
Final Exam
• You have to solve all problems in group of problems 1 - 10. If you solve them

correctly you have a grade of A+
• Any number of additional problems can be solved for additional credit.
• Each problem is assigned certain number of points. The total of points

determines the grade.

• The conditional phase shift that maps |0> to |0> and when j
≠0  | j > to -| j >. Show that the unitary operator
corresponding to this is

    where I is the identity transformation

I−002

Problem 1.Problem 1.

5 points



Solution to Problem 1Solution to Problem 1
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You can check from definition that this matrix is unitary, maps |0> to |0>, and maps |j> to -|j>

As an example:
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Problem 2. Quantum
Dot Cellular
Automata, Davio
Gates and Lattices.

• Be able to observe here the
following:

• the majority gate
• the inverter
• the fan-out
• the cross-over
• the way of laying out gates

and connecting them that
accommodates for inverters
in the wires.

• The timing for Cellular
Automata model



Problem 2 (cont)
• 1. Given is a quantum dot circuit from Figure. 2. Draw Karnaugh

maps and write the functions for each gate. This way you will
explain how function S is created using majorities. (Function Ci is
easy).

• 2. Use the synthesis method that you found by an analysis in point 1
to realize the function of Shannon Gate (Shannon Expansion).How
many gates you need at the minimum? Remember that the cell
should be stackable to regular structures such as lattices

• 3. Show how the Shannon Lattice can be realized in Quantum Dot
logic using the Shannon gates as realized in point 2. Use grid paper
and be neat to show exact timing. Annotate functions of each gate,
including inverters.

• 4. Show how function F = F=B+B’(AC+A’C’) is realized in this
lattice. You can use the block scheme and not a detailed schematics
to represent the Shannon gate in this lattice.

20 points



Solution to Problem 2.

Please observe the
dotting for each type of
element, wire, gate or
intersection of wires. We
will use the same in next
figures.

Nobody even tried to solve this
problem so I am not showing the
solution. However, to help you think
about this problem, I show below
how the Shannon Lattice can be
realized. If you then go back to
lectures and read about Davio gates
you will figure out how to realize
Davio gate from majorities. This can
be done in several ways.



0

Control
variable A

1

AND of
A and B

AND of
A’ and C

Data
variable B

Data
variable C

OR of
two
ANDs

inverter

Use dotting like in
previous schematics

This diagram shows a multiplexer with
vertical control variable, prepared for
stacking in a regular structure
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Variable A

Variable B

Variable A

Part of a regular tissue
(fabric) for Shannon Lattice
using Quantum Dot Cellular
Automata

Detailed
layout

Schematics of this layout
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Calculate the eigenvalues and eigenvectors associated
with the following matrix
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Problem 3.Problem 3.

10 points



Solution to Problem 3Solution to Problem 3
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Eigenvalues given by
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Eigenvectors given by
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From
above we
get:

Eigenbasis is found from
the above matrix equation



Eigenvectors

Eigenbasis
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Eigenbasis of B, eigenvalue λ= -1
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Problem 4.Problem 4. Set finding problems like Petrick Function,
Solving Boolean Equations, Graph Coloring, Set covering

• These problems are finding a subset of certain set. We illustrated
pipelined processors for some of them. We showed also a binary
tree architecture for one of these problems.

• Discuss a pipelined architecture for solving any of the above
problems.

• Draw the pipeline stage, the registers and logic blocks in it.
• Detailed specification of control on logic level is not required.

Show example of operation. Discuss the efficiency of your
approach. Compare to purely software approach.

20 points



Solution to Problem 4. SAT problemSolution to Problem 4. SAT problem
• Draw the pipeline stage, the registers and logic blocks in it.
• Detailed specification of control on logic level is not required. Show example of operation. Discuss

the efficiency of your approach. Compare to purely software approach.

We want to find a product term of literals that satisfies the product of sums of literals
satisfiability formula.

(a+b’+c’+e)(a’+b+c)(a+b’+c’+d)(b+c’+d’+f’) = 1
Example:

The above formula is satisfied by  a product b’a’c’.
The idea of our pipelined processor is a simplification of the processor to solve satisfiability with least
product term cost. Each processor has one term. The solution candidate is a literal product term that is
forwarded from left to right. Suppose a is generated randomly to satisfy the first sum term. It is send to the
right to processor that includes term 2. In this term the variable a is negated so it must be removed from the
set of candidates. The candidates are b and c. Randomly one of them, say b, is generated and added to the
solution candidate. Now, after leaving term 2, the solution candidate is ab. In term 3 a is already present, so
no literal is added to the solution candidate when passing this processor. The same situation is in term 4, so
ab is generated as a solution when it leaves processor 4. In some big problems there is no satisfiable
product or it is very hard to find. So we use pipelining. When the first solution candidate leaves processor
3, the second solution candidate leaves processor 2 and the third solution candidate leaves processor 1.

term1 term2 term3



Solution to Problem 4. SAT problemSolution to Problem 4. SAT problem
(a+b’+c’+e)      (a’+b+c)      (a+b’+c’+d)      (b+c’+d’+f’)

Processor 1 Processor 2 Processor 3 Processor 4

Term= a+b’+c’+e Term= a’+b+c Term= a+b’+c’+d Term= b+c’+d’+f

Sol_cand = a

Lit_cand = b+c

Sol_cand = ab Sol_cand = ab Sol_cand = ab

Solution 1=ab

a is included  b is included

Processor 1 Processor 2 Processor 3 Processor 4

Term= a+b’+c’+e Term= a’+b+c Term= a+b’+c’+d Term= b+c’+d’+f

Sol_cand = c’

Lit_cand = a’+c

Sol_cand = cb’ Sol_cand = a’c’ Sol_cand = ecdf

Solution 1=ab

c’ is included  Lit_cand=b+f

This figure explains the main idea of operation

Lit_cand = a+b’+c’+e

Lit_cand = a+b’+c’+e

Time = 1 Time = 2 Time = 3 Time = 4

This figure shows snapshot of pipelining at the end of time  moment 4

Solution2=a’c

Solution3=ab

Solution4=ecdf



Now that we understand the principle and the pipelining we can write
the control and create the data path for each processor.

