_BUTTON’, ‘GRUB_TIMEOUT_STYLE_BUTTON’,
‘GRUB_DEFAULT_BUTTON’, and ‘GRUB_BUTTON_CMOS_ADDRESS’ variables in (kﬁauk/grub
(see Section 6.1 [Simple configuration], page 19). ‘GRUB_TIMEOUT_BUTTON’,
‘GRUB_TIMEOUT_STYLE_BUTTON’, and ‘GRUB_DEFAULT_BUTTON’ are used instead of the
corresponding variables without the ‘_BUTTON’ suffix when powered on using the special
button. ‘GRUB_BUTTON_CMOS_ADDRESS’ is vendor-specific and partially model-specific.
Values known to the GRUB team are:

DELL XPS M1330M
121:3

DELL XPS M1530
85:3
DELL LATITUDE E4300
85:3
ASUS EEEPC 1005PE
84:1 (unconfirmed)

LENOVO THINKPAD T410S (2912W1C)
101:3

To take full advantage of this function, install GRUB into the MBR (see Section 4.1
[Installing GRUB using grub-install], page 11).

If you have a laptop which has a similar feature and not in the above list could you
figure your address and contribute? To discover the address do the following:

e boot normally
[]

sudo modprobe nvram
sudo cat /dev/nvram | xxd > normal_button.txt

e boot using vendor button
[]
sudo modprobe nvram
sudo cat /dev/nvram | xxd > normal_vendor.txt
Then compare these text files and find where a bit was toggled. E.g. in case of Dell
XPS it was:
byte 0x47: 20 --> 28

It’s a bit number 3 as seen from following table:

0 01
1 02
2 04
3 08
4 10

46 GNU GRUB Manual 2.02

) 20
6 40
7 80

0x47 is decimal 71. Linux nvram implementation cuts first 14 bytes of CMOS. So
the real byte address in CMOS is 71+14=85 So complete address is 85:3

Chapter 11: GRUB image files 47

11 GRUB image files

GRUB consists of several images: a variety of bootstrap images for starting GRUB in
various ways, a kernel image, and a set of modules which are combined with the kernel
image to form a core image. Here is a short overview of them.

‘boot.img’

On PC BIOS systems, this image is the first part of GRUB to start. It is written
to a master boot record (MBR) or to the boot sector of a partition. Because a
PC boot sector is 512 bytes, the size of this image is exactly 512 bytes.

The sole function of ‘boot . img’ is to read the first sector of the core image from
a local disk and jump to it. Because of the size restriction, ‘boot.img’ cannot
understand any file system structure, so grub-install hardcodes the location
of the first sector of the core image into ‘boot.img’ when installing GRUB.

‘diskboot.img’

This image is used as the first sector of the core image when booting from a
hard disk. It reads the rest of the core image into memory and starts the kernel.
Since file system handling is not yet available, it encodes the location of the
core image using a block list format.

‘cdboot . img’

This image is used as the first sector of the core image when booting from a
CD-ROM drive. It performs a similar function to ‘diskboot.img’.

‘pxeboot.img’

This image is used as the start of the core image when booting from the network
using PXE. See Chapter 8 [Network], page 41.

‘Inxboot.img’

This image may be placed at the start of the core image in order to make
GRUB look enough like a Linux kernel that it can be booted by LILO using an
‘image=" section.

‘kernel . img’

‘core.img’

This image contains GRUB’s basic run-time facilities: frameworks for device
and file handling, environment variables, the rescue mode command-line parser,
and so on. It is rarely used directly, but is built into all core images.

This is the core image of GRUB. It is built dynamically from the kernel image
and an arbitrary list of modules by the grub-mkimage program. Usually, it
contains enough modules to access ‘/boot/grub’, and loads everything else
(including menu handling, the ability to load target operating systems, and so
on) from the file system at run-time. The modular design allows the core image
to be kept small, since the areas of disk where it must be installed are often as
small as 32KB.

See Section 4.4 [BIOS installation|, page 13, for details on where the core image
can be installed on PC systems.

48 GNU GRUB Manual 2.02

‘x.mod’ Everything else in GRUB resides in dynamically loadable modules. These are
often loaded automatically, or built into the core image if they are essential, but
may also be loaded manually using the insmod command (see Section 16.3.35
[insmod], page 72).

For GRUB Legacy users

GRUB 2 has a different design from GRUB Legacy, and so correspondences with the images
it used cannot be exact. Nevertheless, GRUB Legacy users often ask questions in the terms
they are familiar with, and so here is a brief guide to how GRUB 2’s images relate to that.

‘stagel’ Stage 1 from GRUB Legacy was very similar to ‘boot.img’ in GRUB 2, and
they serve the same function.

‘*_stagel_b’

In GRUB Legacy, Stage 1.5’s function was to include enough filesystem code to
allow the much larger Stage 2 to be read from an ordinary filesystem. In this
respect, its function was similar to ‘core.img’ in GRUB 2. However, ‘core.img’
is much more capable than Stage 1.5 was; since it offers a rescue shell, it is
sometimes possible to recover manually in the event that it is unable to load
any other modules, for example if partition numbers have changed. ‘core.img’
is built in a more flexible way, allowing GRUB 2 to support reading modules
from advanced disk types such as LVM and RAID.

GRUB Legacy could run with only Stage 1 and Stage 2 in some limited config-
urations, while GRUB 2 requires ‘core.img’ and cannot work without it.

‘stage2’ GRUB 2 has no single Stage 2 image. Instead, it loads modules from
‘/boot/grub’ at run-time.

‘stage2_eltorito’
In GRUB 2, images for booting from CD-ROM drives are now constructed
using ‘cdboot.img’ and ‘core.img’, making sure that the core image contains
the ‘1509660’ module. It is usually best to use the grub-mkrescue program for
this.

‘nbgrub’ There is as yet no equivalent for ‘nbgrub’ in GRUB 2; it was used by Etherboot
and some other network boot loaders.

‘pxegrub’ In GRUB 2, images for PXE network booting are now constructed using
‘pxeboot.img’ and ‘core.img’, making sure that the core image contains the
‘pxe’ and ‘pxecmd’ modules. See Chapter 8 [Network|, page 41.

Chapter 12: Core image size limitation 49

12 Core image size limitation

Heavily limited platforms:

i386-pc (normal and PXE): the core image size (compressed) is limited by 458240 bytes.
kernel.img (.text + .data + .bss, uncompressed) is limited by 392704 bytes. module size
(uncompressed) + kernel.img (.text + .data, uncompressed) is limited by the size of
contiguous chunk at 1M address.

sparc64-ieee1275: kernel.img (.text + .data + .bss) + modules + 256K (stack) + 2M
(heap) is limited by space available at 0x4400. On most platforms it’s just 3 or 4M
since ieeel275 maps only so much.

i386-ieeel275: kernel.img (.text + .data + .bss) + modules is limited by memory available
at 0x10000, at most 596K

Lightly limited platforms:
*_xen: limited only by adress space and RAM size.

i386-gemu: kernel.img (.text + .data + .bss) is limited by 392704 bytes. (core.img would
be limited by ROM size but it’s unlimited on gemu

All EFI platforms: limited by contiguous RAM size and possibly firmware bugs

Coreboot and multiboot. kernel.img (.text + .data + .bss) is limited by 392704 bytes.
module size is limited by the size of contiguous chunk at 1M address.

mipsel-loongson (ELF), mips(el)-gemu_mips (ELF): if uncompressed: kernel.img (.text
+ .data) + modules is limited by the space from 80200000 forward if compressed: ker-
nel.img (.text + .data, uncompressed) + modules (uncompressed) + (modules + ker-
nel.img (.text + .data)) (compressed) + decompressor is limited by the space from

80200000 forward

mipsel-loongson (Flash), mips(el)-gemu_mips (Flash): kernel.img (.text + .data) + mod-
ules is limited by the space from 80200000 forward core.img (final) is limited by flash
size (512K on yeeloong and fulooong)

mips-arc: if uncompressed: kernel.img (.text + .data) is limited by the space from
8bd00000 forward modules + dummy decompressor is limited by the space from
8bd00000 backward if compressed: kernel.img (.text + .data, uncompressed) is limited
by the space from 8bd00000 forward modules (uncompressed) + (modules + kernel.img
(.text + .data)) (compressed, aligned to 1M) + 1M (decompressor + scratch space) is
limited by the space from 8bd00000 backward

powerpc-ieeel1275: kernel.img (.text + .data + .bss) + modules is limited by space avail-
able at 0x200000

Chapter 13: Filesystem syntax and semantics 51

13 Filesystem syntax and semantics

GRUB uses a special syntax for specifying disk drives which can be accessed by BIOS.
Because of BIOS limitations, GRUB cannot distinguish between IDE, ESDI, SCSI, or others.
You must know yourself which BIOS device is equivalent to which OS device. Normally, that
will be clear if you see the files in a device or use the command search (see Section 16.3.64
[search], page 77).

13.1 How to specify devices

The device syntax is like this:
(device [, partmap-namel part-numl [, partmap-name2part-num2[,...]1]1])

‘[1’ means the parameter is optional. device depends on the disk driver in use. BIOS
and EFI disks use either ‘fd’ or ‘hd’ followed by a digit, like ‘fd0’, or ‘cd’. AHCI, PATA
(ata), crypto, USB use the name of driver followed by a number. Memdisk and host are
limited to one disk and so it’s refered just by driver name. RAID (md), ofdisk (ieee1275 and
nand), LVM (Ilvm), LDM, virtio (vdsk) and arcdisk (arc) use intrinsic name of disk prefixed
by driver name. Additionally just “nand” refers to the disk aliased as “nand”. Conflicts
are solved by suffixing a number if necessarry. Commas need to be escaped. Loopback
uses whatever name specified to loopback command. Hostdisk uses names specified in
device.map as long as it’s of the form [fhc]d[0-9]* or hostdisk/<OS DEVICE>. For crypto
and RAID (md) additionally you can use the syntax <driver name>uuid/<uuid>. For LVM
additionally you can use the syntax lvmid/<volume-group-uuid>/<volume-uuid>.

(£40)

(hd0)

(cd)

(ahciO)

(ata0)

(crypto0)

(usb0)
(cryptouuid/123456789abcdef0123456789abcdef0)
(mduuid/123456789abcdef0123456789abcdef0)
(lvm/system-root)
(1vmid/F1ikgD-2RES-306G-i19M-7iwa-4NKW-EbV1NV/eLGuCQ-L4Ka-XUgR-sjtJ-ffch-bajr-fCNfz5)
(md/myraid)

(md/0)

(ieeel1275/disk?2)
(ieeel1275//pci@1f\,0/ide@d/disk02)

(nand)

(memdisk)

(host)

(myloop)

(hostdisk//dev/sda)

part-num represents the partition number of device, starting from one. partname is

optional but is recommended since disk may have several top-level partmaps. Specifying
third and later component you can access to subpartitions.

52 GNU GRUB Manual 2.02

The syntax ‘(hd0)’ represents using the entire disk (or the MBR when installing
GRUB), while the syntax ‘(hd0,1)’ represents using the first partition of the disk (or the
boot sector of the partition when installing GRUB).

(hd0,msdos1)
(hd0,msdos1,msdos5)
(hd0,msdos1,bsd3)
(hdO,netbsd1)
(hd0,gpt1)
(hdo,1,3)

If you enabled the network support, the special drives (protocol [,server]) are
also available. Supported protocols are ‘http’ and ‘tftp’. If server is omitted, value of
environment variable ‘net_default_server’ is used. Before using the network drive, you
must initialize the network. See Chapter 8 [Network], page 41, for more information.

If you boot GRUB from a CD-ROM, ‘(cd)’ is available. See Section 4.2 [Making a
GRUB bootable CD-ROM], page 12, for details.

13.2 How to specify files
There are two ways to specify files, by absolute file name and by block list.

An absolute file name resembles a Unix absolute file name, using ‘/’ for the directory
separator (not ‘\’ as in DOS). One example is ‘(hd0, 1) /boot/grub/grub.cfg’. This means
the file ‘/boot/grub/grub.cfg’ in the first partition of the first hard disk. If you omit the
device name in an absolute file name, GRUB uses GRUB’s root device implicitly. So
if you set the root device to, say, ‘(hd1,1)’ by the command ‘set root=(hd1,1)’ (see
Section 16.3.66 [set], page 80), then /boot/kernel is the same as (hd1,1)/boot/kernel.

On ZFS filesystem the first path component must be volume‘@’[snapshot]. So
‘/rootvol@snap-129/boot/grub/grub.cfg’ refers to file ‘/boot/grub/grub.cfg’ in
snapshot of volume ‘rootvol’ with name ‘snap-129’. Trailing ‘@ after volume name is
mandatory even if snapshot name is omitted.

13.3 How to specify block lists

A block list is used for specifying a file that doesn’t appear in the filesystem, like a chain-
loader. The syntax is [offset]+lengthl, [offset]+length].... Here is an example:
0+100,200+1,300+300
This represents that GRUB should read blocks 0 through 99, block 200, and blocks
300 through 599. If you omit an offset, then GRUB assumes the offset is zero.

Like the file name syntax (see Section 13.2 [File name syntax], page 52), if a blocklist
does not contain a device name, then GRUB uses GRUB’s root device. So (hd0,2)+1 is
the same as +1 when the root device is ‘(hd0,2)’.

Chapter 14: GRUB’s user interface 53

14 GRUB'’s user interface

GRUB has both a simple menu interface for choosing preset entries from a configuration
file, and a highly flexible command-line for performing any desired combination of boot
commands.

GRUB looks for its configuration file as soon as it is loaded. If one is found, then the
full menu interface is activated using whatever entries were found in the file. If you choose
the command-line menu option, or if the configuration file was not found, then GRUB drops
to the command-line interface.

14.1 The flexible command-line interface

The command-line interface provides a prompt and after it an editable text area much like a
command-line in Unix or DOS. Each command is immediately executed after it is entered®.
The commands (see Section 16.3 [Command-line and menu entry commands|, page 65) are
a subset of those available in the configuration file, used with exactly the same syntax.

Cursor movement and editing of the text on the line can be done via a subset of the
functions available in the Bash shell:
C-F
PC RIGHT KEY
Move forward one character.

C-B
PC LEFT KEY
Move back one character.
C-A
HOME Move to the start of the line.
C-E
END Move the the end of the line.
C-D
DEL Delete the character underneath the cursor.
C-H
BS Delete the character to the left of the cursor.
C-K Kill the text from the current cursor position to the end of the line.
C-U Kill backward from the cursor to the beginning of the line.
C-Y Yank the killed text back into the buffer at the cursor.
C-P
PC UP KEY
Move up through the history list.
C-N

PC DOWN KEY
Move down through the history list.

! However, this behavior will be changed in the future version, in a user-invisible way.

54 GNU GRUB Manual 2.02

When typing commands interactively, if the cursor is within or before the first word
in the command-line, pressing the TAB key (or C-I) will display a listing of the available
commands, and if the cursor is after the first word, the TAB will provide a completion
listing of disks, partitions, and file names depending on the context. Note that to obtain a
list of drives, one must open a parenthesis, as root (.

Note that you cannot use the completion functionality in the TF'TP filesystem. This
is because TFTP doesn’t support file name listing for the security.

14.2 The simple menu interface

The menu interface is quite easy to use. Its commands are both reasonably intuitive and
described on screen.

Basically, the menu interface provides a list of boot entries to the user to choose
from. Use the arrow keys to select the entry of choice, then press RET to run it. An
optional timeout is available to boot the default entry (the first one if not set), which is
aborted by pressing any key.

Commands are available to enter a bare command-line by pressing C (which operates

exactly like the non-config-file version of GRUB, but allows one to return to the menu if
desired by pressing ESC) or to edit any of the boot entries by pressing E.

If you protect the menu interface with a password (see Chapter 18 [Security],
page 91), all you can do is choose an entry by pressing RET, or press P to enter the
password.

14.3 Editing a menu entry
The menu entry editor looks much like the main menu interface, but the lines in the menu
are individual commands in the selected entry instead of entry names.

If an ESC is pressed in the editor, it aborts all the changes made to the configuration
entry and returns to the main menu interface.

Each line in the menu entry can be edited freely, and you can add new lines by
pressing RET at the end of a line. To boot the edited entry, press CTRL-X.

Although GRUB unfortunately does not support undo, you can do almost the same
thing by just returning to the main menu using ESC.

Chapter 15: GRUB environment variables 55

15 GRUB environment variables

GRUB supports environment variables which are rather like those offered by all Unix-
like systems. Environment variables have a name, which is unique and is usually a short
identifier, and a value, which is an arbitrary string of characters. They may be set (see
Section 16.3.66 [set], page 80), unset (see Section 16.3.75 [unset], page 83), or looked up
(see Section 6.2 [Shell-like scripting], page 24) by name.

