
Mani Srivastava
UCLA - EE Department
mbs@janet.ucla.edu

H/W-S/W Co-design

The H/W-/S/W Co-Design Problem

■ Embedded systems employ a combination of
✦ application-specific h/w (boards, ASICs, FPGAs etc.)

– performance, low power
✦ s/w on prog. processors: DSPs, µcontrollers etc.

– flexibility, complexity

■ Increasingly on the same chip: System-on-a-chip

Application
Specific Gates

Processor
Cores

Analog
I/O

Memory

DSP
Code

A System on a Chip: a DSSS
Receiver

■ SC3001 DIRAC chip from Sirius Communications

Complexity and Heterogeneity

■ Heterogeneity within H/W & S/W parts as well
✦ S/W: control oriented, DSP oriented
✦ H/W: ASICs, COTS ICs

µcontroller

control panel

Real-time
OS

controller
processes

UI
processes

ASIC

Programmable
DSP

Programmable
DSP

DSP
Assembly

Code

DSP
Assembly

Code

Dual-ported
RAM CODEC

Example: A Robot Controller

TMS320C30
(33MHz)

DSP32C
(50 MHz)

SRAM
1 Mbyte

SRAM
256 Kbyte

Inter-Proc.
Commn.

2-Port RAM
Mailbox &
Semaphore

2-Port RAM
Mailbox &
Semaphore

Control

SRAM
1 Mbyte

SRAM
256 Kbyte

Inter-Proc.
Commn.

2-Port RAM
Mailbox&

Semaphore Control

+
VDI OS

DSP32C
(50 MHz)

+
VDI OS

+
SPOX OS

TMS320C30
(33MHz)

+
SPOX OS

VME Interface

Force
Sensor I/O
Processor
(FPGA)

Xmt/Rcv
Protocol

Processor
(ASIC)

Optical
Transmitter
& Receiver

Position &
Velocity
Sensing

Limit &
Proximity

Sensing

Fibre-Optic Link
to Robot Motor

Peripheral Board

Quadrature
Signals from

Optical Encoders

Signals from
Proximity & Joint

Limit Sensors

Signals from
Force/Torque
Sensing Wrist

TMS Module #1 TMS Module #2

(ASIC) (FPGA)

Trajectory
Processor

Jacobian
Processor

slave bus #2slave bus #1

VME bus

It is the S/W stupid!
Bottleneck not in H/W or ASIC

0
5

10
15
20
25
30
35
40
45

1980 1982 1984 1986 1988 1990 1992 1994

Hardware

Software

DoD Embedded System Costs

Bi
llio

n
$/

Ye
ar

And, the H/W-S/W Architecture...

■ A significant part of the problem is deciding
which parts should be in s/w on programmable
processors and which in specialized h/w

■ Lots of issues in this decision making...

Design of Embedded Systems
Today

■ Ad hoc approaches based on earlier experience
with similar products, & on manual design

■ H/W-S/W partitioning decided at the beginning,
and then designs proceed separately

■ CAD tools take care of h/w fairly well
■ But, S/W is a different story…

✦ HLLs such as C help, but can’t cope with complexity
Holy Grail: H/W-like synthesis & verification from a behavior

description of the whole system at a high level of
abstraction using formal computation models

The Holy Grail of Co-design...

■ H/W-like synthesis & verification based design
methodology

✦ system behavior described at a high level of
abstraction using formal computation model(s)

✦ decomposition into H/W and S/W based on trade-off
evaluations from behavioral description

– H/W & S/W design proceed in parallel with feedback
✦ final implementation made as much as possible using

automatic synthesis from high level of abstraction
– ensures “correct by construction” implementations

✦ simulation or verfication at higher levels of abstraction

All the “Co-” Buzz Words...

■ Co-design
✦ joint optimization of hardware and software

■ Co-synthesis
✦ synthesis assisting co-design

– mixed h.w-s.w design from (formal) specification
– rapid exploration of design alternatives
– enable exploration of architectural alternatives

■ Co-simulation
✦ simulation of mixed h/w and s/w systems

■ Co-specification
✦ specifying mixed h/w and s/w systems

■ Co-verification

Designing Embedded Systems
■ Modeling

◆ the system to be designed, and experimenting with
algorithms involved;

■ Refining (or “partitioning”)
◆ the function to be implemented into smaller, interacting

pieces;
■ HW-SW partitioning: Allocating

◆ elements in the refined model to either (1) HW units, or (2)
SW running on custom hardware or a general
microprocessor.

■ Scheduling
◆ the times at which the functions are executed. This is

important when several modules in the partition share a
single hardware unit.

■ Mapping (Implementing)
◆ a functional description into (1) software that runs on a

processor or (2) a collection of custom, semi-custom, or
commodity HW.