Read Sol_Cand from left

Sol_Cand ∩ Term ≠ ∅
yes

Lit_Cand := Sol_Cand ∩  Term

no

Sol_cand := RANDOM (Lit_Cand) ∪  Sol_Cand

Do nothing (for synchronization in
pipeline)

Do nothing (for synchronization in
pipeline)

synchronized

Pulse 1

Pulse 2

Pulse 3

After  the first pulse all processors have their
solution candidates in the Sol_Cand registers

In thesecond pulse all
processors have their literal
candidates ready to be
selected from

After  the third pulse all processors have their
NEW and (if necessary) updated solution
candidates in the Sol_Cand registers

Update of solution
candidates No update of solution

candidates

Selected litearal already
exists in the term, do
nothing

Create a set of candidates
of literals to choose

Update the solution candidates by
adding the randomly selected non-
cancelled literal from Lit_Cand

C1

C2

C3

p



Details of the design
• Encoding of the sets in positional notation:

10 encodes literal a’
01 encodes literal a
00 or 11 encodes literal absent

Encoding of a’b’c e

a      b       c      d     e
1  0  1  0  0  1  0  0  0  1

a      b       c      d     e
1  0  1  0  0  1  0  0  0  1

a      b       c      d     e
1  0  0  0  0  0  0  0  1  0

Term a’ + b’ + c + e

∩

a      b       c      d     e
1  0  0  0  0  0  0  0  0  0

=
Sol_Cand = a’ + e’

Sol_Cand ∩ Term ≠ ∅

This slide
explains how to
create
intersection in
one pulse using
special
encoding of
boolean data

The
same

Absent represented as zeros

Logic operation 1



Details of the design
Encoding of a’b’c e

a      b       c      d     e
1  0  1  0  0  1  0  0  0  1

a      b       c      d     e
1  0  1  0  0  1  0  0  0  1

a      b       c      d     e
0  1  1  1  1  1  1  1  1  0

Term a’ + b’ + c + e

∩

a      b       c      d     e
0  0  1  0  0  1  0  0  0  0

=
Sol_Cand = a + e’

This slide
explains how to
create set of
literal
candidates

Lit_Cand := Sol_Cand ∩ Term

Lit_Cand = b’ + c

Term a’ + b’ + c + e

Opposing polarity literals
are cancelled

b’ + c

Absent represented as ones

Logic operation 2



Sol_Cand ∩ Term ≠ ∅Sol_Cand ∩  Term

C2

C3

p

C1
Term

Lit_Cand

Sol_Cand

Sol_Cand

Logic operation 2
Logic operation 1

Left
processor

Current
processor

Bit by bit or as a set union

Random Generator in
positional notationThe next stage is to use

standard design
procedures to replace
signals C1 and C3
controlled data path with
a mux and to generate
FSM with inputs start,
and p and outputs C1, C2,
and C3.

To right
processor

Registers in yellow,
combinational blocks are
white, clocks not shown.

Efficiency: a new
solution candidate is
created at every main
clock pulse. Such
machine is thus very fast
but also very expensive,
only few SAT engines
exist in the world.



Problem 5.Problem 5. Discuss Systolic or other architecture to solve
the Graph Closure problem.

• Graph is represented as an incidence matrix. Find its closure.
• Discuss a pipelined, systolic, cellular, DNA or any other architecture for solving

any of the above problems. Any type of architecture discussed in the class can be
used, except of standard Von Neumann Processor

• Draw the data flow, the blocks, the registers and logic blocks.
• Explain how the control works, draw diagram or pseudocode or state machine.
• Detailed specification of control on logic level is not required.
• Show example of operation.
• Discuss the efficiency of your approach. Compare to purely software approach.

20 points



Solution to Problem 5.Solution to Problem 5.

1 1 0  1 0 0
1 1 1  0 0 0
0 1 1  0 0 0
1 0 0  1 0 0
0 0 0  0 1 1
0 0 0  0 1 1

a
b
c
d
e
f

a  b  c  d  e f
a b

c

d

e

graph
Its incidence matrix M

f

Multiplying
the incidence
matrix by itself
we get:

1 1 1  1 0 0
1 1 1  1 0 0
1 1 1  0 0 0
1 1 0  1 0 0
0 0 0  0 1 1
0 0 0  0 1 1

a b

c

d

e

Graph of M*M

fThis matrix
corresponds to this
graph. New edges that
result as closures are
shown in red both in
graph and matrix

a
b
c
d
e
f

a  b  c  d  e f

We repeat
multiplication.



Multiplying the
incidence matrix
M*M by M again
we get:

1 1 1  1 0 0
1 1 1  1 0 0
1 1 1  1 0 0
1 1 1  1 0 0
0 0 0  0 1 1
0 0 0  0 1 1

a b

c

d

e

Graph of M*M*M

f

This matrix
corresponds to this
graph. New edges that
result as closures are
shown in blue both in
graph and matrix

a
b
c
d
e
f

a  b  c  d  e f

We repeat
multiplication
but the new
matrix
M*M*M*M is
the same as the
old matrix
M*M*M.
Thus we found
the closure.

A= Matrix M B=Matrix M

Systolic
matrix
multiplier



A= Matrix M B=Matrix M

Systolic
matrix
multiplier

Algorithm
c1. Copy Matrix M from registers A to registers B

c2. Multiply A and B, send result of multiplication
to A. Concurrently send the contents of registers A
to registers B.

c3. If A=B then stop else go to 2.

M                        M

M*M                  M

M*M*M            M*M

M*M*M*M      M*M*M

Registers A        Registers B

Not equal. Continue

Not equal. Continue

Equal. Stop

Systolic
comparator

Control
unit

c1

c2 (A=B)

c3

Detailed clocking not
shown.



• It remains to discuss how the subcircuits are designed.
• For matrix multiplication you can take the matrix multiplier from the class but the

operations of algebraic multiplication are replaced by Boolean ANDing and
operations of algebraic addition are replaced with Boolean ORing. This was the
creative part of your task. This also explains the principle why matrix
multiplication can be used in graph theoretical problems.

• Copying is just a register transfer.
• Operations in step 2 of algorithm can be pipelined, so multiplication and transfer

are done at the same time. Of course , the number of pulses depends on the size
of matrix M. See discussion in class material.

• The time to multiply matrices of size k is 3k-1 if the result remains in place.



• In lecture 1 on QC we saw that the action of the square-
root-of-NOT gate was to transform the |0> qubit to one
pointing anti-parallel with the y-axis (see below). 1.

• 1. Explain this. Use matrices and vectors.
• 2. Explain what happens if two such gates are connected

in series.

Problem 6.Problem 6.

x

y

z

x

y

z

NOT

10 points



• Recall that

Solution to Problem 6Solution to Problem 6
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2
1100 +• Explain why                 is entangled

Problem 7.Problem 7.

5 points



11100100

)10()10(

11011000

1010

yxyxyxyx

yyxxyx

+++=

+⊗+=⊗

Now for this to be decomposable the coefficients of |01>  and |10> must
be zero so x0y1  and x1y0 are zero, but this implies that either x0y0 or
x1y1 are zero so that the given state is not produced.

Thus  the entangled state cannot be written as a tensor product of
single-qubit states.

Solution   to Problem 7Solution   to Problem 7



Problem 8. A processor for merging.

• In class we designed several massively parallel
processors for sorting. Merging and sorting are
similar operations.

• Design a highly parallel processor for merging
two sets of numbers that removes repeated
numbers from the final solution. It can be a
systolic, combinational, Cellular or any other
architecture, but must be highly parallel.

20 points



Solution to Problem 8. Adaptation of one of solutions from the class.

And so
on…..

Pipelined sorter in which the first register is
changed to two registers is a merger. This is not the
best solution but it satisfies the question. This
approach does not require registers 1 and 2 to be
initially sorted. A more efficient parallel processor
for merging can be found in lecture slides.