A number of environment variables have special meanings to various parts of GRUB.
Others may be used freely in GRUB configuration files.

15.1 Special environment variables

These variables have special meaning to GRUB.

15.1.1 biosnum

When chain-loading another boot loader (see Section 5.1.2 [Chain-loading], page 15),
GRUB may need to know what BIOS drive number corresponds to the root device (see
Section 15.1.40 [root], page 61) so that it can set up registers properly. If the biosnum
variable is set, it overrides GRUB’s own means of guessing this.

For an alternative approach which also changes BIOS drive mappings for the chain-
loaded system, see Section 16.3.23 [drivemap]|, page 69.

15.1.2 check_signatures

This variable controls whether GRUB enforces digital signature validation on loaded files.
See Section 18.2 [Using digital signatures|, page 92.

15.1.3 chosen

When executing a menu entry, GRUB sets the chosen variable to the title of the entry being
executed.

If the menu entry is in one or more submenus, then chosen is set to the titles of each
of the submenus starting from the top level followed by the title of the menu entry itself,
separated by ‘>’.

15.1.4 cmdpath

The location from which ‘core.img’ was loaded as an absolute directory name (see
Section 13.2 [File name syntax], page 52). This is set by GRUB at startup based on
information returned by platform firmware. Not every platform provides this information
and some may return only device without path name.

15.1.5 color_highlight

This variable contains the “highlight” foreground and background terminal colors, separated
by a slash (/7). Setting this variable changes those colors. For the available color names,
see Section 15.1.6 [color_normal], page 56.

The default is ‘black/light-gray’.

56 GNU GRUB Manual 2.02

15.1.6 color_normal

This variable contains the “normal” foreground and background terminal colors, separated
by a slash (‘/?). Setting this variable changes those colors. Each color must be a name from
the following list:

e Dblack

e blue

e green

e cyan

e red

e magenta
e brown

e light-gray
e dark-gray
e light-blue
e light-green
e light-cyan
e light-red
e light-magenta
e yellow

e white

The default is ‘light-gray/black’.

The color support support varies from terminal to terminal.

‘morse’ has no color support at all.

‘mda_text’ color support is limited to highlighting by black/white reversal.

‘console’ on ARC, EMU and IEEE1275, ‘serial_x*’ and ‘spkmodem’ are governed by
terminfo and support only 8 colors if in modes ‘vt100-color’ (default for console on emu),
‘arc’ (default for console on ARC), ‘ieee1275’ (default for console on IEEE1275). When
in mode ‘vt100’ then the color support is limited to highlighting by black/white reversal.
When in mode ‘dumb’ there is no color support.

When console supports no colors this setting is ignored. When console supports 8
colors, then the colors from the second half of the previous list are mapped to the matching
colors of first half.

‘console’ on EFI and BIOS and ‘vga_text’ support all 16 colors.

‘gfxterm’ supports all 16 colors and would be theoretically extendable to support
whole rgb24 palette but currently there is no compelling reason to go beyond the current
16 colors.

15.1.7 config_directory

This variable is automatically set by GRUB to the directory part of current configuration
file name (see Section 15.1.8 [config_file|, page 57).

Chapter 15: GRUB environment variables 57

15.1.8 config_file

This variable is automatically set by GRUB to the name of configuration file that is being
processed by commands configfile (see Section 16.3.16 [configfile], page 68) or normal
(see Section 16.3.51 [normal|, page 75). It is restored to the previous value when command
completes.

15.1.9 debug

This variable may be set to enable debugging output from various components of GRUB.
The value is a list of debug facility names separated by whitespace or *,’, or ‘all’ to enable
all available debugging output. The facility names are the first argument to grub_dprintf.
Consult source for more details.

15.1.10 default

If this variable is set, it identifies a menu entry that should be selected by default, possibly
after a timeout (see Section 15.1.43 [timeout], page 61). The entry may be identified by
number (starting from 0 at each level of the hierarchy), by title, or by id.

For example, if you have:

menuentry ’Example GNU/Linux distribution’ --class gnu-linux --id example-gnu-linux {

3

then you can make this the default using;:
default=example-gnu-linux

If the entry is in a submenu, then it must be identified using the number, title, or id
of each of the submenus starting from the top level, followed by the number, title, or id of
the menu entry itself, with each element separated by ‘>’. For example, take the following
menu structure:

GNU/Hurd --id gnu-hurd
Standard Boot --id=gnu-hurd-std
Rescue shell --id=gnu-hurd-rescue
Other platforms --id=other
Minix --id=minix
Version 3.4.0 --id=minix-3.4.0
Version 3.3.0 --id=minix-3.3.0
GRUB Invaders --id=grub-invaders

The more recent release of Minix would then be identified as ‘Other
platforms>Minix>Version 3.4.0’, or as ‘1>0>0’, or as ‘other>minix>minix-3.4.0".

This variable is often set by ‘GRUB_DEFAULT’ (see Section 6.1 [Simple configuration],
page 19), grub-set-default, or grub-reboot.

15.1.11 fallback

If this variable is set, it identifies a menu entry that should be selected if the default
menu entry fails to boot. Entries are identified in the same way as for ‘default’ (see
Section 15.1.10 [default], page 57).

58 GNU GRUB Manual 2.02

15.1.12 gfxmode

If this variable is set, it sets the resolution used on the ‘gfxterm’ graphical terminal. Note
that you can only use modes which your graphics card supports via VESA BIOS Extensions
(VBE), so for example native LCD panel resolutions may not be available. The default is
‘auto’, which selects a platform-specific default that should look reasonable. Supported
modes can be listed by ‘videoinfo’ command in GRUB.

The resolution may be specified as a sequence of one or more modes, separated by
[]

commas (‘,”) or semicolons (;’); each will be tried in turn until one is found. Each mode
should be either ‘auto’, ‘widthxheight’, or ‘widthxheightxdepth’.

15.1.13 gfxpayload

If this variable is set, it controls the video mode in which the Linux kernel starts up,
replacing the ‘vga=" boot option (see Section 16.3.37 [linux|, page 72). It may be set to
‘text’ to force the Linux kernel to boot in normal text mode, ‘keep’ to preserve the graphics
mode set using ‘gfxmode’, or any of the permitted values for ‘gfxmode’ to set a particular
graphics mode (see Section 15.1.12 [gfxmode|, page 58).

Depending on your kernel, your distribution, your graphics card, and the phase of
the moon, note that using this option may cause GNU/Linux to suffer from various display
problems, particularly during the early part of the boot sequence. If you have problems,
set this variable to ‘text’ and GRUB will tell Linux to boot in normal text mode.

The default is platform-specific. On platforms with a native text mode (such as PC
BIOS platforms), the default is ‘text’. Otherwise the default may be ‘auto’ or a specific
video mode.

This variable is often set by ‘GRUB_GFXPAYLOAD_LINUX’ (see Section 6.1 [Simple con-
figuration|, page 19).

15.1.14 gfxterm_font

If this variable is set, it names a font to use for text on the ‘gfxterm’ graphical terminal.
Otherwise, ‘gfxterm’ may use any available font.

15.1.15 grub_cpu

In normal mode (see Section 16.3.51 [normal], page 75), GRUB sets the ‘grub_cpu’ variable
to the CPU type for which GRUB was built (e.g. ‘1386’ or ‘powerpc’).

15.1.16 grub_platform

In normal mode (see Section 16.3.51 [normal|, page 75), GRUB sets the ‘grub_platform’
variable to the platform for which GRUB was built (e.g. ‘pc’ or ‘efi’).

15.1.17 icondir

If this variable is set, it names a directory in which the GRUB graphical menu should look
for icons after looking in the theme’s ‘icons’ directory. See Chapter 7 [Theme file format],
page 31.

Chapter 15: GRUB environment variables 59

15.1.18 lang

If this variable is set, it names the language code that the gettext command (see
Section 16.3.28 [gettext|, page 70) uses to translate strings. For example, French would be
named as ‘fr’, and Simplified Chinese as ‘zh_CN’.

grub-mkconfig (see Section 6.1 [Simple configuration], page 19) will try to set a
reasonable default for this variable based on the system locale.

15.1.19 locale_dir

If this variable is set, it names the directory where translation files may be found (see
Section 16.3.28 [gettext], page 70), usually ‘/boot/grub/locale’. Otherwise, internation-
alization is disabled.

grub-mkconfig (see Section 6.1 [Simple configuration], page 19) will set a reason-
able default for this variable if internationalization is needed and any translation files are
available.

15.1.20 menu_color_highlight

This variable contains the foreground and background colors to be used for the highlighted
menu entry, separated by a slash (‘/?). Setting this variable changes those colors. For the
available color names, see Section 15.1.6 [color_normal|, page 56.

The default is the value of ‘color_highlight’ (see Section 15.1.5 [color_highlight],
page 55).
15.1.21 menu_color_normal

This variable contains the foreground and background colors to be used for non-highlighted
menu entries, separated by a slash (/7). Setting this variable changes those colors. For the
available color names, see Section 15.1.6 [color_normal], page 56.

The default is the value of ‘color_normal’ (see Section 15.1.6 [color_normal],
page 56).
15.1.22 net_<interface>_boot_file
See Chapter 8 [Network], page 41.

15.1.23 net_<interface>_dhcp_server_name
See Chapter 8 [Network], page 41.

15.1.24 net_<interface>_domain
See Chapter 8 [Network], page 41.

15.1.25 net_<interface>_extensionspath
See Chapter 8 [Network], page 41.

15.1.26 net_<interface>_hostname
See Chapter 8 [Network], page 41.

60

15.1.27 net_<interface>_ip
See Chapter 8 [Network], page 41.

15.1.28 net_<interface>_mac
See Chapter 8 [Network], page 41.

15.1.29 net_<interface>_next_server
See Chapter 8 [Network], page 41.

15.1.30 net_<interface>_rootpath
See Chapter 8 [Network], page 41.

15.1.31 net_default_interface
See Chapter 8 [Network], page 41.

15.1.32 net_default_ip
See Chapter 8 [Network], page 41.

15.1.33 net_default_mac
See Chapter 8 [Network], page 41.

15.1.34 net_default_server
See Chapter 8 [Network], page 41.

15.1.35 pager

GNU GRUB Manual 2.02

If set to ‘1’, pause output after each screenful and wait for keyboard input. The default is

not to pause output.

15.1.36 prefix

The location of the ‘/boot/grub’ directory as an absolute file name (see Section 13.2 [File
name syntax|, page 52). This is normally set by GRUB at startup based on information
provided by grub-install. GRUB modules are dynamically loaded from this directory, so
it must be set correctly in order for many parts of GRUB to work.

15.1.37 pxe_blksize
See Chapter 8 [Network], page 41.

15.1.38 pxe_default_gateway
See Chapter 8 [Network], page 41.

15.1.39 pxe_default_server
See Chapter 8 [Network], page 41.

Chapter 15: GRUB environment variables 61

15.1.40 root

The root device name (see Section 13.1 [Device syntax|, page 51). Any file names that do
not specify an explicit device name are read from this device. The default is normally set
by GRUB at startup based on the value of ‘prefix’ (see Section 15.1.36 [prefix], page 60).
For example, if GRUB was installed to the first partition of the first hard disk, then
‘prefix’ might be set to ‘(hd0,msdos1)/boot/grub’ and ‘root’ to ‘hd0,msdosl’.

15.1.41 superusers

This variable may be set to a list of superuser names to enable authentication support. See
Chapter 18 [Security], page 91.

15.1.42 theme

This variable may be set to a directory containing a GRUB graphical menu theme. See
Chapter 7 [Theme file format], page 31.

This variable is often set by ‘GRUB_THEME’ (see Section 6.1 [Simple configuration],
page 19).

15.1.43 timeout

If this variable is set, it specifies the time in seconds to wait for keyboard input before boot-
ing the default menu entry. A timeout of ‘0’ means to boot the default entry immediately
without displaying the menu; a timeout of ‘=1’ (or unset) means to wait indefinitely.

If ‘timeout_style’ (see Section 15.1.44 [timeout_style], page 61) is set to ‘countdown’
or ‘hidden’, the timeout is instead counted before the menu is displayed.

This variable is often set by ‘GRUB_TIMEOUT’ (see Section 6.1 [Simple configuration],
page 19).

15.1.44 timeout_style

This variable may be set to ‘menu’, ‘countdown’, or ‘hidden’ to control the way in which the
timeout (see Section 15.1.43 [timeout], page 61) interacts with displaying the menu. See the
documentation of ‘GRUB_TIMEOUT_STYLE’ (see Section 6.1 [Simple configuration], page 19)
for details.

15.2 The GRUB environment block

It is often useful to be able to remember a small amount of information from one boot to the
next. For example, you might want to set the default menu entry based on what was selected
the last time. GRUB deliberately does not implement support for writing files in order to
minimise the possibility of the boot loader being responsible for file system corruption, so
a GRUB configuration file cannot just create a file in the ordinary way. However, GRUB
provides an “environment block” which can be used to save a small amount of state.

The environment block is a preallocated 1024-byte file, which normally lives in
‘/boot/grub/grubenv’ (although you should not assume this). At boot time, the load_
env command (see Section 16.3.41 [load_env], page 73) loads environment variables from
it, and the save_env (see Section 16.3.63 [save_env], page 77) command saves environment
variables to it. From a running system, the grub-editenv utility can be used to edit the
environment block.

62 GNU GRUB Manual 2.02

For safety reasons, this storage is only available when installed on a plain disk (no
LVM or RAID), using a non-checksumming filesystem (no ZFS), and using BIOS or EFI
functions (no ATA, USB or IEEE1275).

grub-mkconfig uses this facility to implement ‘GRUB_SAVEDEFAULT’ (see Section 6.1
[Simple configuration], page 19).

Chapter 16: The list of available commands 63

16 The list of available commands

In this chapter, we list all commands that are available in GRUB.

Commands belong to different groups. A few can only be used in the global section
of the configuration file (or “menu”); most of them can be entered on the command-line
and can be used either anywhere in the menu or specifically in the menu entries.

In rescue mode, only the insmod (see Section 16.3.35 [insmod], page 72), 1s (see
Section 16.3.44 [ls|, page 74), set (see Section 16.3.66 [set], page 80), and unset (see
Section 16.3.75 [unset|, page 83) commands are normally available. If you end up in rescue
mode and do not know what to do, then see Section 22.1 [GRUB only offers a rescue shell],
page 105.

16.1 The list of commands for the menu only

The semantics used in parsing the configuration file are the following;:
e The files must be in plain-text format.
e ‘#’ at the beginning of a line in a configuration file means it is only a comment.
e Options are separated by spaces.
e All numbers can be either decimal or hexadecimal. A hexadecimal number must be
preceded by ‘0x’, and is case-insensitive.

These commands can only be used in the menu:
16.1.1 menuentry

menuentry title [--class=class’...] [-users=users] [Command]
[‘--unrestricted’] [-~hotkey=key’ [--id=id] [arg ...] { command;

This defines a GRUB menu entry named title. When this entry is selected from the
menu, GRUB will set the chosen environment variable to value of ‘--id’ if ‘--id’ is
given, execute the list of commands given within braces, and if the last command
in the list returned successfully and a kernel was loaded it will execute the boot
command.

The ‘--class’ option may be used any number of times to group menu entries into
classes. Menu themes may display different classes using different styles.

The ‘--users’ option grants specific users access to specific menu entries. See
Chapter 18 [Security], page 91.

The ‘--unrestricted’ option grants all users access to specific menu entries. See
Chapter 18 [Security], page 91.

The ‘--hotkey’ option associates a hotkey with a menu entry. key may be a single
letter, or one of the aliases ‘backspace’, ‘tab’, or ‘delete’.

The ‘--id’ may be used to associate unique identifier with a menu entry. id is string
of ASCII aphanumeric characters, underscore and hyphen and should not start with
a digit.

All other arguments including title are passed as positional parameters when list of
commands is executed with title always assigned to $1.

64 GNU GRUB Manual 2.02

16.1.2 submenu

submenu title [‘--class=class’...| [‘--users=users] [Command]
[~-unrestricted] [‘~~hotkey=key [--id=id] { menu entries ... }
This defines a submenu. An entry called title will be added to the menu; when that
entry is selected, a new menu will be displayed showing all the entries within this
submenu.

All options are the same as in the menuentry command (see Section 16.1.1 [menuen-
try|, page 63).