Processor
Analog I/O

Memory

ASIC

Environ
-ment

DSP
Code

Typical Co-design Methodology

Hardware
Synthesis

Architecture
Selection &

Mapping

Software
Synthesis

Board/chip
Generation

Software
Compilation

Kernels, libraries

System specification

System structure

Board/chip netlist Software code

Boards/chips Executable code

“IP” cores Architecture templates

Behavioral
Simulation

Architectural
Co-Simulation

Low-level
Co-Simulation

Some of the Key Problems

■ How to model complex/specify systems that will
map to hardware and software?

■ System level algorithm optimizations
■ What are appropriate system architecture models?
■ How to partition functions into h/w & s/w?
■ How to synthesize s/w? Performance estimation?

Impact of OS? Retargetable compilation?
■ Synthesis of light-weight app-specific kernels
■ What processor to use for s/w? Synthesize?
■ How to interface h/w & s/w components?
■ How to efficiently simulate h/w & s/w together?

Specification & Modeling

■ Design process is a sequence of steps that
transform (‘refine”) a more abstract representation
+ constraints into a more detailed one

✦ “input” representation: specification
✦ final representation: implementation

■ Representations based on precise mathematical
meaning (computation model) are good

✦ one can verify and synthesize with guarantees
■ But which representation to use for system

behavior at high level of abstraction?
✦ No single one works well...

What representation for system
behavior?

■ Many choices… C? DE such as VHDL? SDFG?
FSMs? CFSMs? Kahn’s process networks?
Hoare’s CSP? Milner’s CCS? Petri nets?
Synchronous/reactive languages?

✦ But, no single model works well always
■ Key issues:

✦ complexity or compactness of representation itself
✦ ability to naturally express different parts of the

system
✦ efficient executability

Single Unified Approach

■ Example: choose between VHDL and C for a
mixed hardware-software design

✦ software in VHDL or hardware in C
■ Or, bloat VHDL to include a subset for software

specification
✦ e.g. make ADA a subset of VHDL
✦ e.g. enhance C with hardware modeling constructs

Mixed Approach: Heterogeneous
Models of Computation

■ System viewed as a “composition” of entities
whose behavior are described in potentially
different models of computation

✦ concurrent communication
✦ hierarchical containment

■ Key problem is defining interaction between
fundamentally different models of computation

✦ not just a language interfacing issue…
– e.g. what if two VHDL entities call C procedures that

interact?

Network of Processes

■ Set of communicating processes with
heterogeneous computation models

✦ FSMs, sequential processes, SDFG etc.
■ Well-defined communication structure

✦ e.g. channels connecting read & write ports
– read protocol, write protocol, message type, buffer depth

P1 P2
Buffer depth:
 - zero
 - >0, finiteOutput port protocol:

 - master vs. slave
 - block, overwrite, ignore

Input port protocol:
 - master vs. slave
 - block, repeat, ignore

Ptolemy’s Approach

■ Hierarchical framework
■ Specification in one model of computation can

contain a primitive that is internally represented
in another model of computation

✦ “worm holes” connect different domains

Validation

■ Process of determining that a design is correct…
✦ e.g.checking if there would be deadlock problem

■ Three approaches:
✦ simulation

– still the main tool to validate a system model
✦ emulation

– became viable because of reconfigurable hardware
platforms, such as Quickturn

✦ formal verification
– easier in case of embedded systems than for, say,

generic software programs… e.g. due to finite-state
nature etc.

Validation via Simulation

■ Main challenge is heterogeneity:
✦ both hardware and software components need to

be simulated together
■ Co-simulation problem!

✦ Conflicting requirements
– execute software as fast as possible, often on a host

machine that may be faster than the embedded CPU
and usually quite different from it

– to keep hardware and software simulations
synchronized so that they interact just as they would
in the real system

Typical Unified Approach to
Co-simulation

■ General purpose simulator (e.g. VHDL)
✦ simulate a model of target CPU executing the S/W

■ Different CPU models
✦ gate-level models
✦ instruction-set architecture models augmented with

hardware interfaces to couple to logic models
✦ bus functional models of CPU interface - no real

program is run, but traces or stochastic traffic used
✦ translation-based models convert to native code

for processor on which simulator is running - need
to preserve timing info & coupling to logic models

✦ emulation used when performance needed

More Distributed Approaches to
Co-simulation

■ Hardware simulator process loosely links to one or
more software processes

■ Relative clocks of S/W and H/W simulations need
to be synchronized

✦ cycle-by-cycle
✦ via handshaking
✦ S/W is master, H/W is slave

– S/W simulator sends message to H/W simulator which
then either catches up or rolls back (via check-pointing)

✦ H/W is master, S/W is slave
– H/W simulator directly calls communication procedures

which in turn call user software code

Validation via Formal Verification

■ Mathematically check whether the behavior of a
system, described in a formal model, satisfies a
given property, also given using a formal model

✦ ability to do verification depends on the model of
computation (affects decidability, complexity
bounds, etc.)