Register 1 Register 2

3

2

2

4

1

5

3
4
1
2

5
2

3

5

4
1

2
2

3
1

4

2

2
5

All yellow registers connected to the same clock
Register contents to be
merged

Combinational
unit, see next
slide

1
2
3
2
4
5



Top = Min(a,b) when a≠b  , Top = a when a=b

Bottom = Max(a,b) when a≠b, Bottom = E when a=b

In systematic design, we can create the following table:

A>B     A<B      A=B

Top      B             A          A

Bottom      A             B          E

In class we designed the comparator of order and equality as a combinational unit like this:

A>B

A B

A=B
A<B

Some special
string not used
in numbers



A>B     A<B       A=B

Top      B             A           A

Bottom      A             B          E

A>B
A B

A=B
A<B

0 1

Top

0 1

Bottom

Top = A when (A=B or A<B) , B otherwise

Thus we can derive the following:

AB

2

Bottom = A when A>B , B when A<B, E when A=B

c1 c2  Data  what selected
0  0       0
0  1       1
1  0       2

A B E

A>B
A<B
A=B

c2
c1

Universal iterative
comparator



Consider the two-qubit state below:

11100100 3210 zzzzz +++=

Determine the probabilities of measuring (in the first qubit) 0 and 1
when this state is measured  with:

(a) Bell basis

2
1100

00
+

→ ,
2

1100
01

−
→  , 

2
1001

10
+

→  , 
2

1001
11

−
→

(b) Magic basis

2
1100

00
+

→ ,
2

)1100(
01

−
→

i  , 
2

)1001(
10

+
→

i  , 
2

1001
11

−
→

Problem 9.Problem 9.

10 points



Solution to Problem 9Solution to Problem 9

Probability of measuring 0 is








 −
+







 +
+







 −
+







 +
=

2
1001

2
1001

2
1100

2
1100

3210 zzzzz

Bell basis

11
2

10
2

01
2

00
2

10323210 






 −+






 −+






 ++






 += zzzzzzzzz

2
32

2
10

0 22
zzzzp +++=

Probability of measuring 1 is
2

10
2

32
1 22

zzzzp −++=



Probability of measuring 0 is








 −
+







 +
+







 −
+







 +
=

2
1001

2
1001

2
1100

2
1100

3210 z
ii

z
ii

zzz

Magic basis

11
2

10
2

01
2

00
2

10322310 






 −+






 −+






 ++






 += izzzizizzizzz

2
32

2
10

0 22
zizizzp +++=

Probability of measuring 1 is
2

10
2

32
1 22

izzzizp −+−=



Prove that the eigenvalues of a Hermitian operator are
real

Problem 10.Problem 10.

10 points



Solution to Problem 10Solution to Problem 10

Prove that the eigenvalues of a Hermitian operator are
real

zzH λ=

Proof:

zHz *† λ=

zzzHzzzzHHz 22*† λλλ ===

By definition

H is Hermitian. So HH =†

λλ =*



•Design a processor using standard registers and binary technology
that simulates (with some accuracy) the operation of a quantum
Toffoli gate (with outputs A1. B1, A1*B1 XOR C1) that has
quantum Hadamard gates connected to its inputs A and B
(A1=Hadamard (A), B1 = Hadamard (B).
Think about the concept of Kronecker Product and Matrix Product.
Draw the block diagram only, detailed design is not expected.
Operate only on integer approximations of quantum bits in Hilbert
space, do not design circuits approximating measurement. Recall
butterflies. The circuit may be pipelined or only combinational.

Problem 11.Problem 11.

20 points

Additional Problems.Additional Problems.



Solution to Problem 11.Solution to Problem 11.

A1

B1

C1

A

B

Block 1 Block 2

Our circuit is a serial connection of Block
1 and Block 2.

Block 1 is a parallel connection of
Hadamard, Hadamard and wire

Block 2 is a Toffoli gate

To find the Unitary Matrix of block 1 we
need to find a Kronecker Product of
matrices H, H and W

According to the method from the class, we represent the circuit as a
pipelined circuit with serial connection of processors corresponding to
blocks. To build each processor for a block, we need to find the
Kronecker Product of matrices of its all gates (sub-blocks).

Block 3



• Controlled CNOT (C2NOT or Toffoli gate)

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1  1
1 -1

1  0
0  1

Calculate
for block 3 = 1 0  1 0

0 1  0 1
1 0 -1 0
0 1 0 -1

Calculate
for block 1

1 0  1 0
0 1  0 1
1 0 -1 0
0 1 0 -1

1  1
1 -1

⊗

⊗ =

1 0  1 0  1 0  1 0
0 1  0 1  0 1  0 1
1 0 -1 0  1 0 -1 0
0 1 0 -1  0 1 0 -1

1 0  1 0  -1 0  -1 0
0 1  0 1  0 -1  0 -1
1 0 -1 0  -1 0  1 0
0 1 0 -1  0 -1  0 1

The next slide show how to build
the data paths of the processor
and illustrates the tremendous
parallelism of quantum
operations



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1 0  1 0  1 0  1 0
0 1  0 1  0 1  0 1
1 0 -1 0  1 0 -1 0
0 1 0 -1  0 1 0 -1
1 0  1 0  -1 0  -1 0
0 1  0 1  0 -1  0 -1
1 0 -1 0  -1 0  1 0
0 1 0 -1  0 -1  0 1

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

Now we can draw
data path registers,
logic between them
from the matrices.
All values are
integers, not
complex which
simplifies additions
and subtractions.

This is permutative matrix so only
permutations of register transfers
exist.

Pipelined
registers

By finding
equations
and
factorizing
to
Butterfly

+
-

+
-

+
-

+
-

+
-

+
-

+
-

+
-

Various
butterfly
types are
possible
and the
data flow
structure
should be
optimized

Combinational adders and subtractors - Walsh Kernels
as in DSP

Registers
correspond
to quantum
states of a
3-qubit
system



Problem 12. Generalized Hadamard gates.

• You remember the unitary matrix of a Hadamard gate.
Assuming that you can have entries +1,-1,+i and -i ,
generate all new types of gates that generalize Hadamard
gate and can be realized (in principle) in a quantum
circuit. You do not have to generate them all.

• Discuss serial and parallel connection of such gates.
What will be their unitary matrices?

• What are potential applications of such new gates?

20 points



Solution to Problem 12.

1  1
1 -1

Standard Hadamard Gate has this unitary Matrix (I will not write 1/SQ_ROOT(2) for
simplifications

Let us first investigate small changes. Generalized Hadamard Gates with various
positions of -1 are:

1  1
-1 1

-1  1
1   1

1  -1
1   1

1  1
1 -1

1  1
1 -1

* =
2  0
0  2

1  1
-1 1

* = 2  0
0  2

1  -1
1   1

-1  1
1   1

* -1  1
1   1

= 2  0
0  2

1  1
-1 1

* = 2  0
0  2

All three new gates are unitary and here you have their inverses

We see that multiplying gates by themselves
we do not get anything interesting. But we can
try a gate by another gate from this family.