16.2 The list of general commands

Commands usable anywhere in the menu and in the command-line.
16.2.1 serial

serial [“--unit=unit] [*--port=port’ [‘--speed=speed] [Command]
[‘--word=word] [~-parity=parity’] [‘~-stop=stop]

Initialize a serial device. unit is a number in the range 0-3 specifying which serial
port to use; default is 0, which corresponds to the port often called COMI1. port is
the I/O port where the UART is to be found; if specified it takes precedence over
unit. speed is the transmission speed; default is 9600. word and stop are the number
of data bits and stop bits. Data bits must be in the range 5-8 and stop bits must be
1 or 2. Default is 8 data bits and one stop bit. parity is one of ‘no’; ‘odd’, ‘even’ and
defaults to ‘no’.

The serial port is not used as a communication channel unless the terminal_input
or terminal_output command is used (see Section 16.2.2 [terminal_input], page 64,
see Section 16.2.3 [terminal_output], page 64).

See also Chapter 9 [Serial terminal], page 43.
16.2.2 terminal_input

terminal_input [‘--append’|‘--remove| [terminall] [terminal?] ... [Command]
List or select an input terminal.

With no arguments, list the active and available input terminals.

With ‘--append’, add the named terminals to the list of active input terminals; any
of these may be used to provide input to GRUB.

With ‘--remove’, remove the named terminals from the active list.

With no options but a list of terminal names, make only the listed terminal names
active.

16.2.3 terminal_output

terminal_output [--append’| ‘--remove’ [terminall] [terminal2] ... [Command]
List or select an output terminal.

With no arguments, list the active and available output terminals.

Chapter 16: The list of available commands 65

With ‘--append’, add the named terminals to the list of active output terminals; all
of these will receive output from GRUB.
With ‘--remove’, remove the named terminals from the active list.

With no options but a list of terminal names, make only the listed terminal names
active.

16.2.4 terminfo

terminfo [-al-ul-v] [term] [Command]
Define the capabilities of your terminal by giving the name of an entry in the terminfo
database, which should correspond roughly to a ‘TERM’ environment variable in Unix.
The currently available terminal types are ‘vt100’, ‘vt100-color’, ‘ieeel275’, and
‘dumb’. If you need other terminal types, please contact us to discuss the best way to
include support for these in GRUB.
The ‘-a’ (‘--ascii’), ‘-u’ (‘--utf8’), and ‘-v’ (‘--visual-utf8’) options control
how non-ASCII text is displayed. ‘-a’ specifies an ASCII-only terminal; ‘-u’ spec-
ifies logically-ordered UTF-8; and ‘-v’ specifies "visually-ordered UTF-8" (in other
words, arranged such that a terminal emulator without bidirectional text support will
display right-to-left text in the proper order; this is not really proper UTF-8, but a
workaround).

If no option or terminal type is specified, the current terminal type is printed.

16.3 The list of command-line and menu entry commands

These commands are usable in the command-line and in menu entries. If you forget a
command, you can run the command help (see Section 16.3.32 [help], page 71).

16.3.1 |

[expression | [Command]|
Alias for test expression (see Section 16.3.72 [test], page 81).

16.3.2 acpi

acpi [-1']*-2] [Command]
[‘--exclude=tablel,...’'| ‘-~~load-only=tablel, ...’ [-—oemid=id]
[‘--oemtable=table] [~-oemtablerev=rev]
[‘--oemtablecreator=creator’] [‘--oemtablecreatorrev=rev]

[‘~-no-ebda’ filename . ..

Modern BIOS systems normally implement the Advanced Configuration and Power
Interface (ACPI), and define various tables that describe the interface between an
ACPI-compliant operating system and the firmware. In some cases, the tables pro-
vided by default only work well with certain operating systems, and it may be neces-
sary to replace some of them.

Normally, this command will replace the Root System Description Pointer (RSDP) in
the Extended BIOS Data Area to point to the new tables. If the ‘-——no-ebda’ option
is used, the new tables will be known only to GRUB, but may be used by GRUB’s
EFT emulation.

66 GNU GRUB Manual 2.02

16.3.3 authenticate

authenticate [userlist] [Command]
Check whether user is in userlist or listed in the value of variable ‘superusers’. See
see Section 15.1.41 [superusers|, page 61 for valid user list format. If ‘superusers’ is
empty, this command returns true. See Chapter 18 [Security], page 91.

16.3.4 background_color

background_color color [Command]|
Set background color for active terminal. For valid color specifications see see
Chapter 7 [Colors|, page 31. Background color can be changed only when using
‘gfxterm’ for terminal output.
This command sets color of empty areas without text. Text background color is con-
trolled by environment variables color_normal, color_highlight, menu_color_normal,
menu_color_highlight. See Section 15.1 [Special environment variables|, page 55.

16.3.5 background_image

background_image [[‘--mode’ ‘stretch’| ‘normal] file| [Command]
Load background image for active terminal from file. Image is stretched to fill up
entire screen unless option ‘--mode’ ‘normal’ is given. Without arguments remove
currently loaded background image. Background image can be changed only when
using ‘gfxterm’ for terminal output.

16.3.6 badram

badram addr,mask[,addr,mask...] [Command]|
Filter out bad RAM.

This command notifies the memory manager that specified regions of RAM ought to
be filtered out (usually, because they’'re damaged). This remains in effect after a payload
kernel has been loaded by GRUB, as long as the loaded kernel obtains its memory map
from GRUB. Kernels that support this include Linux, GNU Mach, the kernel of FreeBSD
and Multiboot kernels in general.

Syntax is the same as provided by the Memtest86+ utility: a list of address/mask
pairs. Given a page-aligned address and a base address / mask pair, if all the bits of the
page-aligned address that are enabled by the mask match with the base address, it means
this page is to be filtered. This syntax makes it easy to represent patterns that are often
result of memory damage, due to physical distribution of memory cells.

16.3.7 blocklist

blocklist file [Command]|
Print a block list (see Section 13.3 [Block list syntax], page 52) for file.

16.3.8 boot

boot [Command]
Boot the OS or chain-loader which has been loaded. Only necessary if running the
fully interactive command-line (it is implicit at the end of a menu entry).

http://www.memtest.org/

Chapter 16: The list of available commands 67

16.3.9 cat

cat [--dos] file [Command]
Display the contents of the file file. This command may be useful to remind you of
your OS’s root partition:

grub> cat /etc/fstab

If the ‘--dos’ option is used, then carriage return / new line pairs will be displayed
as a simple new line. Otherwise, the carriage return will be displayed as a control
character (‘<d>’) to make it easier to see when boot problems are caused by a file
formatted using DOS-style line endings.

16.3.10 chainloader

chainloader [--force] file [Command]
Load file as a chain-loader. Like any other file loaded by the filesystem code, it can
use the blocklist notation (see Section 13.3 [Block list syntax|, page 52) to grab the
first sector of the current partition with ‘+1’. If you specify the option ‘--force’, then
load file forcibly, whether it has a correct signature or not. This is required when you
want to load a defective boot loader, such as SCO UnixWare 7.1.

16.3.11 clear

clear [Command]|
Clear the screen.

16.3.12 cmosclean

cmosclean byte:bit [Command]|
Clear value of bit in CMOS at location byte:bit. This command is available only on
platforms that support CMOS.

16.3.13 cmosdump

CMOS contents [Dump)]
Dump full CMOS contents as hexadecimal values. This command is available only
on platforms that support CMOS.

16.3.14 cmostest

cmostest byte:bit [Command]
Test value of bit in CMOS at location byte:bit. Exit status is zero if bit is set, non
zero otherwise. This command is available only on platforms that support CMOS.

16.3.15 cmp

cmp filel file2 [Command]|
Compare the file filel with the file file2. If they differ in size, print the sizes like this:

Differ in size: 0x1234 [foo], 0x4321 [bar]
If the sizes are equal but the bytes at an offset differ, then print the bytes like this:

68 GNU GRUB Manual 2.02

Differ at the offset 777: Oxbe [foo], Oxef [bar]
If they are completely identical, nothing will be printed.

16.3.16 configfile

configfile file [Command]
Load file as a configuration file. If file defines any menu entries, then show a menu
containing them immediately. Any environment variable changes made by the com-
mands in file will not be preserved after configfile returns.

16.3.17 cpuid

cpuid [-] [-p] [Command]
Check for CPU features. This command is only available on x86 systems.

With the ‘-1’ option, return true if the CPU supports long mode (64-bit).

With the ‘-p’ option, return true if the CPU supports Physical Address Extension
(PAE).

If invoked without options, this command currently behaves as if it had been invoked
with ‘=1’. This may change in the future.

16.3.18 crc

crc arg ... [Command]
Alias for hashsum --hash crc32 arg See command hashsunm (see Section 16.3.31
[hashsum]|, page 71) for full description.

16.3.19 cryptomount

cryptomount devicel| ‘-u’ uuid| ‘-a’| ‘-b’ [Command|
Setup access to encrypted device. If necessary, passphrase is requested interactively.
Option device configures specific grub device (see Chapter 2 [Naming convention],
page 7); option ‘-u’ uuid configures device with specified uuid; option ‘-a’ configures
all detected encrypted devices; option ‘-b’ configures all geli containers that have
boot flag set.

GRUB suports devices encrypted using LUKS and geli. Note that necessary modules
(luks and geli) have to be loaded manually before this command can be used.

16.3.20 date

date [[year-|month-day] [hour:minute|:second]] [Command]
With no arguments, print the current date and time.

Otherwise, take the current date and time, change any elements specified as argu-
ments, and set the result as the new date and time. For example, ‘date 01-01" will
set the current month and day to January 1, but leave the year, hour, minute, and
second unchanged.

Chapter 16: The list of available commands 69

16.3.21 linux

devicetree file [Command]
Load a device tree blob (.dtb) from a filesystem, for later use by a Linux kernel. Does
not perform merging with any device tree supplied by firmware, but rather replaces
it completely. Section 5.3.2 [GNU/Linux], page 16.

16.3.22 distrust

distrust pubkey_id [Command]
Remove public key pubkey_id from GRUB’s keyring of trusted keys. pubkey_id is
the last four bytes (eight hexadecimal digits) of the GPG v4 key id, which is also
the output of list_trusted (see Section 16.3.40 [list_trusted]|, page 73). Outside
of GRUB, the key id can be obtained using gpg --fingerprint). These keys are
used to validate signatures when environment variable check_signatures is set to
enforce (see Section 15.1.2 [check_signatures], page 55), and by some invocations of
verify_detached (see Section 16.3.77 [verify_detached|, page 83). See Section 18.2
[Using digital signatures|, page 92, for more information.

16.3.23 drivemap

drivemap ‘-1’|‘-r’|[*~s] from_drive to_drive [Command]
Without options, map the drive from_drive to the drive to_drive. This is necessary
when you chain-load some operating systems, such as DOS, if such an OS resides at
a non-first drive. For convenience, any partition suffix on the drive is ignored, so you
can safely use ${root} as a drive specification.
With the ‘-s’ option, perform the reverse mapping as well, swapping the two drives.
With the ‘-1’ option, list the current mappings.
With the ‘-r’ option, reset all mappings to the default values.
For example:

drivemap -s (hd0) (hd1)

16.3.24 echo

echo [*-n’ [-e] string ... [Command]
Display the requested text and, unless the ‘-n’ option is used, a trailing new line. If
there is more than one string, they are separated by spaces in the output. As usual
in GRUB commands, variables may be substituted using ‘${var}’.

The ‘-e’ option enables interpretation of backslash escapes. The following sequences
are recognised:

\\ backslash

\a alert (BEL)

\c suppress trailing new line
\f form feed

\n new line

70 GNU GRUB Manual 2.02

\r carriage return
\t horizontal tab
\v vertical tab

When interpreting backslash escapes, backslash followed by any other character will
print that character.

16.3.25 eval

eval string ... [Command]
Concatenate arguments together using single space as separator and evaluate result
as sequence of GRUB commands.

16.3.26 export

export envvar [Command|
Export the environment variable envvar. Exported variables are visible to subsidiary
configuration files loaded using configfile.

16.3.27 false

false [Command]|
Do nothing, unsuccessfully. This is mainly useful in control constructs such as if and
while (see Section 6.2 [Shell-like scripting], page 24).

16.3.28 gettext

gettext string [Command]|
Translate string into the current language.

The current language code is stored in the ‘lang’ variable in GRUB’s environment
(see Section 15.1.18 [lang], page 59). Translation files in MO format are
read from ‘locale_dir’ (see Section 15.1.19 [locale_dir|, page 59), usually
‘/boot/grub/locale’.

16.3.29 gptsync

gptsync device [partition[+/-[type]]] . . . [Command]
Disks using the GUID Partition Table (GPT) also have a legacy Master Boot Record
(MBR) partition table for compatibility with the BIOS and with older operating
systems. The legacy MBR can only represent a limited subset of GPT partition
entries.

This command populates the legacy MBR with the specified partition entries on
device. Up to three partitions may be used.

type is an MBR partition type code; prefix with ‘0x’ if you want to enter this in
hexadecimal. The separator between partition and type may be ‘+’ to make the
partition active, or ‘=’ to make it inactive; only one partition may be active. If both
the separator and type are omitted, then the partition will be inactive.

Chapter 16: The list of available commands 71

16.3.30 halt

halt ‘--no-apm’ [Command]|
The command halts the computer. If the ‘~-no-apm’ option is specified, no APM
BIOS call is performed. Otherwise, the computer is shut down using APM.

16.3.31 hashsum

3

hashsum ‘--hash’ hash ‘~—~keep-going’ ‘~—uncompress’ ‘-—check’file [Command)|
[--prefix’ dir]lfile . ..

Compute or verify file hashes. Hash type is selected with option ‘--hash’. Sup-

ported hashes are: ‘adler32’, ‘crc64’, ‘crc32’, ‘crc32rfcl1510’, ‘crc24rfc2440’,

‘md4’, ‘md5’, ‘ripemd160’, ‘shal’, ‘sha224’, ‘sha256’, ‘shab12’, ‘sha384’, ‘tiger192’,

‘tiger’, ‘tiger2’, ‘whirlpool’. Option ‘--uncompress’ uncompresses files before

computing hash.

When list of files is given, hash of each file is computed and printed, followed by file
name, each file on a new line.

When option ‘--check’ is given, it points to a file that contains list of hash name
pairs in the same format as used by UNIX md5sum command. Option ‘--prefix’ may
be used to give directory where files are located. Hash verification stops after the first
mismatch was found unless option ‘~-keep-going’ was given. The exit code $7 is set
to 0 if hash verification is successful. If it fails, $7 is set to a nonzero value.

16.3.32 help

help [pattern ...] [Command]|
Display helpful information about builtin commands. If you do not specify pattern,
this command shows short descriptions of all available commands.

If you specify any patterns, it displays longer information about each of the commands
whose names begin with those patterns.

16.3.33 initrd

initrd file [Command]|
Load an initial ramdisk for a Linux kernel image, and set the appropriate param-
eters in the Linux setup area in memory. This may only be used after the linux
command (see Section 16.3.37 [linux], page 72) has been run. See also Section 5.3.2
[GNU/Linux], page 16.

16.3.34 initrd16

initrd16 file [Command]|
Load an initial ramdisk for a Linux kernel image to be booted in 16-bit mode, and
set the appropriate parameters in the Linux setup area in memory. This may only
be used after the 1inux16 command (see Section 16.3.38 [linux16], page 72) has been
run. See also Section 5.3.2 [GNU/Linux]|, page 16.

This command is only available on x86 systems.

72 GNU GRUB Manual 2.02

16.3.35 insmod

insmod module [Command]
Insert the dynamic GRUB module called module.

16.3.36 keystatus

keystatus [*--shift] [*--ctrl] [--alt] [Command]
Return true if the Shift, Control, or Alt modifier keys are held down, as requested by
options. This is useful in scripting, to allow some user control over behaviour without
having to wait for a keypress.

Checking key modifier status is only supported on some platforms. If invoked without
any options, the keystatus command returns true if and only if checking key modifier
status is supported.

16.3.37 linux

linux file ... [Command]
Load a Linux kernel image from file. The rest of the line is passed verbatim as the
kernel command-line. Any initrd must be reloaded after using this command (see
Section 16.3.33 [initrd], page 71).

On x86 systems, the kernel will be booted using the 32-bit boot protocol. Note that
this means that the ‘vga=’ boot option will not work; if you want to set a special video
mode, you will need to use GRUB commands such as ‘set gfxpayload=1024x768’ or
‘set gfxpayload=keep’ (to keep the same mode as used in GRUB) instead. GRUB
can automatically detect some uses of ‘vga=’ and translate them to appropriate set-
tings of ‘gfxpayload’. The 1inux16 command (see Section 16.3.38 [linux16], page 72)
avoids this restriction.

16.3.38 linux16

linux16 file ... [Command]|
Load a Linux kernel image from file in 16-bit mode. The rest of the line is passed
verbatim as the kernel command-line. Any initrd must be reloaded after using this
command (see Section 16.3.34 [initrd16], page 71).