■ Specification vs. Implementation Verification
✦ former is checking abstract properties of a high

level model
✦ latter is checking if a low-level model correctly

implements a high level model, or satisfies some
implementation dependent property

Synthesis

■ Refine an abstract specification into a less
abstract one

■ Combination of three steps:
✦ mapping to architecture

– general structure of implementation is chosen
✦ partitioning

– sections of specifications are bound to architectural
units

✦ hardware and software synthesis
– details of units are filled out
– distinction between synthesis & compilation

Mapping from Specification to
Architecture

■ Support designer in choosing the right mix of
components and implementation technologies

■ Input: functional specification
Output: architecture + assignment of functions to
architecture

■ Architecture is generally composed of
✦ H/W components (microprocessors, microcontrollers,

memories, ASICs, FPGAs etc.)
✦ S/W components (device drivers, OS etc.)
✦ Interconnect mediua (busses, shared memories etc.)

Mapping from Specification to
Architecture (contd.)

■ Cost function optimized by mapping process
✦ mix of time, area, cost, power etc.

■ Current synthesis-based methods impose
restriction on target architectures to make mapping
problem manageable

✦ libraries of pre-defined components
✦ no synthesis of memory hierarchy or I/O subsystems

based on standard components
✦ often communication mechanisms also standardized

– some work on “interface synthesis”

Partitioning in Embedded
Systems

■ Interesting because of mix of H/W and S/W
■ Four main characteristics of various schemes

✦ Specification model supported
– HDL-based, graph-based

✦ Granularity
– task, operation, operation hierarchy

✦ Cost function
– profiling, synthesis

✦ Algorithm
– greed heuristics, clustering methods, iterative

improvement, ILP

Many Partitioning Schemes...

■ Examples:
✦ all H/W initially, move selected to S/W [Gupta et. al.]
✦ all S/W initially, move selected to H/W [Ernst et. al.]
✦ others...

■ But, no clear winner
✦ complex problem, linked to scheduling
✦ hard to do an exact formulation with realistic cost

estimate of communication overhead etc.
✦ many people believe that this is best done manually

– Berkeley’s POLIS, yours truly...

Hardware & Software Synthesis

■ Realize specification with minimum cost
✦ given specification, architecture, and mapping

■ Done after partitioning, usually
✦ sometime before partitioning to provide cost estimates

■ Typically S/W is assumed to run on off-shelf
processors

✦ de-couples H/W and S/W design problems
✦ also, lower cost
✦ but, some allow simultaneous design of S/W and

processor it will run on...

Application-Specific Instruction
Processors (ASIPs)

■ Processors with instruction-sets tailored to
specific applications or application domains

✦ instruction-set generation as part of synthesis
■ Pluses:

✦ customization yields lower area, power etc. while r
■ Minuses:

✦ higher h/w & s/w development overhead
– design, compilers, debuggers
– higher time to market

ASIPs vs.
General Purpose Processors

■ Important issues in GPPs:
✦ backward compatibility
✦ compiler support
✦ optimal performance on wide variety of apps

■ Important issue in embedded systems
✦ addition of new functionality in future
✦ user interaction
✦ satisfying timing constraints

■ ASIPs are a compromise between ASICs & GPPs
✦ FPGAs are another option!

The Old and the New

■ H/W synthesis for application-specific hardware
(on ASICs, FPGAs etc.)

✦ classical high-level synthesis problem
– Miodrag’s recent lectures...

■ Software synthesis
✦ relatively new problem
✦ VERY hard for general-purpose computing

– failures led to suspicion
✦ but easier in embedded systems

– S/W is constrained due to real-time & physical issues
– often no virtual memory, no dynamic task creation or

memory allocation, even no stack etc.

“CAD” Methodology for Software
in Embedded Systems

■ Current practices are ad-hoc
✦ art form: hand-tuned implementations by gurus
✦ “reworking” and “debugging” is hard
✦ often “single task” with interrupt handlers
✦ reuse (object technologies) helpful but...

■ Software synthesis
✦ software generation from abstract models by using

CAD tools that do optimizations for power, size etc.
✦ code generation: retargetable compilation,

processor descriptions, under timing constraints
✦ performance estimation: power, time etc.

Issues in Software Synthesis

■ Specification formalism
■ Interfacing mechanisms (to S/W and to H/W)

✦ none, synthesized, device-driver synthesis
■ Constraint granularity

✦ task, operation
■ When is scheduling done

✦ static, quasi-static, dynamic etc.
■ Scheduling method

✦ RMA, EDF, DMA etc.
✦ domain-specific scheduling algorithms

Other Issues...

■ Software Analysis: estimate “cost” of S/W
✦ time

– techniques applied from H/W CAD to detect false paths
✦ power estimation

■ Optimal layout of data structures
■ Interfacing H/W and S/W

✦ device driver and interface logic synthesis
■ Processors with peripheral devices