Solution to Problem 12.
Thus let us verify some serial connections of these gates:

1  1
-1 1

-1  1
1   1

1  -1
1   1

1  1
1 -1

-1  1
1   1

* =
0   2
-2  0

1  1
-1 1

⊗⊗⊗⊗ = 1 -1   1  -1

1  1    1  1

-1  1   1 -1

-1 -1   1  1

Now let us calculate the Kronecker Product of new matrices.

Thus we obtained a new gate that
is like an inverter for |0> but
additionally changes sign for |1>

* = -2   0
0    2

A similar gate was obtained

As we see, we generate
the same Walsh functions
but in different orders.
We can also generate
negations of Walsh
functions.



Solution to Problem 12.

i   i
1 -1

Let us check now how introducing imaginary unit i helps. We multiply rows or columns by i

We can check that from definition such matrices are unitary. Next we can multiply
these new matrices serially and find out that we get new matrices = gates.

i    i
1   -1

i   1
i  -1

i  i

i -i

1  1
i  -i

* = i+1       i-1

-1-i    -1+i

We obtained an
interesting new gate

Similarly you can check that Kronecker product of new gates lead
to interesting Hadamard-like matrices that have in addition to
subtractions and additions also phase changes. The new gates can
be used to create generalizations of Hadamard-Walsh transform,
which is very important because of the central point of transforms
in quantum computing.



Problem 13. RM pipeline butterfly of all FPRM
polarities, store cost compare store solution –

polarity- reconfigurable pipeline
• We discussed the Reed-Muller Transform and circuits. Next we

generalized it to Fixed Polarity Reed-Muller (FPRM) and we showed
how to expand a function in a form of vector of minterms to any of
2n polarities of FPRM.

• Draw a quantum circuit for controlled Fixed-Polarity Reed-Muller
Transform for two variables.

• Assuming that you can arbitrarily change input and output orders,
can you realize the FPRM circuit without swap gates and without
garbages?

• Can you realize a circuit with swaps but without garbages?

20 points



Solution to Problem 13.

a
c
b
d

Variable 1 Variable 2

minterms

Spectral coefficients

This quantum circuit is obtained by direct rewriting
of the Positive Polarity Reed-Muller Butterfly to
quantum notation.

a
c
b
d

Variable 1 Variable 2

minterms
Spectral coefficients

This quantum circuit is obtained by direct
rewriting of the Negative Polarity Reed-Muller
Butterfly to quantum notation.

Now we jest need to add control variables to design a
combined circuit. This method is much simpler than by
drawing Kmaps.

x

y



Solution to Problem 13.
Let us denote the control variables by capital letters. Let us design the gate with inputs a,b and outputs x,y

x= A’a ⊕⊕⊕⊕  A(a⊕⊕⊕⊕ b)=A’a ⊕⊕⊕⊕  Aa ⊕⊕⊕⊕  Ab = a ⊕⊕⊕⊕  Ab

y= Ab ⊕⊕⊕⊕  A’(a⊕⊕⊕⊕ b)=Ab ⊕⊕⊕⊕  A’a ⊕⊕⊕⊕  A’b = b ⊕⊕⊕⊕  A’a
Hence we create a circuit for kernel, which we next repeat in vertical and horizontal directions in standard way to
create a controlled butterfly.

A controls polarity of variable 1 in transform, B controls polarity of variable 2. Control lines are
shown in red.

Control A Control B
In this solution, each
gate is the same and
one needs a swap gatea

b

x

y

Realization of swap gate

c
d

z
v

This figure shows that garbages and input constants are not
necessary if youallow for swap gates without changing the order.



A
B

a
b
c
d

x
y

To avoid swapping, you can change
the order of inputs or outputs, but
this is is not a general solution
always. Sometimes order is important
and you cannot change it. Here we
change output order.

z
v

a
b

x

y

c
d

z
v

z

y

Aabxy

Acdzv

Bxzus u
s
r
tByvrt

Names of variables in a
pattern of gate

B
A

u
r
s
t

Acdzv Byvrt

Aabxy

Observe
order
change

This belongs
to gate
Bxzus

This figure shows that
garbages and input
constants are not
necessary if you change
order.



Problem 14. State State Moore’sMoore’s Law. What impact Law. What impact
will it have on Quantum Computing?will it have on Quantum Computing?

10 points



Solution to Problem 14.Solution to Problem 14.
• The computer power for constant cost doubles every 18 months. It

cannot continue forever since the atomic limits will be reached
between 2012-2020. The fabrication costs cannot keep increasing as
until now and the generated heat per size unit also must be reduced.
So many fundamental changes are expected and new paradigms such
as quantum computing must be used. Concluding, quantum computing
is a necessity if we want Moore’s Law to continue to hold.



Problem 15. Cellular Automaton for arbitrary
rules in neighborhood 3*3 window with colors
• Given is a set of 4 rules in a 3*3 neighborhood. Each cell has a

color, one of four. Each rule has a precedent being a pattern of
colors in the neighborhood. It decides the color of the middle
block,  for instance, Rule 1 is the following:

15 points

This rule for color blue must be satisfied, but there may be more transitions to
blue. Formulate three other rules for transitions to other colors and design a logic
for a single cell processor.

The behavior for all other situations than the one shown above is arbitrary, but
for every color the must be a situation to transit to it.

There can be many rules to transit to any color. Design a simple circuit.

Encode red by 00, blue
by 01, green by 10 and
yellow by 11.



Solution to Problem 15.
This problem is a little tricky. It has very many solutions so you want to find an easy one.

1   2    3
4   5    6
7   8    9

We encode the processors  in neighborhood like this. Each processor
has two flip-flops to store the color. The ffs are A and B. The wires
from the processors coming to our processor 5 are then the following:
1A,1B, 2A, 2B, 3A, 3B,…. ,9A,9B. Thus the function exciting FF B
in our processor is :

RULE1=1A (1B)’ 2A 2B 3A (3B)’ (4A)’ 4B (5A)’(5B)’(6A)’6B 7A (7B)’ 8A 8B 9A (9B)’
For the above minterm the excitation of FF A of our processor must be zero and FF B = 1.
This condition is satisfied by building this circuit:

A

B
RULE1

C and E can be now arbitrary signals to excite FFs A
and B. It is up to you to select these signal values and
reasoning backwards finding the colors, their
encodings and neighbor cell colors.

Rule1 C        E   A B    COLOR

0         0        0        00       red

1          0        1       01       blue (all transitions to Rule)

0          1      0          10       green

0          1        1       11       yellow

Execution of RULE 1 is enforced
regardless other signals when
signal RULE1=1

D

D

Q

Q

C

E



Cell 5=our cell

Cell 1
Cell 2

Cell 3

Cell 4 Cell 6

Cell 7 Cell 8 Cell 9

A | B A | B A | B 

A | B A | B 

A | B A | B A | B 

1A (1B)’ 2A 2B 3A
(3B)’ (4A)’ 4B
(5A)’(5B)’(6A)’6B
7A (7B)’ 8A 8B 9A
(9B)’

Only few inuts shown

D

D

Q

Q

C

E

A | B 

Realization
of transition
functions

Outputs of state go to
our cell and all its 8
neighbors



Problem 16. What are the essential differencesProblem 16. What are the essential differences
between classical and quantum mechanics?between classical and quantum mechanics?