The kernel will be booted using the traditional 16-bit boot protocol. As well as
bypassing problems with ‘vga=" described in Section 16.3.37 [linux|, page 72, this
permits booting some other programs that implement the Linux boot protocol for
the sake of convenience.

This command is only available on x86 systems.

16.3.39 list_env

list_env [*--file’ file] [Command]
List all variables in the environment block file. See Section 15.2 [Environment block],
page 61.

The ‘--file’ option overrides the default location of the environment block.

Chapter 16: The list of available commands 73

16.3.40 list_trusted

list_trusted [Command]
List all public keys trusted by GRUB for validating signatures. The output is in
GPG’s v4 key fingerprint format (i.e., the output of gpg --fingerprint). The least
significant four bytes (last eight hexadecimal digits) can be used as an argument to
distrust (see Section 16.3.22 [distrust]|, page 69). See Section 18.2 [Using digital
signatures|, page 92, for more information about uses for these keys.

16.3.41 load_env

load_env [--file’ file] [*~-skip-sig] [whitelisted_variable_.name| ... [Command]
Load all variables from the environment block file into the environment. See
Section 15.2 [Environment block], page 61.

The ‘--file’ option overrides the default location of the environment block.

The ‘--skip-sig’ option skips signature checking even when the value of environment
variable check_signatures is set to enforce (see Section 15.1.2 [check_signatures],
page 55).

If one or more variable names are provided as arguments, they are interpreted as a
whitelist of variables to load from the environment block file. Variables set in the file
but not present in the whitelist are ignored.

The ‘--skip-sig’ option should be used with care, and should always be used in
concert with a whitelist of acceptable variables whose values should be set. Failure to
employ a carefully constructed whitelist could result in reading a malicious value into
critical environment variables from the file, such as setting check_signatures=no,
modifying prefix to boot from an unexpected location or not at all, etc.

When used with care, ‘--skip-sig’ and the whitelist enable an administrator to

configure a system to boot only signed configurations, but to allow the user to select
from among multiple configurations, and to enable “one-shot” boot attempts and
“savedefault” behavior. See Section 18.2 [Using digital signatures], page 92, for more
information.

16.3.42 loadfont

loadfont file ... [Command]
Load specified font files. Unless absolute pathname is given, file is assumed to be
in directory ‘$prefix/fonts’ with suffix ‘.pf2’ appended. See Chapter 7 [Fonts],
page 31.

16.3.43 loopback

loopback [*-d] device file [Command]
Make the device named device correspond to the contents of the filesystem image in
file. For example:

loopback loopO /path/to/image
1s (loop0)/

With the ‘-d’ option, delete a device previously created using this command.

74 GNU GRUB Manual 2.02

16.3.44 Is

1s [arg ...] [Command]
List devices or files.

With no arguments, print all devices known to GRUB.

If the argument is a device name enclosed in parentheses (see Section 13.1 [Device
syntax|, page 51), then print the name of the filesystem of that device.

If the argument is a directory given as an absolute file name (see Section 13.2 [File
name syntax|, page 52), then list the contents of that directory.

16.3.45 lsfonts

lsfonts [Command|
List loaded fonts.

16.3.46 lIsmod

lsmod [Command]|
Show list of loaded modules.

16.3.47 md5sum

md5sum arg . .. [Command]
Alias for hashsum --hash md5 arg See command hashsum (see Section 16.3.31
[hashsum], page 71) for full description.

16.3.48 module

module [-nounzip| file [arguments] [Command]
Load a module for multiboot kernel image. The rest of the line is passed verbatim as
the module command line.

16.3.49 multiboot

multiboot [-quirk-bad-kludge] [-quirk-modules-after-kernel] file . . . [Command]
Load a multiboot kernel image from file. The rest of the line is passed verbatim as
the kernel command-line. Any module must be reloaded after using this command
(see Section 16.3.48 [module], page 74).

Some kernels have known problems. You need to specify —quirk-* for those. —quirk-
bad-kludge is a problem seen in several products that they include loading kludge
information with invalid data in ELF file. GRUB prior to 0.97 and some custom
builds prefered ELF information while 0.97 and GRUB 2 use kludge. Use this option
to ignore kludge. Known affected systems: old Solaris, SkyOS.

—quirk-modules-after-kernel is needed for kernels which load at relatively high address
e.g. 16MiB mark and can’t cope with modules stuffed between 1MiB mark and
beginning of the kernel. Known afftected systems: VM Ware.

Chapter 16: The list of available commands 75

16.3.50 nativedisk

nativedisk [Command]|
Switch from firmware disk drivers to native ones. Really useful only on platforms
where both firmware and native disk drives are available. Currently i386-pc, i386-efi,
i386-ieeel1275 and x86_64-efi.

16.3.51 normal

normal [file| [Command]
Enter normal mode and display the GRUB menu.

In normal mode, commands, filesystem modules, and cryptography modules are au-
tomatically loaded, and the full GRUB script parser is available. Other modules may
be explicitly loaded using insmod (see Section 16.3.35 [insmod], page 72).

If a file is given, then commands will be read from that file. Otherwise, they will be
read from ‘$prefix/grub.cfg’ if it exists.

normal may be called from within normal mode, creating a nested environment. It
is more usual to use configfile (see Section 16.3.16 [configfile], page 68) for this.

16.3.52 normal_exit

normal_exit [Command|
Exit normal mode (see Section 16.3.51 [normal], page 75). If this instance of normal
mode was not nested within another one, then return to rescue mode.

16.3.53 parttool

parttool partition commands [Command]
Make various modifications to partition table entries.

Each command is either a boolean option, in which case it must be followed with ‘+’
(_

or ‘=7 (with no intervening space) to enable or disable that option, or else it takes a
value in the form ‘command=value’.

Currently, parttool is only useful on DOS partition tables (also known as Master
Boot Record, or MBR). On these partition tables, the following commands are avail-
able:

‘boot’ (boolean)
When enabled, this makes the selected partition be the active (bootable)
partition on its disk, clearing the active flag on all other partitions. This
command is limited to primary partitions.

‘type’ (value)
Change the type of an existing partition. The value must be a number
in the range 0-OxFF (prefix with ‘0x’ to enter it in hexadecimal).

‘hidden’ (boolean)
When enabled, this hides the selected partition by setting the hidden bit
in its partition type code; when disabled, unhides the selected partition by
clearing this bit. This is useful only when booting DOS or Wwindows and

76 GNU GRUB Manual 2.02

multiple primary FAT partitions exist in one disk. See also Section 5.3.4
[DOS/Windows], page 18.

16.3.54 password

password user clear-password [Command]
Define a user named user with password clear-password. See Chapter 18 [Security],
page 91.

16.3.55 password_pbkdf2

password_pbkdf2 user hashed-password [Command]
Define a user named user with password hash hashed-password. Use grub-mkpasswd-
pbkdf2 (see Chapter 25 [Invoking grub-mkpasswd-pbkdf2], page 111) to generate
password hashes. See Chapter 18 [Security], page 91.

16.3.56 play

play file | tempo [pitchl durationl| [pitch2 duration2] . .. [Command]
Plays a tune

If the argument is a file name (see Section 13.2 [File name syntax], page 52), play
the tune recorded in it. The file format is first the tempo as an unsigned 32bit
little-endian number, then pairs of unsigned 16bit little-endian numbers for pitch and
duration pairs.

If the arguments are a series of numbers, play the inline tune.

The tempo is the base for all note durations. 60 gives a 1-second base, 120 gives a
half-second base, etc. Pitches are Hz. Set pitch to 0 to produce a rest.
16.3.57 probe

probe [“--set’ var] [Command]
‘~—driver’| ‘--partmap’| ‘--fs’| ‘--fs-uuid’| ‘--1label’ device
Retrieve device information. If option ‘--set’ is given, assign result to variable var,
otherwise print information on the screen.

16.3.58 pxe_unload

pxe_unload [Command]|
Unload the PXE environment (see Chapter 8 [Network]|, page 41).

This command is only available on PC BIOS systems.
16.3.59 read

read [var] [Command]
Read a line of input from the user. If an environment variable var is given, set that
environment variable to the line of input that was read, with no terminating newline.

Chapter 16: The list of available commands 7

16.3.60 reboot

reboot [Command]|
Reboot the computer.

16.3.61 regexp

regexp [‘--set’ [number:]var| regexp string [Command]|
Test if regular expression regexp matches string. Supported regular expressions are
POSIX.2 Extended Regular Expressions. If option ‘--set’ is given, store numberth
matched subexpression in variable var. Subexpressions are numbered in order of their
opening parentheses starting from ‘1’. number defaults to ‘1’.

16.3.62 rmmod

rmmod module [Command]|
Remove a loaded module.

16.3.63 save_env

save_env [‘--file’file] var ... [Command]
Save the named variables from the environment to the environment block file. See
Section 15.2 [Environment block], page 61.

The ‘--file’ option overrides the default location of the environment block.

This command will operate successfully even when environment variable check_
signatures is set to enforce (see Section 15.1.2 [check_signatures], page 55), since
it writes to disk and does not alter the behavior of GRUB based on any contents of
disk that have been read. It is possible to modify a digitally signed environment block
file from within GRUB using this command, such that its signature will no longer be
valid on subsequent boots. Care should be taken in such advanced configurations to
avoid rendering the system unbootable. See Section 18.2 [Using digital signatures],
page 92, for more information.

16.3.64 search

search [--file’| --label’| ‘--fs-uuid] [*~-set’ [var]] [Command]
[‘~-no-floppy’] name
Search devices by file (‘-£’, ‘--file’), filesystem label (‘-1’, ‘~-1abel’), or filesystem
UUID (‘-u’, ‘--fs-uuid’).

If the ‘--set’ option is used, the first device found is set as the value of environment
variable var. The default variable is ‘root’.

The ‘--no-floppy’ option prevents searching floppy devices, which can be slow.

The ‘search.file’, ‘search.fs_label’, and ‘search.fs_uuid’ commands are aliases
for ‘search --file’, ‘search --label’, and ‘search --fs-uuid’ respectively.

78 GNU GRUB Manual 2.02

16.3.65 sendkey

sendkey [“--num’|‘--caps’|‘--scroll’|‘--insert’| [Command]|
‘~—pause’| ‘--left-shift’| ‘~-right-shift’|
‘~-sysrq’| ‘-—numkey’| ‘-—capskey’| ‘--scrollkey’|
‘~—insertkey’| --left-alt’| ‘--right-alt’|

‘~-left-ctrl’| ‘--right-ctrl’ ‘on’| ‘0ff’]... [‘no-led] keystroke
Insert keystrokes into the keyboard buffer when booting. Sometimes an operating
system or chainloaded boot loader requires particular keys to be pressed: for example,
one might need to press a particular key to enter "safe mode", or when chainloading
another boot loader one might send keystrokes to it to navigate its menu.

You may provide up to 16 keystrokes (the length of the BIOS keyboard buffer).
Keystroke names may be upper-case or lower-case letters, digits, or taken from the

following table:

Name Key
escape Escape
exclam !

at ¢
numbersign #
dollar $
percent %
caret -
ampersand &
asterisk *
parenleft (
parenright)
minus -
underscore _
equal =

plus +
backspace Backspace
tab Tab
bracketleft [
braceleft {
bracketright]
braceright }
enter Enter
control press and release Control
semicolon :

colon :

quote ’
doublequote "
backquote ¢

tilde -

shift press and release left Shift
backslash \

Chapter 16: The list of available commands

bar |

comma ,

less <

period

greater >

slash /

question ?

rshift press and release right Shift

alt press and release Alt

space space bar

capslock Caps Lock

F1 F1

F2 F2

F3 F3

F4 F4

F5 F5

Fo F6

F7 F7

F8 F8

F9 F9

F10 F10

F11 F11

F12 F12

numl 1 (numeric keypad)

num?2 2 (numeric keypad)

num3 3 (numeric keypad)

num4 4 (numeric keypad)

numb 5 (numeric keypad)

num6 6 (numeric keypad)

num? 7 (numeric keypad)

num8 8 (numeric keypad)

num9 9 (numeric keypad)

num0 0 (numeric keypad)

numperiod . (numeric keypad)

numend End (numeric keypad)

numdown Down (numeric keypad)

numpgdown Page Down (numeric keypad)

numleft Left (numeric keypad)

numcenter 5 with Num Lock inactive (numeric
keypad)

numright Right (numeric keypad)

numhome Home (numeric keypad)

numup Up (numeric keypad)

numpgup Page Up (numeric keypad)

numinsert Insert (numeric keypad)

numdelete Delete (numeric keypad)

80

GNU GRUB Manual 2.02

numasterisk * (numeric keypad)
numminus - (numeric keypad)
numplus + (numeric keypad)
numslash / (numeric keypad)
numenter Enter (numeric keypad)
delete Delete

insert Insert

home Home

end End

pgdown Page Down

pgup Page Up

down Down

up Up

left Left

right Right

As well as keystrokes, the sendkey command takes various options that affect the
BIOS keyboard status flags. These options take an ‘on’ or ‘off’ parameter, speci-
fying that the corresponding status flag be set or unset; omitting the option for a
given status flag will leave that flag at its initial state at boot. The ‘--num’, ‘--caps’,
‘--scroll’, and ‘--insert’ options emulate setting the corresponding mode, while
the ‘--numkey’, ‘--capskey’, ‘--scrollkey’, and ‘--insertkey’ options emulate
pressing and holding the corresponding key. The other status flag options are self-
explanatory.

If the ‘-—no-1ed’ option is given, the status flag options will have no effect on keyboard
LEDs.

If the sendkey command is given multiple times, then only the last invocation has
any effect.

Since sendkey manipulates the BIOS keyboard buffer, it may cause hangs, reboots, or
other misbehaviour on some systems. If the operating system or boot loader that runs
after GRUB uses its own keyboard driver rather than the BIOS keyboard functions,
then sendkey will have no effect.

This command is only available on PC BIOS systems.

16.3.66 set

set [envvar=value] [Command]

Set the environment variable envvar to value. If invoked with no arguments, print all
environment variables with their values.

16.3.67 shalsum

shalsum arg ... [Command|

Alias for hashsum --hash shal arg See command hashsum (see Section 16.3.31
[hashsum], page 71) for full description.

Chapter 16: The list of available commands 81

16.3.68 sha256sum

sha256sum arg ... [Command]|
Alias for hashsum --hash sha256 arg See command hashsum (see
Section 16.3.31 [hashsum]|, page 71) for full description.

16.3.69 shab512sum

shab12sum arg ... [Command]|
Alias for hashsum --hash shab512 arg See command hashsum (see
Section 16.3.31 [hashsum]|, page 71) for full description.

16.3.70 sleep

sleep [--verbose’] [--interruptible’] count [Command]

Sleep for count seconds. If option ‘--interruptible’ is given, allow ESC to interrupt
sleep. With ‘--verbose’ show countdown of remaining seconds. Exit code is set to 0

if timeout expired and to 1 if timeout was interrupted by ESC.
16.3.71 source

source file

[Command]|

Read file as a configuration file, as if its contents had been incorporated directly
into the sourcing file. Unlike configfile (see Section 16.3.16 [configfile], page 68),
this executes the contents of file without changing context: any environment variable
changes made by the commands in file will be preserved after source returns, and

the menu will not be shown immediately.
16.3.72 test

test expression

[Command]|

Evaluate expression and return zero exit status if result is true, non zero status

otherwise.

expression is one of:

stringl == string2
the strings are equal

stringl = string2
the strings are not equal

stringl < string2
stringl is lexicographically less than string2

stringl <= string2

stringl is lexicographically less or equal than string?2

stringl > string2
stringl is lexicographically greater than string2

stringl >= string2

stringl is lexicographically greater or equal than string?2

82

GNU GRUB Manual 2.02

integerl -eq integer2

integerl

integerl

integerl is equal to integer2

-ge integer?2

integerl is greater than or equal to integer?2

-gt integer?2

integerl is greater than integer?2

integerl -le integer2

integerl is less than or equal to integer2

integerl -1t integer2

integerl is less than integer?2

integerl -ne integer2

integerl is not equal to integer?2

prefixintegerl -pgt prefixinteger2

integerl is greater than integer2 after stripping off common non-numeric
prefix.

prefixinteger]l -plt prefixinteger2

integerl is less than integer2 after stripping off common non-numeric
prefix.

filel -nt file2

filel is newer than file2 (modification time). Optionally numeric bias
may be directly appended to -nt in which case it is added to the first file
modification time.

filel -ot file2

-d file
-e file
-f file
-s file
-n string
string

-z string

filel is older than file2 (modification time). Optionally numeric bias may
be directly appended to -ot in which case it is added to the first file
modification time.

file exists and is a directory

file exists

file exists and is not a directory

file exists and has a size greater than zero
the length of string is nonzero

string is equivalent to -n string

the length of string is zero

(expression)

expression is true

I expression

expression is false

expressionl -a expression2

both expressionl and expression2 are true

Chapter 16: The list of available commands 83

expressionl expression2
both expressionl and expression2 are true. This syntax is not POSIX-
compliant and is not recommended.

expressionl -o expression2
either expressionl or expression2 is true

16.3.73 true

true [Command]|
Do nothing, successfully. This is mainly useful in control constructs such as if and
while (see Section 6.2 [Shell-like scripting], page 24).

16.3.74 trust

trust [--skip-sig’| pubkey-_file [Command]
Read public key from pubkey_file and add it to GRUB’s internal list of trusted public
keys. These keys are used to validate digital signatures when environment vari-
able check_signatures is set to enforce. Note that if check_signatures is set
to enforce when trust executes, then pubkey_file must itself be properly signed.
The ‘--skip-sig’ option can be used to disable signature-checking when reading
pubkey_file itself. It is expected that ‘--skip-sig’ is useful for testing and manual
booting. See Section 18.2 [Using digital signatures|, page 92, for more information.

16.3.75 unset

unset envvar [Command]|
Unset the environment variable envvar.

16.3.76 uppermem
This command is not yet implemented for GRUB 2, although it is planned.

16.3.77 verify_detached

verify_detached [‘--skip-sig] file signature_file [pubkey-_file] [Command]
Verifies a GPG-style detached signature, where the signed file is file, and the signature
itself is in file signature_file. Optionally, a specific public key to use can be specified
using pubkey_file. When environment variable check_signatures is set to enforce,
then pubkey_file must itself be properly signed by an already-trusted key. An unsigned
pubkey_file can be loaded by specifying ‘--skip-sig’. If pubkey_file is omitted, then
public keys from GRUB’s trusted keys (see Section 16.3.40 [list_trusted], page 73, see
Section 16.3.74 [trust], page 83, and see Section 16.3.22 [distrust], page 69) are tried.

Exit code $7 is set to 0 if the signature validates successfully. If validation fails, it is
set to a non-zero value. See Section 18.2 [Using digital signatures|, page 92, for more
information.

16.3.78 videoinfo

videoinfo [[WxH]|xD] [Command]
List available video modes. If resolution is given, show only matching modes.

84 GNU GRUB Manual 2.02

16.3.79 xen_hypervisor

xen_hypervisor file [arguments] . . . [Command]
Load a Xen hypervisor binary from file. The rest of the line is passed verbatim as the
kernel command-line. Any other binaries must be reloaded after using this command.

16.3.80 xen_linux

xen_linux file [arguments] [Command]
Load a dom0 kernel image for xen hypervisor at the booting process of xen. The rest
of the line is passed verbatim as the module command line.

16.3.81 xen_initrd

xen_initrd file [Command]|
Load a initrd image for dom0 kernel at the booting process of xen.

16.3.82 xen_xsm

xen_xsm file [Command]|
Load a xen security module for xen hypervisor at the booting process of xen. See
http://wiki.xen.org/wiki/XSM for more detail.

16.4 The list of networking commands
16.4.1 net_add_addr

net_add_addr interface card address [Command]
Configure additional network interface with address on a network card. address can
be either IP in dotted decimal notation, or symbolic name which is resolved using
DNS lookup. If successful, this command also adds local link routing entry to the
default subnet of address with name interface‘:1local’ via interface.

16.4.2 net_add_dns

net_add_dns server [Command|
Resolve server IP address and add to the list of DNS servers used during name lookup.

16.4.3 net_add_route

net_add_route shortname ip|/prefix| [interface | ‘gw’ [Command]
gateway|
Add route to network with address ip as modified by prefix via either local inter-
face or gateway. prefix is optional and defaults to 32 for IPv4 address and 128 for
IPv6 address. Route is identified by shortname which can be used to remove it (see
Section 16.4.7 [net_del_route], page 85).

http://wiki.xen.org/wiki/XSM

Chapter 16: The list of available commands 85

16.4.4 net_bootp

net_bootp [card] [Command]
Perform configuration of card using DHCP protocol. If no card name is specified, try
to configure all existing cards. If configuration was successful, interface with name
card‘:dhcp’ and configured address is added to card. Additionally the following
DHCP options are recognized and processed:

‘1 (Subnet Mask)’
Used to calculate network local routing entry for interface card‘:dhcp’.

‘3 (Router)’
Adds default route entry with the name card‘:dhcp:default’ via gateway
from DHCP option. Note that only option with single route is accepted.

‘6 (Domain Name Server)’
Adds all servers from option value to the list of servers used during name
resolution.

‘12 (Host Name)’
Sets environment variable ‘net_’<card>‘_dhcp_hostname’ (see
Section 15.1.26 [net_<interface>_hostname|, page 59) to the value of
option.

‘15 (Domain Name)’
Sets environment variable ‘net_’<card>‘_dhcp_domain’ (see
Section 15.1.24 [net_<interface>_domain]|, page 59) to the value of option.

‘17 (Root Path)’
Sets environment variable ‘net_’<card>‘_dhcp_rootpath’ (see
Section 15.1.30 [net_<interface>_rootpath], page 60) to the value of
option.

‘18 (Extensions Path)’
Sets environment variable ‘net_’<card>‘_dhcp_extensionspath’ (see
Section 15.1.25 [net_<interface>_extensionspath|, page 59) to the value
of option.

16.4.5 net_del_addr

net_del_addr interface [Command]
Remove configured interface with associated address.

16.4.6 net_del_dns

net_del_dns address [Command]
Remove address from list of servers used during name lookup.

16.4.7 net_del_route

net_del_route shortname [Command]
Remove route entry identified by shortname.

86 GNU GRUB Manual 2.02

16.4.8 net_get_dhcp_option

net_get_dhcp_option var interface number type [Command]|
Request DHCP option number of type via interface. type can be one of ‘string’,
‘number’ or ‘hex’. If option is found, assign its value to variable var. Values of types
‘number’ and ‘hex’ are converted to string representation.

16.4.9 net_ipv6_autoconf

net_ipv6_autoconf [card] [Command]
Perform IPv6 autoconfiguration by adding to the card interface with name
card‘:1link’ and link local MAC-based address. If no card is specified, perform
autoconfiguration for all existing cards.

16.4.10 net_ls_addr

net_ls_addr [Command]
List all configured interfaces with their MAC and IP addresses.

16.4.11 net_ls_cards

net_ls_cards [Command]|
List all detected network cards with their MAC address.

16.4.12 net_ls_dns

net_ls_dns [Command]|
List addresses of DNS servers used during name lookup.

16.4.13 net_ls_routes

net_ls_routes [Command|
List routing entries.

16.4.14 net_nslookup

net_nslookup name [server| [Command]
Resolve address of name using DNS server server. If no server is given, use default
list of servers.

Chapter 17: Internationalisation 87

17 Internationalisation

17.1 Charset

GRUB uses UTF-8 internally other than in rendering where some GRUB-specific appropri-
ate representation is used. All text files (including config) are assumed to be encoded in

UTF-8.

17.2 Filesystems

NTFS, JFS, UDF, HFS+, exFAT, long filenames in FAT, Joliet part of ISO9660 are treated
as UTF-16 as per specification. AFS and BFS are read as UTF-8, again according to spec-
ification. BtrFS, cpio, tar, squash4, minix, minix2, minix3, ROMFS, ReiserFS, XF'S, ext2,
ext3, ext4d, FAT (short names), RockRidge part of ISO9660, nilfs2, UFS1, UFS2 and ZFS
are assumed to be UTF-8. This might be false on systems configured with legacy charset
but as long as the charset used is superset of ASCII you should be able to access ASCII-
named files. And it’s recommended to configure your system to use UTF-8 to access the
filesystem, convmv may help with migration. ISO9660 (plain) filenames are specified as
being ASCII or being described with unspecified escape sequences. GRUB assumes that
the ISO9660 names are UTF-8 (since any ASCII is valid UTF-8). There are some old CD-
ROMs which use CP437 in non-compliant way. You're still able to access files with names
containing only ASCII characters on such filesystems though. You're also able to access any
file if the filesystem contains valid Joliet (UTF-16) or RockRidge (UTF-8). AFFS, SFS and
HFS never use unicode and GRUB assumes them to be in Latinl, Latinl and MacRoman
respectively. GRUB handles filesystem case-insensitivity however no attempt is performed
at case conversion of international characters so e.g. a file named lowercase greek alpha is
treated as different from the one named as uppercase alpha. The filesystems in questions are
NTFS (except POSIX namespace), HFS+ (configurable at mkfs time, default insensitive),
SFS (configurable at mkfs time, default insensitive), JFS (configurable at mkfs time, default
sensitive), HFS, AFFS, FAT, exFAT and ZFS (configurable on per-subvolume basis by prop-
erty “casesensitivity”, default sensitive). On ZFS subvolumes marked as case insensitive
files containing lowercase international characters are inaccessible. Also like all supported
filesystems except HFS+ and ZFS (configurable on per-subvolume basis by property “nor-
malization”, default none) GRUB makes no attempt at check of canonical equivalence so a
file name u-diaresis is treated as distinct from u+combining diaresis. This however means
that in order to access file on HFS+ its name must be specified in normalisation form D.
On normalized ZFS subvolumes filenames out of normalisation are inaccessible.

17.3 Output terminal

Firmware output console “console” on ARC and IEEE1275 are limited to ASCII.
BIOS firmware console and VGA text are limited to ASCII and some pseudographics.

None of above mentioned is appropriate for displaying international and any unsup-
ported character is replaced with question mark except pseudographics which we attempt
to approximate with ASCII.

EFT console on the other hand nominally supports UTF-16 but actual language
coverage depends on firmware and may be very limited.

88 GNU GRUB Manual 2.02

The encoding used on serial can be chosen with terminfo as either ASCII, UTF-8
or “visual UTF-8”. Last one is against the specification but results in correct rendering of
right-to-left on some readers which don’t have own bidi implementation.

On emu GRUB checks if charset is UTF-8 and uses it if so and uses ASCII otherwise.

When using gfxterm or gfxmenu GRUB itself is responsible for rendering the text.
In this case GRUB is limited by loaded fonts. If fonts contain all required characters then
bidirectional text, cursive variants and combining marks other than enclosing, half (e.g. left
half tilde or combining overline) and double ones. Ligatures aren’t supported though. This
should cover European, Middle Eastern (if you don’t mind lack of lam-alif ligature in Arabic)
and East Asian scripts. Notable unsupported scripts are Brahmic family and derived as
well as Mongolian, Tifinagh, Korean Jamo (precomposed characters have no problem) and
tonal writing (2e5-2e9). GRUB also ignores deprecated (as specified in Unicode) characters
(e.g. tags). GRUB also doesn’t handle so called “annotation characters” If you can complete
either of two lists or, better, propose a patch to improve rendering, please contact developer
team.

17.4 Input terminal

Firmware console on BIOS, IEEE1275 and ARC doesn’t allow you to enter non-ASCII
characters. EFI specification allows for such but author is unaware of any actual imple-
mentations. Serial input is currently limited for latinl (unlikely to change). Own keyboard
implementations (at_keyboard and usb_keyboard) supports any key but work on one-char-
per-keystroke. So no dead keys or advanced input method. Also there is no keymap change
hotkey. In practice it makes difficult to enter any text using non-Latin alphabet. Moreover
all current input consumers are limited to ASCII.

17.5 Gettext

GRUB supports being translated. For this you need to have language
fix/locale, load gettext module and set “lang” variable.

* mo files in $pre-

17.6 Regexp

Regexps work on unicode characters, however no attempt at checking cannonical equivalence
has been made. Moreover the classes like [:alpha:] match only ASCII subset.

17.7 Other

Currently GRUB always uses YEAR-MONTH-DAY HOUR:MINUTE:SECOND [WEEK-
DAY] 24-hour datetime format but weekdays are translated. GRUB always uses the deci-
mal number format with [0-9] as digits and . as descimal separator and no group separator.
IEEE1275 aliases are matched case-insensitively except non-ASCII which is matched as bi-
nary. Similar behaviour is for matching OSBundleRequired. Since IEEK1275 aliases and
OSBundleRequired don’t contain any non-ASCII it should never be a problem in prac-
tice. Case-sensitive identifiers are matched as raw strings, no canonical equivalence check is
performed. Case-insenstive identifiers are matched as RAW but additionally [a-z] is equiv-
alent to [A-Z]. GRUB-defined identifiers use only ASCII and so should user-defined ones.
Identifiers containing non-ASCII may work but aren’t supported. Only the ASCII space

Chapter 17: Internationalisation 89

characters (space U+0020, tab U+000b, CR U+000d and LF U+000a) are recognised. Other
unicode space characters aren’t a valid field separator. test (see Section 16.3.72 [test],
page 81) tests <, >, <=, >=, -pgt and -plt compare the strings in the lexicographical or-
der of unicode codepoints, replicating the behaviour of test from coreutils. environment
variables and commands are listed in the same order.

Chapter 18: Security 91

18 Security

18.1 Authentication and authorisation in GRUB

By default, the boot loader interface is accessible to anyone with physical access to the
console: anyone can select and edit any menu entry, and anyone can get direct access to a
GRUB shell prompt. For most systems, this is reasonable since anyone with direct physical
access has a variety of other ways to gain full access, and requiring authentication at the
boot loader level would only serve to make it difficult to recover broken systems.

However, in some environments, such as kiosks, it may be appropriate to lock down
the boot loader to require authentication before performing certain operations.

The ‘password’ (see Section 16.3.54 [password|, page 76) and ‘password_pbkdf2’ (see
Section 16.3.55 [password_pbkdf2], page 76) commands can be used to define users, each
of which has an associated password. ‘password’ sets the password in plain text, requiring
‘grub.cfg’ to be secure; ‘password_pbkdf2’ sets the password hashed using the Password-
Based Key Derivation Function (RFC 2898), requiring the use of grub-mkpasswd-pbkdf2
(see Chapter 25 [Invoking grub-mkpasswd-pbkdf2], page 111) to generate password hashes.

In order to enable authentication support, the ‘superusers’ environment variable
must be set to a list of usernames, separated by any of spaces, commas, semicolons, pipes, or
ampersands. Superusers are permitted to use the GRUB command line, edit menu entries,
and execute any menu entry. If ‘superusers’ is set, then use of the command line and
editing of menu entries are automatically restricted to superusers. Setting ‘superusers’ to
empty string effectively disables both access to CLI and editing of menu entries.

Other users may be allowed to execute specific menu entries by giving a list of
usernames (as above) using the ‘--users’ option to the ‘menuentry’ command (see
Section 16.1.1 [menuentry|, page 63). If the ‘~—unrestricted’ option is used for a menu
entry, then that entry is unrestricted. If the ‘--users’ option is not used for a menu entry,
then that only superusers are able to use it.

Putting this together, a typical ‘grub.cfg’ fragment might look like this:

92 GNU GRUB Manual 2.02

set superusers='"root"
password_pbkdf2 root grub.pbkdf2.shab512.10000.biglongstring
password userl insecure

menuentry "May be run by any user" --unrestricted {
set root=(hd0,1)
linux /vmlinuz

¥

menuentry "Superusers only" --users "" {
set root=(hd0,1)
linux /vmlinuz single

¥

menuentry "May be run by userl or a superuser" --users userl {
set root=(hd0,2)
chainloader +1

¥

The grub-mkconfig program does not yet have built-in support for generating con-
figuration files with authentication. You can use ‘/etc/grub.d/40_custom’ to add simple
superuser authentication, by adding set superusers= and password or password_pbkdf2
commands.

18.2 Using digital signatures in GRUB

GRUB’s ‘core.img’ can optionally provide enforcement that all files subsequently read from
disk are covered by a valid digital signature. This document does not cover how to ensure
that your platform’s firmware (e.g., Coreboot) validates ‘core.img’.

If environment variable check_signatures (see Section 15.1.2 [check_signatures],
page 55) is set to enforce, then every attempt by the GRUB ‘core.img’ to load an-
other file ‘foo’ implicitly invokes verify_detached foo foo.sig (see Section 16.3.77 [ver-
ify_detached], page 83). foo.sig must contain a valid digital signature over the contents of
foo, which can be verified with a public key currently trusted by GRUB (see Section 16.3.40
[list_trusted], page 73, see Section 16.3.74 [trust], page 83, and see Section 16.3.22 [distrust],
page 69). If validation fails, then file ‘foo’ cannot be opened. This failure may halt or oth-
erwise impact the boot process.