5 points



Solution to Problem 16.Solution to Problem 16.

• In classical mechanics states are distinguishable. Any two states
are either the same or different. In quantum mechanics there are
pairs of states that are mathematically distinct but are not
physically distinguishable. They cannot be reliably distinguished
by any measurement, no matter how precise. Also, the state
depends on observation, which is not true in classical mechanics.

• In classical physics the fundamental properties of an object such as
energy, position and velocity are directly accessible to observation.
In QM these quantities no longer appear as fundamental, being
replaced by the state vector, which cannot be directly observed or
measured. It is as though there is a hidden world in quantum
mechanics, which we can only indirectly and imperfectly access.
Moreover , merely observing a classical system does not change
the state of the system.



Problem 17. What is the superposition principle inProblem 17. What is the superposition principle in
QM?QM?

5 points



Solution to Problem 17.Solution to Problem 17.

• If |x> and |y> are two states of a quantum system
then the superposition a|x> +b|y> where a and b
are complex numbers is also allowed as state of a
quantum system. However, it must be satisfied
that  |a|2+|b|2=1



Problem 18. What isProblem 18. What is nondeterministic nondeterministic
about QM?about QM?

5 points



Solution to Problem 18.Solution to Problem 18.

When the unitary quantum gate, like Hadamard is not a
permutative gate, and it is observed, it creates values one
or zero with certain probabilities. This property is of
course true for complete quantum circuits. Thus, in some
situations, the quantum circuit gives probabilistic
responses. This non-determinism is the very principle of
Quantum Computer work. Quantum Circuit can simulate
non-deterministic Finite State Machine, Non-
deterministic Turing Machine, probabilistic machine,
relational system or any concept that has non-
deterministic behavior.



Problem 19. What was significant about theProblem 19. What was significant about the
SternStern--GerlachGerlach experiment? experiment?

10 points



Solution to Problem 19.Solution to Problem 19.
This was an experiment conceived by Stern in 1921 and performed with Gerlach in 1922
which gave first experimental evidence that qubits exist in Nature. See Figure 1 below for
explanation. In original experiment the hot atoms of silver were beamed from an oven
through a deflecting magnetic field and the position of each atom was recorded. For
simplification we present the experiment using hydrogen atoms. Such atoms have a proton
and an orbiting electron. The orbiting electron is like an electric current so the atom has a
magnetic field. Thus the atoms should be deflected in the magnetic field. How much the
atom is deflected depends on its dipole moment and on the magnetic field of Stern-Gerlach
device which we can control. We can cause the atom to be deflected by an amount that
depends on z component of the dipole moment, where z is some fixed external axis. It was
observed that we do not get continuous distribution of atoms at different angles but discrete
angles. This was explained by quantization of dipole moments. Even more surprising was
the number of peaks seen. Since hydrogen has zero magnetic dipole moment a single beam
was expected but two were seen. This phenomenon was explained by introducing the
concept of spin of electron. This spin is an extra contribution to dipole moment.

oven z
|+Z>

|-Z>

Figure 1: |+Z> and |-Z>
denote deflection up and
down, respectively



oven z
|+Z>

|-Z>

Figure 2:  Cascaded Stern-Gerlach measurements

X
|+X>

|-X>

If we cascade two Stern-Gerlach devices together as in Figure 2, to further investigate the nature
of qubits, but the second apparatus is tipped sideways so that magnetic field deflects atoms along
the x axis. A classical magnetic dipole pointed in z direction has no magnetic moment in z
direction so one peak was expected but again two peaks of beam were observed. Therefore it was
hypothesized that each atom passing through the second device was in a state

|+Z> |+X> or |+Z>|-X>. Next experiments of this type confirmed the model.



Problem 20. What is aProblem 20. What is a Hilbert Hilbert Space? Space?

5 points



Solution to Problem 20.Solution to Problem 20.
• Hilbert space is a vector space in which the scalars are complex

numbers, with an inner product operation .

         x . y=(y . x)*

0≥• xx
00 ==• xiffxx

linearisyx • , under scalar multiplication and
vector addition with both x and y



Problem 21. What are bras andProblem 21. What are bras and kets kets??

5 points



Solution to Problem 21.Solution to Problem 21.

• The inner product definition is the same as the
matrix product of  x as a conjugated row vector,
times y as a normal column vector.



















==∑
2

1

*
2

*
1

* ...][
y
y

xxyxyx
i

ii

This leads to the definition for state S:

   “bra” <s| is the row matrix as above and “ket” |s> means the
column matrix as above.

= <s|s>



Problem 22. What is anProblem 22. What is an adjoint adjoint
operator?operator?

5 points



Solution to Problem 22.Solution to Problem 22.

Let A be a linear operator on Hilbert space V. There exist
exactly one operator A+ on V such that for all vectors |v>, |w>
from V it holds that: (|v>, A|w>) = (A+|v>, |w>)

This operator is called Adjoint of operator A, it is also
called Hermitian conjugate of operator A. You first
calculate the transpose matrix of A and next find its
conjugate to create a Hermitian of A.

1+3i    2i

1+i   1-4i

+

= 1-3i    1-i

-2i   1+4i

Matrix of
operator A

Matrix of adjoint of
operator A



Problem 23.

• Explain how the DNA computer solves the
Hamiltonian Path Problem. Do not go to chemical
details -- only the main idea.

• Design a massively parallel cellular, systolic or
pipelined processor to solve the Hamiltonian Path
problem. Is there any link with the DNA
algorithm?

20 points



Solution to Problem 23.
• Explain how the DNA computer solves the Hamiltonian Path Problem. Do not go

to chemical details -- only the main idea. Lego block corresponds to a DNA strand.

Given is graph G with n nodes. We have to find all paths from
starting node A to the terminal node Z of graph G in such a way
that every node is encountered and only once.
Observe that the following conditions are imposed on the set of all paths:

C1. It starts from A.

C2. It terminates with Z.

C3. It goes through n nodes.

C4. Nodes in the path are not repeated.

C5. Every node is in the path.

A

C

E

B

D

Z
You can think that you are giving orders to unlimited
number of totally obedient children who play with Lego
blocks. Each sequence of two nodes is a Lego block, like AB,
it is known which is the first and the last in the pair.

A   B
B   C

C   D
D   E

E   Z

solution

One solution
shown in red



Solution to Problem 23. (continued)
• Design a massively parallel cellular, systolic or pipelined processor to solve the

Hamiltonian Path problem. Is there any link with the DNA algorithm?
• The algorithm above is the abstraction of the massively parallel DNA algorithm

in which instead of DNA-related chemical operations one gives commands to
children playing with Lego blocks.

• Of course, the main idea here is massive parallelism and sequential filtering of
candidate solutions, and not use of DNA or children and Lego blocks. Therefore,
your creative task is to assume that processor is very inexpensive and to recreate
this algorithm.

• The main property of the DNA algorithm is that processors can flow freely,
there is not strict connection structure. This is specific only to biomolecular
computing.