GRUB uses GPG-style detached signatures (meaning that a file ‘foo.sig’ will be
produced when file ‘foo’ is signed), and currently supports the DSA and RSA signing
algorithms. A signing key can be generated as follows:

gpg —-gen-key

An individual file can be signed as follows:

gpg --detach-sign /path/to/file

For successful validation of all of GRUB’s subcomponents and the loaded OS kernel,
they must all be signed. One way to accomplish this is the following (after having already

produced the desired ‘grub.cfg’ file, e.g., by running grub-mkconfig (see Chapter 24
[Invoking grub-mkconfig|, page 109):

Chapter 18: Security 93

Edit /dev/shm/passphrase.txt to contain your signing key’s passphrase
for i in ‘find /boot -name "*.cfg" -or -name "*.lst" -or \
-name "*.mod" -or -name "vmlinuz*" -or -name "initrdx" -or \
-name "grubenv"‘;
do
gpg --batch --detach-sign --passphrase-fd 0 $i < \
/dev/shm/passphrase.txt
done
shred /dev/shm/passphrase.txt

See also: Section 15.1.2 [check_signatures], page 55, Section 16.3.77 [ver-
ify_detached], page 83, Section 16.3.74 [trust], page 83, Section 16.3.40 [list_trusted],
page 73, Section 16.3.22 [distrust], page 69, Section 16.3.41 [load_env], page 73,
Section 16.3.63 [save_env], page 77.

Note that internally signature enforcement is controlled by setting the environment
variable check_signatures equal to enforce. Passing one or more --pubkey options to
grub-mkimage implicitly defines check_signatures equal to enforce in ‘core.img’ prior
to processing any configuration files.

Note that signature checking does not prevent an attacker with (serial, physical, ...)
console access from dropping manually to the GRUB console and executing;:

set check_signatures=no

To prevent this, password-protection (see Section 18.1 [Authentication and autho-
risation], page 91) is essential. Note that even with GRUB password protection, GRUB
itself cannot prevent someone with physical access to the machine from altering that ma-
chine’s firmware (e.g., Coreboot or BIOS) configuration to cause the machine to boot from
a different (attacker-controlled) device. GRUB is at best only one link in a secure boot
chain.

Chapter 19: Platform limitations 95

19 Platform limitations

GRUB?2 is designed to be portable and is actually ported across platforms. We try to keep
all platforms at the level. Unfortunately some platforms are better supported than others.
This is detailed in current and 2 following sections.

ARC platform is unable to change datetime (firmware doesn’t seem to provide a
function for it). EMU has similar limitation.

On EMU platform no serial port is available.

Console charset refers only to firmware-assisted console. gfxterm is always Unicode
(see Internationalisation section for its limitations). Serial is configurable to UTF-8 or
ASCII (see Internationalisation). In case of gemu and coreboot ports the refered console is
vga_text. Loongson always uses gfxterm.

Most limited one is ASCII. CP437 provides additionally pseudographics. GRUB2
doesn’t use any language characters from CP437 as often CP437 is replaced by national
encoding compatible only in pseudographics. Unicode is the most versatile charset which
supports many languages. However the actual console may be much more limited depending
on firmware

On BIOS network is supported only if the image is loaded through network. On
sparc64 GRUB is unable to determine which server it was booted from.

Direct ATA/AHCI support allows to circumvent various firmware limitations but
isn’t needed for normal operation except on baremetal ports.

AT keyboard support allows keyboard layout remapping and support for keys not
available through firmware. It isn’t needed for normal operation except baremetal ports.

Speaker allows morse and spkmodem communication.

USB support provides benefits similar to ATA (for USB disks) or AT (for USB
keyboards). In addition it allows USBserial.

Chainloading refers to the ability to load another bootloader through the same pro-
tocol

Hints allow faster disk discovery by already knowing in advance which is the disk in
question. On some platforms hints are correct unless you move the disk between boots. On
other platforms it’s just an educated guess. Note that hint failure results in just reduced
performance, not a failure

BadRAM is the ability to mark some of the RAM as “bad”. Note: due to protocol
limitations mips-loongson (with Linux protocol) and mips-qemu_mips can use only memory
up to first hole.

Bootlocation is ability of GRUB to automatically detect where it boots from. “disk”
means the detection is limited to detecting the disk with partition being discovered on
install time. “partition” means that disk and partiton can be automatically discovered.
“file” means that boot image file name as well as disk and partition can be discovered.
For consistency default install ignores partition and relies solely on disk detection. If no
bootlocation discovery is available or boot and grub-root disks are different, UUID is used
instead. On ARC if no device to install to is specified, UUID is used instead as well.

BIOS Coreboot Multiboot Qemu
video yes yes yes yes

96

console charset
network
ATA/AHCI
AT keyboard
Speaker

USB
chainloader
cpuid

hints

PCI

badram
compression
exit
bootlocation

video

console charset
network
ATA/AHCI
AT keyboard
Speaker

USB
chainloader
cpuid

hints

PCI

badram
compression
exit
bootlocation

video

console charset
network
ATA/AHCI
AT keyboard
Speaker

USB
chainloader
cpuid

hints

PCI

badram
compression
exit
bootlocation

CP437
yes (*)
yes

yes

yes

yes
local
partial
guess
yes

yes
always
yes
disk

ia32 EFI
yes
Unicode
yes

yes

yes

yes

yes

local
partial
guess
yes

yes

no

yes

file

Loongson
yes

N/A

no

yes

yes

no

yes

yes

no

good

yes

yes (%)
configurable
no

no

CP437
no

yes

yes

yes

yes

yes
partial
guess
yes

yes
pointless
no

no

amd64 EFI
yes
Unicode
yes

yes

yes

yes

yes

local
partial
guess
yes

yes

no

yes

file

sparc64
no
ASCII
yes (*)
no

no

no

no

no

no
good
no

no

no

yes
partition

GNU GRUB Manual 2.02

CP437
no

yes

yes

yes

yes

yes
partial
guess
yes

yes

no

no

no

ia32 IEEE1275
no

ASCII

yes

yes

yes

yes

yes

no

partial
good

yes

no

no

yes

file, ignored

Powerpc
yes
ASCII
yes

no

no

no

no

no

no
good
no

no

no

yes
file

CP437
no

yes

yes

yes

yes

no
partial
guess
yes

yes

no

no

no

Itanium
no
Unicode
yes

no

no

no

no

local

no
guess
no

yes

no

yes

file

ARC
no
ASCII
no

no

no

no

no

no

no

no

no

no
configurable
yes

file (*)

Chapter 19: Platform limitations

video

console charset

network
ATA/AHCI
AT keyboard
Speaker
USB
chainloader
cpuid

hints

PCI

badram
compression
exit
bootlocation

MIPS gemu
no

CP437

no

yes

yes

no

N/A

yes

no

guess

no

yes (*)
configurable
no

no

emu
yes

Unicode (*)
yes

no

no

no

yes

no

no

no

no

no

no

yes

file

97

xen
no
ASCII
no

no

no

no

no

yes
yes

no

no

no

no

no

no

Chapter 20: Outline 99

20 Outline

Some platforms have features which allows to implement some commands useless or not
implementable on others.

Quick summary:
Information retrieval:

e mipsel-loongson: lsspd

e mips-arc: lsdev

o efi: Isefisystab, Issal, Isefimmap, lsefi

e i386-pc: Isapm

e 1386-coreboot: Iscoreboot, coreboot_boottime, cbhmemc

e acpi-enabled (i386-pc, 1386-coreboot, i386-multiboot, *-efi): lsacpi
Workarounds for platform-specific issues:

e 1386-efi/x86_64-efi: loadbios, fakebios, fix_video

e acpi-enabled (i386-pc, 1386-coreboot, 1386-multiboot, *-efi): acpi (override ACPI ta-
bles)

e i386-pc: drivemap
e i386-pc: sendkey
Advanced operations for power users:

e x86: iorw (direct access to I/O ports)

Miscelaneous:

e cmos (x86-*, ieeel275, mips-qemu_mips, mips-loongson): cmostest (used on some lap-
tops to check for special power-on key), cmosclean

e i386-pc: play

Chapter 21: Supported boot targets 101

21 Supported boot targets

X86 support is summarised in the following table. “Yes” means that the kernel works on
the given platform, “crashes” means an early kernel crash which we hope will be fixed by
concerned kernel developers. “no” means GRUB doesn’t load the given kernel on a given
platform. “headless” means that the kernel works but lacks console drivers (you can still
use serial or network console). In case of “no” and “crashes” the reason is given in footnote.

BIOS Coreboot
BIOS chainloading yes no (1)
NTLDR yes no (1)
Plan9 yes no (1)
Freedos yes no (1)
FreeBSD bootloader yes crashes (1)
32-bit kFreeBSD yes crashes (5)
64-bit kFreeBSD yes crashes (5)
32-bit kNetBSD yes crashes (1)
64-bit kNetBSD yes crashes
32-bit kOpenBSD yes yes
64-bit kOpenBSD yes yes
Multiboot yes yes
Multiboot?2 yes yes
32-bit Linux (legacy protocol) yes no (1)
64-bit Linux (legacy protocol) yes no (1)
32-bit Linux (modern protocol) yes yes
64-bit Linux (modern protocol) yes yes
32-bit XNU yes ?
64-bit XNU yes ?
32-bit EFI chainloader no (2) no (2)
64-bit EFI chainloader no (2) no (2)
Appleloader no (2) no (2)

Multiboot Qemu
BIOS chainloading no (1) no (1)
NTLDR no (1) no (1)
Plan9 no (1) no (1)
FreeDOS no (1) no (1)
FreeBSD bootloader crashes (1) crashes (1)
32-bit kFreeBSD crashes (5) crashes (5)
64-bit kFreeBSD crashes (5) crashes (5)
32-bit kNetBSD crashes (1) crashes (1)
64-bit kNetBSD yes yes
32-bit kOpenBSD yes yes
64-bit kOpenBSD yes yes
Multiboot yes yes
Multiboot2 yes yes
32-bit Linux (legacy protocol) no (1) no (1)

64-bit Linux (legacy protocol) no (1) no (1)

102

32-bit Linux (modern protocol)
64-bit Linux (modern protocol)
32-bit XNU

64-bit XNU

32-bit EFI chainloader

64-bit EFI chainloader
Appleloader

BIOS chainloading

NTLDR

Plan9

FreeDOS

FreeBSD bootloader

32-bit kFreeBSD

64-bit kFreeBSD

32-bit kNetBSD

64-bit kNetBSD

32-bit kOpenBSD

64-bit kOpenBSD

Multiboot

Multiboot2

32-bit Linux (legacy protocol)
64-bit Linux (legacy protocol)
32-bit Linux (modern protocol)
64-bit Linux (modern protocol)
32-bit XNU

64-bit XNU

32-bit EFI chainloader

64-bit EFT chainloader
Appleloader

BIOS chainloading

NTLDR

Plan9

FreeDOS

FreeBSD bootloader

32-bit kFreeBSD

64-bit kFreeBSD

32-bit kNetBSD

64-bit kNetBSD

32-bit kOpenBSD

64-bit kOpenBSD

Multiboot

Multiboot?2

32-bit Linux (legacy protocol)
64-bit Linux (legacy protocol)

yes
yes

2)
2)
2)

EFI
o (1)
o (1)
o (1)
no (1)
crashes (1)
headless
headless
crashes (1)
yes
headless
headless
yes

yes

no (1)

no (1)

yes

yes

yes

yes (4)

yes

no (3)

yes

ia3

/\/\/‘\1\3 /\/\/‘\

ia32 IEEE1275

no (1)
no (1)
no (1)
no (1)
crashes
crashes

(1)
(5)
crashes (5)
(1)

GNU GRUB Manual 2.02

no (1)
crashes (1)
headless
headless
crashes (1)
yes
headless
headless
yes

yes

no (1)

no (1)

yes

yes

yes

yes

no (3)

yes

yes

Chapter 21: Supported boot targets 103

32-bit Linux (modern protocol) ?
64-bit Linux (modern protocol) ?
o
o

32-bit XNU
64-bit XNU
32-bit EFT chainloader
64-bit EFI chainloader
Appleloader

1. Requires BIOS
2. EFI only

3. 32-bit and 64-bit EFI have different structures and work in different CPU modes so
it’s not possible to chainload 32-bit bootloader on 64-bit platform and vice-versa

4. Some modules may need to be disabled

5. Requires ACPI

PowerPC, TA64 and Sparc64 ports support only Linux. MIPS port supports Linux

and multiboot2.

21.1 Boot tests

As you have seen in previous chapter the support matrix is pretty big and some of the
configurations are only rarely used. To ensure the quality bootchecks are available for
all x86 targets except EFI chainloader, Appleloader and XNU. All x86 platforms have
bootcheck facility except ieeel275. Multiboot, multiboot2, BIOS chainloader, ntldr and
freebsd-bootloader boot targets are tested only with a fake kernel images. Only Linux is
tested among the payloads using Linux protocols.

Following variables must be defined:

GRUB_PAYLOADS_DIR
GRUB_CBFSTOOL

GRUB_COREBOOT_ROM

GRUB_QEMU_OPTS
Required files are:

kfreebsd_env.i386
kireebsd.i386
kfreebsd.x86_64,
kfreebsd_env.x86_64
knetbsd.i386
knetbsd.miniroot.i386
knetbsd.x86_64,
knetbsd.miniroot.x86_64
kopenbsd.i386
kopenbsd.x86_64
linux.i386
linux.x86_64

directory containing the required kernels

cbfstool from Coreboot package (for coreboot platform
only)

empty Coreboot ROM

additional options to be supplied to QEMU

32-bit kFreeBSD device hints
32-bit FreeBSD kernel image
same from 64-bit kFreeBSD

32-bit NetBSD kernel image
32-bit kNetBSD miniroot.kmod.
same from 64-bit kNetBSD

32-bit OpenBSD kernel bsd.rd image
same from 64-bit kOpenBSD

32-bit Linux

64-bit Linux

Chapter 22: Error messages produced by GRUB 105

22 Error messages produced by GRUB

22.1 GRUB only offers a rescue shell

GRUB’s normal start-up procedure involves setting the ‘prefix’ environment variable to a
value set in the core image by grub-install, setting the ‘root’ variable to match, loading
the ‘normal’ module from the prefix, and running the ‘normal’ command (see Section 16.3.51
[normal], page 75). This command is responsible for reading ‘/boot/grub/grub.cfg’, run-
ning the menu, and doing all the useful things GRUB is supposed to do.

If, instead, you only get a rescue shell, this usually means that GRUB failed to load
the ‘normal’ module for some reason. It may be possible to work around this temporarily:
for instance, if the reason for the failure is that ‘prefix’ is wrong (perhaps it refers to the
wrong device, or perhaps the path to ‘/boot/grub’ was not correctly made relative to the
device), then you can correct this and enter normal mode manually:

Inspect the current prefix (and other preset variables):

set

Find out which devices are available:

1s

Set to the correct value, which might be something like this:
set prefix=(hd0,1)/grub

set root=(hd0,1)

insmod normal

normal

However, any problem that leaves you in the rescue shell probably means that GRUB
was not correctly installed. It may be more useful to try to reinstall it properly using grub-
install device (see Chapter 23 [Invoking grub-install], page 107). When doing this, there
are a few things to remember:

e Drive ordering in your operating system may not be the same as the boot drive ordering
used by your firmware. Do not assume that your first hard drive (e.g. ‘/dev/sda’) is
the one that your firmware will boot from. ‘device.map’ (see Section 4.3 [Device map],
page 13) can be used to override this, but it is usually better to use UUIDs or file system
labels and avoid depending on drive ordering entirely.

e At least on BIOS systems, if you tell grub-install to install GRUB to a partition
but GRUB has already been installed in the master boot record, then the GRUB
installation in the partition will be ignored.

e If possible, it is generally best to avoid installing GRUB to a partition (unless it is a
special partition for the use of GRUB alone, such as the BIOS Boot Partition used on
GPT). Doing this means that GRUB may stop being able to read its core image due
to a file system moving blocks around, such as while defragmenting, running checks,
or even during normal operation. Installing to the whole disk device is normally more
robust.

e Check that GRUB actually knows how to read from the device and file system contain-
ing ‘/boot/grub’. It will not be able to read from encrypted devices with unsupported
encryption scheme, nor from file systems for which support has not yet been added to

GRUB.

Chapter 23: Invoking grub-install 107

23 Invoking grub-install

The program grub-install generates a GRUB core image using grub-mkimage and installs
it on your system. You must specify the device name on which you want to install GRUB,
like this:

grub-install install_device
The device name install_device is an OS device name or a GRUB device name.

grub-install accepts the following options:
‘-=help’ Print a summary of the command-line options and exit.

‘——version’
Print the version number of GRUB and exit.