• We apply a parallel solution in which there is a sequence of registers of length k
on which the number of k-1 processors work in parallel. Practically, k<n, but in
principle k can be also equal n assuming massive parallelism. We assume here
that k=n



A

B

C

D

E

Z

A

C

C

D

D

Z

Pipeline of randomly
generated sequences of
length n that start with
A and terminate with Z

A

C

B

D

E

Z

A

E

C

D

B

Z

Good solutions Bad solutions

P1

P2

P3

P4

P5

Pi
R1

R2

Algorithm of Pi

1. Find set S(R1i) of rules
which have the rule
predecessor being the
contents of R1i. (these rules
are stored only by their
second node, because the
first is always R1i).

2. Output := ( If R2i ∈∈∈∈
S(R1i) then 1, else 0)

If 1 then R is a
good solution

R



A

C

E

B

D

Z

Rules

AB,AC,AD,BC,BD,CB,CD,CE,CZ,
DB,DC,DZ,DE,EC,ED,EZ

Representation of rules for the algorithm from previous slide:

A - {B,C,D}

B - {C,D}

C - {B,D,E,Z}

D - {B,C,Z,E}

E - {C,D,Z}

These rules have only
successor nodes



Problem 24. Explain in brief the Basic
Measurement postulate as applied in

quantum computers.

10 points



Solution to Problem 24.
Measurement Postulate is -

• The fundamental paradox of Q-Mechanics

• When an object is ‘measured’, the very ‘act of measurement’
causes the object of take on one of the ‘allowed outcomes’

• The registering of only one quantum state even though super
positioning causes several states to exist simultaneously

• Mathematically – if the state of a system is ψ, then the probability
that a measurement finds the system in the state Φj is |cj|2, where cj is
the weight of that particular ‘jth’ state

•See solutions to problems 9 and 30 for illustration.



Problem 25. De-coherence and what to
do about it.

10 points



• Decoherence is the effect that makes macroscopic quantum
systems appear to behave “classically.”  Occurs due to inevitable
interactions between a given quantum system & an unknown
(high-entropy) environment. The external factors of the
surroundings like temperature, stray radiations, etc have their
influence. Once a quantum system becomes entangled with its
surrounding environment (or a macroscopic measuring device) it is
no longer isolated and the fragile quantum superpositions are lost.
A quantum superposition state  gradually “collapses” or “decays”
to a classical statistical mixture of the pointer states (measurement
eigenstates). This is a real physical process that takes place very
quickly when a quantum system interacts with the classical world.

Solution to Problem 25.



• Decoherence is a possible practical threat to a viable Quantum
Computer. The researchers must go to tremendous efforts to prevent
the computer from interacting with its environment and decohering
from a pristine state of superposition). Loading the input and reading
out the output require interaction and thus are problematic. As it is
virtually impossible to isolate these systems, decoherence occurs
within  a few computational steps for all systems studied so far. QCs
are prone to many errors because of this problem.

• Additionally there are of course the practical problems of working at
single atom and single photon scales.  The best solution, so far, to the
decoherence problem is the use of a large number of  atoms. Instead
of trying to isolate one atom from its environment, use instead trillions
of atoms so that the background noise averages out. A radio pulse
would disturb some of them but the information content of the rest
would survive.



Problem 26. What is Quantum
Parallelism?

10 points



Solution to Problem 26.Solution to Problem 26.
• All possible states can be expressed in a single expression and this

states can be calculated at this time by some operation, for example

State |0>, state |1> of solution are calculated at the same time, this is
parallel processing on micro level. Two operations on complex
numbers are executed in one moment. For n qubits 2n states exist and
for each of them a very complex multi-argument operation on complex
numbers is executed. This creates unbelievable high parallelism of
operations.Think about n Hadamard gates connected in parallel and
calculate how many operations are executed in parallel.

10| βαϕ +〉=

And we apply operation:

Which leads to new states:










−11
11

βαβα −=+= 10 and



Problem 27. What is Quantum
entanglement?

10 points



Solution to Problem 27.Solution to Problem 27.

• If a state of a compound system C can be
expressed as a tensor product of states of two
independent subsystems A and B then A and B
are not entangled. Otherwise A and B are
entangled which means that their states are not
independent , for instance |00> + (-i) |11>



Problem 28. Hough Transform.
• 1. Design a Hough Transform Processor for

straight lines. It can be pipelined, cellular, systolic
or parallel. Think about which directions of image
or other parameters correspond to time and space
in memory (hardware). Use either trigonometric
or linear parameterization of lines. Do not show
details - only the basic flow diagram and pipeline
or cellular automata rules. Assume sparse black
and white image.

• 2. Explain how your ideas from point 1 can be
generalized to Hough Transform for circles.

20 points



Solution to Problem 28.
• As presented in class, there are two basic methods to parallelize Hough Transform: in image

space and in accumulator (parameter space). We will apply both these methods here for
maximal flexibility. The method will be illustrated for linear equations of lines, but analogical
method can be applied for trigonometric equations.

For x=1 to n do

   For y=1 to n do

        if IM(x,y) ≠≠≠≠ 0 then

             For a=0 to m-1 do

                 b := y - a*x

                 ACC[a,b]=ACC[a,b|+1

This is done in image
space - Parallelize this.

This is done in
parameter space -
Parallelize this.



Image space
partitioned to
four subspaces
for parallelization For x=1 to n do

   For y=1 to n do

        if IM(x,y) ≠≠≠≠ 0 then send (x,y) to queue

             For a=0 to m-1 do

                 b := y-ax

                 ACC[a,b]=ACC[a,b|+1

(1,1) (1,n)

(n,n)(n,1)

Repeat this with
different starting and
ending values, for
each of four
controllers, keep
unique addressing of
all array

Queue for subimage A
Subimage
A

Subimage
B

Subimage
C

Subimage
D

Queue for image

Queues are for pairs (xi,yi) of black pixels,
sparseness used in this design.

Observer/predictor circuit
to select the queue of
subimage. The most full is
transmitted, otherwise
round robin

Queue for subimage A

Queue for subimage A

Queue for subimage A

This figure
explains
parallelization in
the image space

See next figure

IM(x,y) ≠≠≠≠ 0



For x=1 to n do

   For y=1 to n do

        if IM(x,y) ≠≠≠≠ 0 then send (x,y) to queue

             For a=0 to m-1 do

                 b := y-ax

                 ACC[a,b]=ACC[a,b|+1

Queue for
image

This figure explains
parallelization in the
parameter space

From previous
figure

Value of register x from the pair

Value of register y
from the pair

Internal loop
realized in
hardware

b:=y-x b:=y-2x b:=y-3x

Memory
for a=1

Memory
for a=2

Memory
for a=2

Memory
for a=m

Partitioned
memory of
the parameter
space

…..

…..

b=address
Each memory used is a
histogramming memory
which executes operation
M[addr] := M[addr] +1.
Address is created by
result of operation for b
above. Clearing and
reading these memories as
well as details of control
are not shown.