‘-—boot-directory=dir’
Install GRUB images under the directory ‘dir/grub/’ This option is useful
when you want to install GRUB into a separate partition or a removable disk.
If this option is not specified then it defaults to ‘/boot’, so

grub-install /dev/sda
is equivalent to
grub-install --boot-directory=/boot/ /dev/sda

Here is an example in which you have a separate boot partition which is
mounted on ‘/mnt/boot’:

grub-install --boot-directory=/mnt/boot /dev/sdb

‘--recheck’
Recheck the device map, even if ‘/boot/grub/device.map’ already exists. You
should use this option whenever you add/remove a disk into/from your com-
puter.

‘--no-rs-codes’

By default on x86 BIOS systems, grub-install will use some extra space in
the bootloader embedding area for Reed-Solomon error-correcting codes. This
enables GRUB to still boot successfully if some blocks are corrupted. The exact
amount of protection offered is dependent on available space in the embedding
area. R sectors of redundancy can tolerate up to R/2 corrupted sectors. This
redundancy may be cumbersome if attempting to cryptographically validate the
contents of the bootloader embedding area, or in more modern systems with
GPT-style partition tables (see Section 4.4 [BIOS installation], page 13) where
GRUB does not reside in any unpartitioned space outside of the MBR. Disable
the Reed-Solomon codes with this option.

Chapter 24: Invoking grub-mkconfig 109

24 Invoking grub-mkconfig

The program grub-mkconfig generates a configuration file for GRUB (see Section 6.1 [Sim-
ple configuration], page 19).
grub-mkconfig -o /boot/grub/grub.cfg

grub-mkconfig accepts the following options:
‘-=help’ Print a summary of the command-line options and exit.

‘——version’
Print the version number of GRUB and exit.

‘-0 file’

‘-—output=file’
Send the generated configuration file to file. The default is to send it to standard
output.

Chapter 25: Invoking grub-mkpasswd-pbkdf2 111

25 Invoking grub-mkpasswd-pbkdf2

The program grub-mkpasswd-pbkdf2 generates password hashes for GRUB (see Chapter 18
[Security], page 91).

grub-mkpasswd-pbkdf?2
grub-mkpasswd-pbkdf2 accepts the following options:

‘~c number’

‘-—iteration-count=number’
Number of iterations of the underlying pseudo-random function. Defaults to
10000.

‘-1 number’
‘-—buflen=number’
Length of the generated hash. Defaults to 64.

‘-s number’
‘~-salt=number’
Length of the salt. Defaults to 64.

Chapter 26: Invoking grub-mkrelpath 113

26 Invoking grub-mkrelpath

The program grub-mkrelpath makes a file system path relative to the root of its containing
file system. For instance, if ‘/usr’ is a mount point, then:

$ grub-mkrelpath /usr/share/grub/unicode.pf2
¢/share/grub/unicode.pf2’

This is mainly used internally by other GRUB utilities such as grub-mkconfig (see
Chapter 24 [Invoking grub-mkconfig], page 109), but may occasionally also be useful for
debugging.

grub-mkrelpath accepts the following options:

‘-=help’ Print a summary of the command-line options and exit.

‘——version’
Print the version number of GRUB and exit.

Chapter 27: Invoking grub-mkrescue 115

27 Invoking grub-mkrescue

The program grub-mkrescue generates a bootable GRUB rescue image (see Section 4.2
[Making a GRUB bootable CD-ROM], page 12).

grub-mkrescue -o grub.iso

All arguments not explicitly listed as grub-mkrescue options are passed on directly
to xorriso in mkisofs emulation mode. Options passed to xorriso will normally be
interpreted as mkisofs options; if the option ‘==’ is used, then anything after that will be
interpreted as native xorriso options.

Non-option arguments specify additional source directories. This is commonly used
to add extra files to the image:

mkdir -p disk/boot/grub
(add extra files to ‘disk/boot/grub’)
grub-mkrescue -o grub.iso disk

grub-mkrescue accepts the following options:
‘-=help’ Print a summary of the command-line options and exit.

‘——version’
Print the version number of GRUB and exit.

‘-0 file’
‘-—output=file’
Save output in file. This "option" is required.

‘~-modules=modules’
Pre-load the named GRUB modules in the image. Multiple entries in modules
should be separated by whitespace (so you will probably need to quote this for
your shell).

‘-—rom-directory=dir’
If generating images for the QEMU or Coreboot platforms, copy the resulting
‘qemu. img’ or ‘coreboot.elf’ files respectively to the dir directory as well as
including them in the image.

‘-—xorriso=file’

Use file as the xorriso program, rather than the built-in default.
‘-—grub-mkimage=file’

Use file as the grub-mkimage program, rather than the built-in default.

Chapter 28: Invoking grub-mount 117

28 Invoking grub-mount

The program grub-mount performs a read-only mount of any file system or file system image
that GRUB understands, using GRUB’s file system drivers via FUSE. (It is only available
if FUSE development files were present when GRUB was built.) This has a number of uses:

It provides a convenient way to check how GRUB will view a file system at boot
time. You can use normal command-line tools to compare that view with that of your
operating system, making it easy to find bugs.

It offers true read-only mounts. Linux does not have these for journalling file systems,
because it will always attempt to replay the journal at mount time; while you can
temporarily mark the block device read-only to avoid this, that causes the mount to
fail. Since GRUB intentionally contains no code for writing to file systems, it can easily
provide a guaranteed read-only mount mechanism.

It allows you to examine any file system that GRUB understands without needing to
load additional modules into your running kernel, which may be useful in constrained
environments such as installers.

Since it can examine file system images (contained in regular files) just as easily as file
systems on block devices, you can use it to inspect any file system image that GRUB
understands with only enough privileges to use FUSE, even if nobody has yet written
a FUSE module specifically for that file system type.

Using grub-mount is normally as simple as:
grub-mount /dev/sdal /mnt

grub-mount must be given one or more images and a mount point as non-option

arguments (if it is given more than one image, it will treat them as a RAID set), and also
accepts the following options:

‘-=help’ Print a summary of the command-line options and exit.

‘——version’

6_C7

Print the version number of GRUB and exit.

‘--crypto’

Mount encrypted devices, prompting for a passphrase if necessary.

‘-d string’
‘-—debug=string’

Show debugging output for conditions matching string.

‘~K prompt | file’
‘-—zfs-key=prompt|file’

Load a ZFS encryption key. If you use ‘prompt’ as the argument, grub-mount
will read a passphrase from the terminal; otherwise, it will read key material
from the specified file.

‘-r device’
‘——root=device’

Set the GRUB root device to device. You do not normally need to set this;
grub-mount will automatically set the root device to the root of the supplied
file system.

118 GNU GRUB Manual 2.02

If device is just a number, then it will be treated as a partition number within
the supplied image. This means that, if you have an image of an entire disk in
‘disk.img’, then you can use this command to mount its second partition:
grub-mount -r 2 disk.img mount-point
g
‘--verbose’
Print verbose messages.

Chapter 29: Invoking grub-probe 119

29 Invoking grub-probe

The program grub-probe probes device information for a given path or device.

grub-probe --target=fs /boot/grub
grub-probe --target=drive --device /dev/sdal

grub-probe must be given a path or device as a non-option argument, and also
accepts the following options:

‘-=help’ Print a summary of the command-line options and exit.

‘——version’
Print the version number of GRUB and exit.

—q’

‘~-device’
If this option is given, then the non-option argument is a system device name
(such as ‘/dev/sdal’), and grub-probe will print information about that de-
vice. If it is not given, then the non-option argument is a filesystem path (such
as ‘/boot/grub’), and grub-probe will print information about the device con-
taining that part of the filesystem.

‘-m file’

‘-—device-map=file’
Use file as the device map (see Section 4.3 [Device map], page 13) rather than
the default, usually ‘/boot/grub/device.map’.

‘-t target’

‘-—target=target’
Print information about the given path or device as defined by target. The
available targets and their meanings are:

‘fs’ GRUB filesystem module.
‘fs_uuid’ Filesystem Universally Unique Identifier (UUID).
‘fs_label’
Filesystem label.
‘drive’ GRUB device name.
‘device’ System device name.

‘partmap’ GRUB partition map module.

‘abstraction’
GRUB abstraction module (e.g. ‘lvm’).

‘cryptodisk_uuid’
Crypto device UUID.

‘msdos_parttype’
MBR partition type code (two hexadecimal digits).

‘hints_string’
A string of platform search hints suitable for passing to the search
command (see Section 16.3.64 [search], page 77).

120 GNU GRUB Manual 2.02

‘bios_hints’
Search hints for the PC BIOS platform.

‘ieeel1275_hints’
Search hints for the IEEE1275 platform.

‘baremetal_hints’
Search hints for platforms where disks are addressed directly rather
than via firmware.

‘efi_hints’
Search hints for the EFI platform.

‘arc_hints’
Search hints for the ARC platform.

‘compatibility_hint’
A guess at a reasonable GRUB drive name for this device, which
may be used as a fallback if the search command fails.

‘disk’ System device name for the whole disk.
ey
--verbose’

Print verbose messages.

4

Chapter 30: Invoking grub-script-check 121

30 Invoking grub-script-check

The program grub-script-check takes a GRUB script file (see Section 6.2 [Shell-like script-

ing], page 24) and checks it for syntax errors, similar to commands such as sh -n. It may

take a path as a non-option argument; if none is supplied, it will read from standard input.
grub-script-check /boot/grub/grub.cfg

grub-script-check accepts the following options:
‘-=help’ Print a summary of the command-line options and exit.

‘——version’
Print the version number of GRUB and exit.

y

‘--verbose’
Print each line of input after reading it.

Appendix A: How to obtain and build GRUB 123

Appendix A How to obtain and build GRUB

Caution: GRUB requires binutils-2.9.1.0.23 or later because the GNU assembler
has been changed so that it can produce real 16bits machine code between
2.9.1 and 2.9.1.0.x. See http://sources.redhat.com/binutils/, to obtain
information on how to get the latest version.

GRUB is available from the GNU alpha archive site ftp://ftp.gnu.org/gnu/grub
or any of its mirrors. The file will be named grub-version.tar.gz. The current version is
2.02, so the file you should grab is:

ftp://ftp.gnu.org/gnu/grub/grub-2.02.tar.gz

To unbundle GRUB use the instruction:

zcat grub-2.02.tar.gz | tar xvf -

which will create a directory called ‘grub-2.02’ with all the sources. You can look
at the file ‘INSTALL’ for detailed instructions on how to build and install GRUB, but you
should be able to just do:

cd grub-2.02
./configure
make install
Also, the latest version is available using Git. See http://www.gnu.org/software/grub/grub-downloa
for more information.

http://sources.redhat.com/binutils/
ftp://ftp.gnu.org/gnu/grub
ftp://ftp.gnu.org/gnu/grub/grub-2.02.tar.gz
http://www.gnu.org/software/grub/grub-download.html

Appendix B: Reporting bugs 125

Appendix B Reporting bugs

These are the guideline for how to report bugs. Take a look at this list below before you
submit bugs:

1.

Before getting unsettled, read this manual through and through. Also, see the GNU
GRUB FAQ.

Always mention the information on your GRUB. The version number and the config-
uration are quite important. If you build it yourself, write the options specified to the
configure script and your operating system, including the versions of gcc and binutils.

If you have trouble with the installation, inform us of how you installed GRUB. Don’t
omit error messages, if any. Just ‘GRUB hangs up when it boots’ is not enough.

The information on your hardware is also essential. These are especially important:
the geometries and the partition tables of your hard disk drives and your BIOS.

If GRUB cannot boot your operating system, write down everything you see on the
screen. Don’t paraphrase them, like ‘The foo 0S crashes with GRUB, even though
it can boot with the bar boot loader just fine’. Mention the commands you ex-
ecuted, the messages printed by them, and information on your operating system in-
cluding the version number.

Explain what you wanted to do. It is very useful to know your purpose and your wish,
and how GRUB didn’t satisfy you.

If you can investigate the problem yourself, please do. That will give you and us much
more information on the problem. Attaching a patch is even better.

When you attach a patch, make the patch in unified diff format, and write ChangeLog
entries. But, even when you make a patch, don’t forget to explain the problem, so that
we can understand what your patch is for.

Write down anything that you think might be related. Please understand that we
often need to reproduce the same problem you encountered in our environment. So
your information should be sufficient for us to do the same thing—Don’t forget that we
cannot see your computer directly. If you are not sure whether to state a fact or leave
it out, state it! Reporting too many things is much better than omitting something
important.

If you follow the guideline above, submit a report to the Bug Tracking System.

Alternatively, you can submit a report via electronic mail to bug-grub@gnu.org, but we
strongly recommend that you use the Bug Tracking System, because e-mail can be passed
over easily.

Once we get your report, we will try to fix the bugs.

http://www.gnu.org/software/grub/grub-faq.html
http://www.gnu.org/software/grub/grub-faq.html
http://savannah.gnu.org/bugs/?group=grub
mailto:bug-grub@gnu.org

Appendix C: Where GRUB will go 127

Appendix C Where GRUB will go

GRUB 2 is now quite stable and used in many production systems. We are currently
working towards a 2.0 release.

If you are interested in the development of GRUB 2, take a look at the homepage.

http://www.gnu.org/software/grub/grub.html

Appendix D: Copying This Manual 129

Appendix D Copying This Manual

D.1 GNU Free Documentation License
Version 1.2, November 2002

Copyright (©) 2000,2001,2002 Free Software Foundation, Inc.
51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other functional and
useful document free in the sense of freedom: to assure everyone the effective freedom
to copy and redistribute it, with or without modifying it, either commercially or non-
commercially. Secondarily, this License preserves for the author and publisher a way
to get credit for their work, while not being considered responsible for modifications
made by others.

This License is a kind of “copyleft”, which means that derivative works of the document
must themselves be free in the same sense. It complements the GNU General Public
License, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because
free software needs free documentation: a free program should come with manuals
providing the same freedoms that the software does. But this License is not limited to
software manuals; it can be used for any textual work, regardless of subject matter or
whether it is published as a printed book. We recommend this License principally for
works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a
notice placed by the copyright holder saying it can be distributed under the terms
of this License. Such a notice grants a world-wide, royalty-free license, unlimited in
duration, to use that work under the conditions stated herein. The “Document”,
below, refers to any such manual or work. Any member of the public is a licensee, and
is addressed as “you”. You accept the license if you copy, modify or distribute the work
in a way requiring permission under copyright law.

A “Modified Version” of the Document means any work containing the Document or
a portion of it, either copied verbatim, or with modifications and/or translated into
another language.

A “Secondary Section” is a named appendix or a front-matter section of the Document
that deals exclusively with the relationship of the publishers or authors of the Document
to the Document’s overall subject (or to related matters) and contains nothing that
could fall directly within that overall subject. (Thus, if the Document is in part a
textbook of mathematics, a Secondary Section may not explain any mathematics.) The
relationship could be a matter of historical connection with the subject or with related
matters, or of legal, commercial, philosophical, ethical or political position regarding
them.

130

2.

GNU GRUB Manual 2.02

The “Invariant Sections” are certain Secondary Sections whose titles are designated, as
being those of Invariant Sections, in the notice that says that the Document is released
under this License. If a section does not fit the above definition of Secondary then it is
not allowed to be designated as Invariant. The Document may contain zero Invariant
Sections. If the Document does not identify any Invariant Sections then there are none.

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover
Texts or Back-Cover Texts, in the notice that says that the Document is released under
this License. A Front-Cover Text may be at most 5 words, and a Back-Cover Text may
be at most 25 words.

A “Transparent” copy of the Document means a machine-readable copy, represented
in a format whose specification is available to the general public, that is suitable for
revising the document straightforwardly with generic text editors or (for images com-
posed of pixels) generic paint programs or (for drawings) some widely available drawing
editor, and that is suitable for input to text formatters or for automatic translation to
a variety of formats suitable for input to text formatters. A copy made in an otherwise
Transparent file format whose markup, or absence of markup, has been arranged to
thwart or discourage subsequent modification by readers is not Transparent. An image
format is not Transparent if used for any substantial amount of text. A copy that is
not “Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include plain ASCII without
markup, Texinfo input format, LaTEX input format, SGML or XML using a publicly
available DTD, and standard-conforming simple HTML, PostScript or PDF designed
for human modification. Examples of transparent image formats include PNG, XCF
and JPG. Opaque formats include proprietary formats that can be read and edited
only by proprietary word processors, SGML or XML for which the DTD and/or
processing tools are not generally available, and the machine-generated HTML,
PostScript or PDF produced by some word processors for output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such following
pages as are needed to hold, legibly, the material this License requires to appear in the
title page. For works in formats which do not have any title page as such, “Title Page”
means the text near the most prominent appearance of the work’s title, preceding the
beginning of the body of the text.