All these operations done
combinationally, including
multiplication by constants.

b:=y-(m-1)x



Additional ideas

• 1. Observe that the algorithm does not work well for lines that are
close to vertical. The solution is to rotate image 90 degree and repeat
algorithm twice, in time or in space.

• 2. The equation for circles is  (x-a)2 + (y-b)2 = r2 where a is an x-
coordinate of center of the circle, b is the y-coordinate of the center
and r is a radius. Since every circle is described by three parameters,
a, b and r, we need a three-dimensional parameter space. One
dimensional memories from previous slide should be then replaces by
two-dimensional memories. Of course, the equations that operate on x
and y are also different. There are several variants of the solution, but
the principle is the same as shown previously.



2
0100 +

1. Is the state                 is entangled? Provide a proof of your answer.

2. How many possible entangled 2-qubit states are there?

Problem 29.Problem 29.

10 points



So the state can be decomposed into a tensor product of single qubit
states. Thus it is not entangled

Solution to Problem 29Solution to Problem 29
2

10
0

2
0100 +

⊗=
+

11100100

)10()10(

11011000

1010

yxyxyxyx

yyxxyx

+++=

+⊗+=⊗

1.

2.  Clearly the state                   isn’t entangled either. Consider the

 state
2

1110 +

2
0110 +

We must have x0y0 and x1y1 are both zero. However this implies
that at least one of the coefficients of |01> or |10> are zero also. So
yes the state is entangled. There are an infinite number of possible
entangled 2 qubit states as we can create others by introducing
complex coefficients
1/�(|00>-i|11>)



Consider the two-qubit state below:
11100100 3210 zzzzz +++=

Suppose the first bit is measured and gives |0>.

 Prove a formula that gives the probability that first bit is zero.
 Find a formula for the post-measurement state vector

Problem 30.Problem 30.

10 points
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   Solution to Problem 30 Solution to Problem 30

Where

Thus measurement of the first bit will with probability
                 return zero and leave the state

2
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Suppose the measurement operator
P=|01><01|+|11><11| acts on a general two qubit state

11100100 3210 zzzzz +++=

What is the probability of measuring the second qubit
to be 1?

Problem 31.Problem 31.

10 points



Solution to Problem 31Solution to Problem 31

3
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31

*
1

31
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*
2

*
1

*
0
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)11100100(
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+=
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The probability u is

The post measurement state is the normalised
projection of the two-qubit state
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Show that the operator |x><x| is Hermitian for any
vector |x>†

Problem 32.Problem 32.

10 points



Solution to Problem 32Solution to Problem 32

( ) ( )( ) ( ) ( ) ( ) xxxxxxxxxx
TTTT

==== *****†



• In lecture on Deutsch  we used a quantum black box of the
form

• Where f is a Boolean function of the qubits of |x>. Prove
that the transformation Uf  is unitary and give an explicit
representation of it in matrix form (HINT: think small and
work up from there).

|y�
f

|x
�

|x
�

|y⊕ f(x)�

                 

Uf

Problem 33.Problem 33.

10 points



Solution to Problem 33Solution to Problem 33
Assume 2-qubits
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So we get the unitary matrix
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• Construct a quantum one-bit adder in which inputs x and y
are repeated from inputs to outputs.

Problem 34.Problem 34.

• Describe how binary addition for an arbitrary number of
bits may be carried out with a quantum circuit.

a1 a0

b1 b0

0)( ba +1)( ba +2)( ba +

Two-bit adder

n-bit adder

15 points



• Construct a classical reversible one-bit adder and then
construct  a quantum version

Solution to Problem 34Solution to Problem 34

x

y

0

x

x⊕ y

x∧ y

Classical Quantum
|x>

|y>

|0>

|x>

|x⊕ y>

|x∧ y>

|y>

|0>

Note: this quantum one-bit adder is more efficient than those shown
in next slides and can be used as the basic adder or carry unit



• Describe how binary addition for an arbitrary number of
bits may be carried out with a quantum circuit.

Exercise 3: question and answer

 (Vedral, Barenco, Ekert 1995 - lanl/quant-ph/9511018

≡

    carry  

x0
x1x2
x3

x0
x1

21 xx ⊕
32021 xxxxx ⊕⊕

    sum
  

x0
x1
x2

≡ x0
x1

210 xxx ⊕⊕

Note: two bits
must be set to zero,
say x1 and  x3 or
x0 and x3



Exercise 3: answer

Two-bit adder

0
a0b0
0

    carry      carry  

    sum
  

    carry  

    sum
  

a1
b1
0

0

2)( ba +
1)( ba +

0)( ba +

a0

0

0

a1 a0

b1 b0

0)( ba +1)( ba +2)( ba +



Exercise 3: answer n-bit adder

    carry  

    carry  

0
an-2

0

    carry  

    carry  

    sum

    carry  

    sum
  

0

0

nba )( +
1)( −+ nba

2)( −+ nba
an-2

0

0
bn-1
an-1

bn-2

    carry  

    sum
0

1)( ba +
a1

    carry  

    sum
  

0
0)( ba +

a0

00a0

0

b1
a1

0

b0

r p



• Decompose the matrix below as a product of two-bit
unitary matrices.
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−−
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−−

ii

ii

11
1111

11
1111

2
1

Problem 35.Problem 35.

10 points



Solution to Problem 35Solution to Problem 35
Use the technique mentioned in Nielsen and Chuang,
p189-191 This is hard and I do not expect you to be
able to do it. U=U1U2U3U4U5U6
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There are several edge-detection algorithms for black and
white and color images  used in practice. We presented
some of them.
1. Design a cellular automata based processor for edge
detection.
2. Use any algorithm for edge detection, black-and-white
or grey-level images.

3. Design logically the processor of the single cell and
show how it is connected to its neighbors.

Problem 36.Problem 36.

20 points



Solution to Problem 36.Solution to Problem 36.
In a cellular automaton of a cell you can use Sober, Prewitt or any other edge-detection rule.
Below we will use the simplest rule which is a difference of values horizontally or vertically.
For binary images use EXOR, for grey-level use the value of difference exceeding certain
threshold.

Original
image

Exors of cell
with upper cell

Exors of cell
with lower cell



Exors of cells
above or below
with our cell.
Similar patterns
can be created for
left and right
cells.

The design of a single cell is. All flip-
flops are connected to the same clock.

D Q

cl



1. Design any processor for Satisfiability Checking. You can use the
pipelined architecture from Monday meeting, but you have to design
Boolean instructions and random  number generator in more detail.
2. How to modify slightly your ideas from point 1 for Petrick
Function Minimization?.
3. How to further modify these ideas for  simultaneous solving of
Satisfiability and Minimizing the number of positive literals in the
product – solution, if the product of literals is a solution.

Problem 37.Problem 37.

25 points



Solution to Problem 37.Solution to Problem 37.
The pipelined processor for Satisfiability Checking was shown in
Problem 4.
Here we will show another architecture for  simultaneous solving of
Satisfiability and Minimizing the number of positive literals in the
product – solution, if the product of literals is a solution.
Several complete designs in VHDL of various variants of such machines
can be found on my American Webpage.

Petrick function is in a form of Product of Sums of positive variables.
Satisfiability is in a form of Product of Sums of literals. Generalized
architecture will assume Product of Sums of literals, check for
satisfiability and calculate the minimum number of literals (both
positive and negative) that satisfy the formula.

The basic idea is to check the formula satisfiability directly in hardware, since this
is combinational function. The verification is repeated for new literal candidates
and the costs are calculated and compared. There are exhaustive and probabilistic
variants of this algorithm.



Term register

satisfied

a a’  b b’  c c’ d d’

(a+b’+d)
(a’+b)

(b+c’+d’)

cost…..

solution

Control unit

Min_cost

      <

.

.

.

End criteria for term 
generation satisfied?

Set new term 
register value

Satisfied?

Cost(term)<Min_Cost

Solution:=term

y

n

n y

n y

Is the term (new candidate solution )cheaper than stored candidate solution?

Print solution

Initialize registers

You can now design the control unit
FSM using standard methods.

Two signals used for each literal
in term. One of two Standard
Cube Notations (encodings) used
for sum terms: a=10,a’=01,X=00.



There are several variants of the control
• In the probabilistic variant of the algorithm the Term register is a random number

generator.
• In the exhaustive (exact solution) variant of the algorithm the Term register is a

counter. It can be a counter in binary code modified in such a way that 00=11 on the
output. It can be a ternary counter counting up in code 00,01,10,00… for each
literal. The best solution is a counter that counts in a code that corresponds to the
breadth searching of the space of terms. This counter counts in an increasing number
of literal terms. In such case the first solution is optimal. Design of such counter is
difficult, but a ROM can be used to store once all the patterns. The contents of such
ROM can be calculated by a program.

a      b      c      d
00    00    00   00   = XXXX
00    00    00   01   = XXXd’
00    00    00   10   = XXXd
00    00    01   00   = XXc’X

Here is an example of literal
term generation

The order of “Breadth Searching” is:
d’,d,c’,c,b’,b,a’,a,d’c’,d’c,dc’,dc,d’b’...



Given is a very long string of characters that is “shifted”
from an external memory to a very long shift register.
1. Design a pipelined processor that“observes” the shift
register and checks for matching arbitrary number of
patterns (short strings of characters) at the same time.
2. Extend it to partial matching and counting of matches.

• This problem was outlined in one of additional
meetings.

Problem 38.Problem 38.

20 points



Solution to Problem 38.Solution to Problem 38.
Assume we match four patterns in parallel. Each of four Comparators can be for equality or for
partial match. Decision unit is an AND gate in the simplest case when comparators are equality
comparators. It can be a majority or threshold gate, or any (perhaps symmetric) Boolean function,
depending on match definition. Shift causes the entire pattern register to be shifted one position to
the right. The situation below corresponds to a perfect match of a sequence of four “characters”.

Very long shift register like in DNA
matching machines

Pattern
1

Pattern
2

Pattern
2

Pattern
4Pattern

4
Pattern
3

Pattern
7

comparator comparator comparator comparator

Pattern
1

Pattern
2

Pattern
2

Pattern
4

Decision
unit

counter
+1

1
1

1 1

Comparator of equality is a vector of equivalence gates that outputs feed
one AND gate.If we define that a partial match exist when at least 3
patterns are satisfied, then the Decision Unit realizes the majority 3 out of
4 function, which is a symmetric function S34(a,b,c,d) realized using
standard methods of this class.



Given are two integer arrays A and B. Design a processor that
calculates a Kronecker Product A * B in hardware – any kind
of parallelism is OK, but the processor should have some kind
of parallelism.
Assume 2*2 arrays, but architecture should be for arbitrary
square arrays. Assume multipliers and adders as black boxes,
do not design their internals. Show the block diagram and
discuss control.

Problem 39.Problem 39.

25 points



a11  a12
a21  a22 =

a11*b11   a11*b12

a11*b21   a11*b22⊗ b11  b12
b21  b22

a12*b11   a12*b12

a12*b21   a12*b22

a21*b11   a21*b12

a21*b21   a21*b22

a22*b11   a22*b12

a22*b21   a22*b22

According to the method from the class we have first to decide if we use memories of registers. Assume we use registers.
Now we have to decide how many basic operations (in this case only multiplications) done in parallel. Assume that we
realize one column in parallel.This leads directly to the data path below.

Shift registers to
store the resultant
array

In
parallel

*
*
*
*

a11          a12

b11          b12

a21          a22

b21          b22

Solution to Problem 39.Solution to Problem 39.

From definition of
Kronecker product



The timing of this architecture is the following:

1. Multiply the last (fourth) column. (a12 on top, a22 on bottom, b12 and b22 in bij registers).

2. Shift the results of all multiplication to the right, to the resultant array. Shift cyclically
registers bij

3. Multiply the third column(a12 on top, a22 on bottom, b11 and b21 in bij registers).

4. Shift the results to right. Shift cyclically registers bij. Shift registers aij

5. Multiply the second column. (a11 on top, a21 on bottom, b12 and b22 in bij registers).

6. Shift the results to right. Shift cyclically registers bij.

7. Multiply the first column. (a11 on top, a21 on bottom, b11 and b21 in bij registers).

It is now easy to design the controller from this algorithm above, using standard
methods. Generalization of the method to any sizes of matrices is also straightforward
because of the regularity of the architecture and its similarity to other array-based
architectures from the class.



What is the role of Kronecker (tensor)
product in computer architecture, in
quantum computing and in logic synthesis?
Give examples, try to generalize your
answer. Are there similarities? How they
can be used?

Problem 40.Problem 40.

15 points



Solution to Problem 40.Solution to Problem 40.
•Kronecker Product is also called tensor product. It takes two
matrices or two vectors and creates a new matrix or a new vector.
See next slides for explanation of the operations.

Kronecker product is used in quantum computing predominantly to calculate the resultant
matrix of unitary matrices of two quantum gates or blocks that are in parallel. In logic
synthesis it is used to calculate the matrix of orthogonal (linearly independent) matrix from
matrices of expansion transformations, for instance we illustrated it for Walsh and Reed-
Muller transformations. In case of Reed-Muller transformations we found the Kronecker
product of the kernel of Davio expansion with itself.

A computer architecture (butterfly or pipeline) are based on the flowgraph of applying
the Kronecker transform. This way computer architectures are created for any
transform.

Similarities based on Kronecker Product can be used to create new transforms, new canonical
logic forms, new architectures. For instance we used them in class when we discussed Walsh,
Reed-Muller and Fourier transforms. Whenever you have to deal with a transform, think about
its kernel, Kronecker Product and how to create few stages of data-flow for this transform.

The answer is also illustrated by solutions to other problems in this exam



Application of Kronecker product vectors in
quantum computing

( )10 10 α+α

If we concatenate two qubits

11100100 11011000 βα+βα+βα+βα

( )10 10 β+β
we have a 2-qubit system with 4 basis states

0000 = 0110 = 1001 = 1111 =
and we can also describe the state as
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Application of  Kronecker Product of matrices to find the Unitary matrix
of a parallel connection of blocks

U1 = I1 ⊗ C(V)
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