A section “Entitled XYZ” means a named subunit of the Document whose title either
is precisely XYZ or contains XYZ in parentheses following text that translates XYZ in
another language. (Here XYZ stands for a specific section name mentioned below, such
as “Acknowledgements”, “Dedications”, “Endorsements”, or “History”.) To “Preserve
the Title” of such a section when you modify the Document means that it remains a
section “Entitled XYZ” according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that
this License applies to the Document. These Warranty Disclaimers are considered to
be included by reference in this License, but only as regards disclaiming warranties:
any other implication that these Warranty Disclaimers may have is void and has no
effect on the meaning of this License.

VERBATIM COPYING

Appendix D: Copying This Manual 131

You may copy and distribute the Document in any medium, either commercially or
noncommercially, provided that this License, the copyright notices, and the license
notice saying this License applies to the Document are reproduced in all copies, and
that you add no other conditions whatsoever to those of this License. You may not use
technical measures to obstruct or control the reading or further copying of the copies
you make or distribute. However, you may accept compensation in exchange for copies.
If you distribute a large enough number of copies you must also follow the conditions
in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly
display copies.
3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of
the Document, numbering more than 100, and the Document’s license notice requires
Cover Texts, you must enclose the copies in covers that carry, clearly and legibly, all
these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on
the back cover. Both covers must also clearly and legibly identify you as the publisher
of these copies. The front cover must present the full title with all words of the title
equally prominent and visible. You may add other material on the covers in addition.
Copying with changes limited to the covers, as long as they preserve the title of the
Document and satisfy these conditions, can be treated as verbatim copying in other
respects.

If the required texts for either cover are too voluminous to fit legibly, you should put
the first ones listed (as many as fit reasonably) on the actual cover, and continue the
rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100,
you must either include a machine-readable Transparent copy along with each Opaque
copy, or state in or with each Opaque copy a computer-network location from which
the general network-using public has access to download using public-standard network
protocols a complete Transparent copy of the Document, free of added material. If
you use the latter option, you must take reasonably prudent steps, when you begin
distribution of Opaque copies in quantity, to ensure that this Transparent copy will
remain thus accessible at the stated location until at least one year after the last time
you distribute an Opaque copy (directly or through your agents or retailers) of that
edition to the public.

It is requested, but not required, that you contact the authors of the Document well
before redistributing any large number of copies, to give them a chance to provide you
with an updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions
of sections 2 and 3 above, provided that you release the Modified Version under precisely
this License, with the Modified Version filling the role of the Document, thus licensing
distribution and modification of the Modified Version to whoever possesses a copy of
it. In addition, you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the
Document, and from those of previous versions (which should, if there were any,

132

O

N.

0.

GNU GRUB Manual 2.02

be listed in the History section of the Document). You may use the same title as
a previous version if the original publisher of that version gives permission.

List on the Title Page, as authors, one or more persons or entities responsible for
authorship of the modifications in the Modified Version, together with at least five
of the principal authors of the Document (all of its principal authors, if it has fewer
than five), unless they release you from this requirement.

State on the Title page the name of the publisher of the Modified Version, as the
publisher.

Preserve all the copyright notices of the Document.

Add an appropriate copyright notice for your modifications adjacent to the other
copyright notices.

Include, immediately after the copyright notices, a license notice giving the public
permission to use the Modified Version under the terms of this License, in the form
shown in the Addendum below.

Preserve in that license notice the full lists of Invariant Sections and required Cover
Texts given in the Document’s license notice.

Include an unaltered copy of this License.

Preserve the section Entitled “History”, Preserve its Title, and add to it an item
stating at least the title, year, new authors, and publisher of the Modified Version
as given on the Title Page. If there is no section Entitled “History” in the Docu-
ment, create one stating the title, year, authors, and publisher of the Document
as given on its Title Page, then add an item describing the Modified Version as
stated in the previous sentence.

Preserve the network location, if any, given in the Document for public access to
a Transparent copy of the Document, and likewise the network locations given in
the Document for previous versions it was based on. These may be placed in the
“History” section. You may omit a network location for a work that was published
at least four years before the Document itself, or if the original publisher of the
version it refers to gives permission.

For any section Entitled “Acknowledgements” or “Dedications”, Preserve the Title
of the section, and preserve in the section all the substance and tone of each of the
contributor acknowledgements and/or dedications given therein.

Preserve all the Invariant Sections of the Document, unaltered in their text and
in their titles. Section numbers or the equivalent are not considered part of the
section titles.

Delete any section Entitled “Endorsements”. Such a section may not be included
in the Modified Version.

Do not retitle any existing section to be Entitled “Endorsements” or to conflict in
title with any Invariant Section.

Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify
as Secondary Sections and contain no material copied from the Document, you may at
your option designate some or all of these sections as invariant. To do this, add their

Appendix D: Copying This Manual 133

titles to the list of Invariant Sections in the Modified Version’s license notice. These
titles must be distinct from any other section titles.

You may add a section Entitled “Endorsements”, provided it contains nothing but
endorsements of your Modified Version by various parties—for example, statements of
peer review or that the text has been approved by an organization as the authoritative
definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up
to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified
Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be
added by (or through arrangements made by) any one entity. If the Document already
includes a cover text for the same cover, previously added by you or by arrangement
made by the same entity you are acting on behalf of, you may not add another; but
you may replace the old one, on explicit permission from the previous publisher that
added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission
to use their names for publicity for or to assert or imply endorsement of any Modified
Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License,
under the terms defined in section 4 above for modified versions, provided that you
include in the combination all of the Invariant Sections of all of the original documents,
unmodified, and list them all as Invariant Sections of your combined work in its license
notice, and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical
Invariant Sections may be replaced with a single copy. If there are multiple Invariant
Sections with the same name but different contents, make the title of each such section
unique by adding at the end of it, in parentheses, the name of the original author or
publisher of that section if known, or else a unique number. Make the same adjustment
to the section titles in the list of Invariant Sections in the license notice of the combined
work.

In the combination, you must combine any sections Entitled “History” in the vari-
ous original documents, forming one section Entitled “History”; likewise combine any
sections Entitled “Acknowledgements”, and any sections Entitled “Dedications”. You
must delete all sections Entitled “Endorsements.”

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released
under this License, and replace the individual copies of this License in the various
documents with a single copy that is included in the collection, provided that you
follow the rules of this License for verbatim copying of each of the documents in all
other respects.

You may extract a single document from such a collection, and distribute it individu-
ally under this License, provided you insert a copy of this License into the extracted
document, and follow this License in all other respects regarding verbatim copying of
that document.

134

7.

10.

GNU GRUB Manual 2.02

AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent
documents or works, in or on a volume of a storage or distribution medium, is called
an “aggregate” if the copyright resulting from the compilation is not used to limit the
legal rights of the compilation’s users beyond what the individual works permit. When
the Document is included in an aggregate, this License does not apply to the other
works in the aggregate which are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document,
then if the Document is less than one half of the entire aggregate, the Document’s Cover
Texts may be placed on covers that bracket the Document within the aggregate, or the
electronic equivalent of covers if the Document is in electronic form. Otherwise they
must appear on printed covers that bracket the whole aggregate.

TRANSLATION

Translation is considered a kind of modification, so you may distribute translations
of the Document under the terms of section 4. Replacing Invariant Sections with
translations requires special permission from their copyright holders, but you may
include translations of some or all Invariant Sections in addition to the original versions
of these Invariant Sections. You may include a translation of this License, and all the
license notices in the Document, and any Warranty Disclaimers, provided that you
also include the original English version of this License and the original versions of
those notices and disclaimers. In case of a disagreement between the translation and
the original version of this License or a notice or disclaimer, the original version will
prevail.

If a section in the Document is Entitled “Acknowledgements”, “Dedications”, or “His-
tory”, the requirement (section 4) to Preserve its Title (section 1) will typically require
changing the actual title.

TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly
provided for under this License. Any other attempt to copy, modify, sublicense or
distribute the Document is void, and will automatically terminate your rights under
this License. However, parties who have received copies, or rights, from you under this
License will not have their licenses terminated so long as such parties remain in full
compliance.

FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free
Documentation License from time to time. Such new versions will be similar in spirit
to the present version, but may differ in detail to address new problems or concerns.
See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document
specifies that a particular numbered version of this License “or any later version”
applies to it, you have the option of following the terms and conditions either of that
specified version or of any later version that has been published (not as a draft) by
the Free Software Foundation. If the Document does not specify a version number of
this License, you may choose any version ever published (not as a draft) by the Free
Software Foundation.

http://www.gnu.org/copyleft/

Appendix D: Copying This Manual 135

D.1.1 ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the
document and put the following copyright and license notices just after the title page:

Copyright (C) year your name.

Permission is granted to copy, distribute and/or modify this document

under the terms of the GNU Free Documentation License, Version 1.2

or any later version published by the Free Software Foundation;

with no Invariant Sections, no Front-Cover Texts, and no Back-Cover

Texts. A copy of the license is included in the section entitled ‘‘GNU

Free Documentation License’’.
If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the

“with...Texts.” line with this:

with the Invariant Sections being list their titles, with
the Front-Cover Texts being list, and with the Back-Cover Texts
being list.
If you have Invariant Sections without Cover Texts, or some other combination of
the three, merge those two alternatives to suit the situation.
If your document contains nontrivial examples of program code, we recommend

releasing these examples in parallel under your choice of free software license, such as the
GNU General Public License, to permit their use in free software.

Index

Index

ACPL 65
authenticate i 66

B

background_color................... ... 66
background_image............................. 66
badram........ ... i 66
blocklist.......ooiiiiiiiii i 66
boot ... 66

A et 67
chainloaderccoiiiiiiiininnnnnnnn.. 67
CleaAT ottt 67
CIMOSCLEATL. . oottt t ettt ie e e e 67
CMOSEESt oottt 67
CMOS .o 67
et 11 o TP 67
configfile................ L 68
cpuid ... 68
o3 ol 2P 68
cryptomount L 68

date ..o 68
devicetree.o 69
distrust. ..ot 69
drivemap................. .. i 69

€ChO . 69
BVAL o e 70
@XPOTL .o 70

G

gettext 70
BPESYNC . .o 70

137
H
halt ..o 71
hashsum......... ... 71
help ... 71
I
Initrd ... 71
Initrdl6. 71
ANSMOA . oot 72
K
keystatus............... ... 72
L
danUX oo 72
1inux16 .. 72
1iSt _@nV . ittt 72
list_trusted i 73
1oad_ NV ...t e 73
loadfontcoiiiii 73
loopback. ... 73
LS e e 74
Isfontsot 74
1SMOd . oot 74
M
MASSUM . oottt ettt 74
MENUENELY ..\ttt 63
MOdULe ..ottt 74
multibooto 74
N
nativedisk........coiiiiiiiii 75
net_add_addr 84
net_add_dns 84
net_add_route 84
net_bootp.... ... 85
net_del_addr 85
net_del_dns i 85
net_del_route............ ... i, 85
net_get_dhcp_option................., 86
net_ipv6_autoconf............. 86
net_ls_addr i 86
net_ls_cardsiiiiiiii 86
net_1s_dnsS...... ..ot 86
net_ls_routesiiiiiiiiiiii 86
net_nslookupcoovviiiiiiiiiiii., 86
NOTMAL . o\ttt ettt et 75

normal _eXit ...vviiiit e 75

138

P

Parttool. 75
PASSWOLd . .\ttt 76
password_pbkdf2...........l 76
Play ... 76
PIODE .. 76
pxe_unload..............ol 76

TEAA « v vttt 76
TEDOOt ot 77
TEEEXD « v vt vttt "
g 111111 Yo PP 7

S

SAVE @IV o\ ittt ittt et e 77
SEATCH ..o 7
SendKey 78
Serial ... 64
== 2 80
shalsum......... ... 80
Sha2bBSum.oir e 81
Shabl2SUm. . ..ot 81

GNU GRUB Manual 2.02

SOUTCE « ottt et ettt ettt 81
submenu.......... ... 64

T

terminal _input.......... 64
terminal _output............. ...l 64
terminfo...... 65
== v 81
U .« ettt 83
BrUSE .o 83

verify_detached................ 83
videoinfo......... il 83

X

xen_hypervisor.............. ...l 84
xen_initrd.......... ... 84
XeN_LANUX .ottt 84
KO _ XS . ot ettt et et e e e e 84

	Introduction to GRUB
	Overview
	History of GRUB
	Differences from previous versions
	GRUB features
	The role of a boot loader

	Naming convention
	OS-specific notes about grub tools
	Installation
	Installing GRUB using grub-install
	Making a GRUB bootable CD-ROM
	The map between BIOS drives and OS devices
	BIOS installation

	Booting
	How to boot operating systems
	How to boot an OS directly with GRUB
	Chain-loading an OS

	Loopback booting
	Some caveats on OS-specific issues
	GNU/Hurd
	GNU/Linux
	NetBSD
	DOS/Windows

	Writing your own configuration file
	Simple configuration handling
	Writing full configuration files directly
	Multi-boot manual config
	Embedding a configuration file into GRUB

	Theme file format
	Introduction
	Theme Elements
	Colors
	Fonts
	Progress Bar
	Circular Progress Indicator
	Labels
	Boot Menu
	Styled Boxes
	Creating Styled Box Images

	Theme File Manual
	Global Properties
	Format
	Global Property List
	Component Construction
	Component List
	Common properties

	Booting GRUB from the network
	Using GRUB via a serial line
	Using GRUB with vendor power-on keys
	GRUB image files
	Core image size limitation
	Filesystem syntax and semantics
	How to specify devices
	How to specify files
	How to specify block lists

	GRUB's user interface
	The flexible command-line interface
	The simple menu interface
	Editing a menu entry

	GRUB environment variables
	Special environment variables
	biosnum
	check_signatures
	chosen
	cmdpath
	color_highlight
	color_normal
	config_directory
	config_file
	debug
	default
	fallback
	gfxmode
	gfxpayload
	gfxterm_font
	grub_cpu
	grub_platform
	icondir
	lang
	locale_dir
	menu_color_highlight
	menu_color_normal
	net_<interface>_boot_file
	net_<interface>_dhcp_server_name
	net_<interface>_domain
	net_<interface>_extensionspath
	net_<interface>_hostname
	net_<interface>_ip
	net_<interface>_mac
	net_<interface>_next_server
	net_<interface>_rootpath
	net_default_interface
	net_default_ip
	net_default_mac
	net_default_server
	pager
	prefix
	pxe_blksize
	pxe_default_gateway
	pxe_default_server
	root
	superusers
	theme
	timeout
	timeout_style

	The GRUB environment block

	The list of available commands
	The list of commands for the menu only
	menuentry
	submenu

	The list of general commands
	serial
	terminal_input
	terminal_output
	terminfo

	The list of command-line and menu entry commands
	[
	acpi
	authenticate
	background_color
	background_image
	badram
	blocklist
	boot
	cat
	chainloader
	clear
	cmosclean
	cmosdump
	cmostest
	cmp
	configfile
	cpuid
	crc
	cryptomount
	date
	linux
	distrust
	drivemap
	echo
	eval
	export
	false
	gettext
	gptsync
	halt
	hashsum
	help
	initrd
	initrd16
	insmod
	keystatus
	linux
	linux16
	list_env
	list_trusted
	load_env
	loadfont
	loopback
	ls
	lsfonts
	lsmod
	md5sum
	module
	multiboot
	nativedisk
	normal
	normal_exit
	parttool
	password
	password_pbkdf2
	play
	probe
	pxe_unload
	read
	reboot
	regexp
	rmmod
	save_env
	search
	sendkey
	set
	sha1sum
	sha256sum
	sha512sum
	sleep
	source
	test
	true
	trust
	unset
	uppermem
	verify_detached
	videoinfo
	xen_hypervisor
	xen_linux
	xen_initrd
	xen_xsm

	The list of networking commands
	net_add_addr
	net_add_dns
	net_add_route
	net_bootp
	net_del_addr
	net_del_dns
	net_del_route
	net_get_dhcp_option
	net_ipv6_autoconf
	net_ls_addr
	net_ls_cards
	net_ls_dns
	net_ls_routes
	net_nslookup

	Internationalisation
	Charset
	Filesystems
	Output terminal
	Input terminal
	Gettext
	Regexp
	Other

	Security
	Authentication and authorisation in GRUB
	Using digital signatures in GRUB

	Platform limitations
	Outline
	Supported boot targets
	Boot tests

	Error messages produced by GRUB
	GRUB only offers a rescue shell

	Invoking grub-install
	Invoking grub-mkconfig
	Invoking grub-mkpasswd-pbkdf2
	Invoking grub-mkrelpath
	Invoking grub-mkrescue
	Invoking grub-mount
	Invoking grub-probe
	Invoking grub-script-check
	How to obtain and build GRUB
	Reporting bugs
	Where GRUB will go
	Copying This Manual
	GNU Free Documentation License
	ADDENDUM: How to use this License for your documents

	Index

