

 Final Exam problems

1. Logic Synthesis. Because the midterm and subsequent homework were done
well – I cancel the logic synthesis part of the exam for your class.

2. Basic combinatorial problems. Graph coloring, binate and unate covering,
maximum cliques, compatibility and incompatibility relations. All this
material is of use in entire design automation not only in logic synthesis
so it can be used as parts of the problems in the exam. But will be not
tested by itself.

3. Evolutionary programming to solve CAD and optimization problems; Students
should be able to explain and illustrate on examples what is Genetic
Algorithm, Genetic Programming, realizations with arbitrary encodings and
data structures, genetic engineering and Lamarckian ideas. You have to
understand role of human in GA loop, role of various variants in practical
problems, and especially methods to formulate fitness function, encoding.
Because the project is going well – I cancel the evolutionary programming
part of the exam for your class.

4. Backtracking methods in CAD and optimization. Because this is included in
project and the project is going well – I cancel this from final exam for
your class.

5. Binary Decision Diagrams and extensions. Students should be able to
explain Shannon, and Davio expansions, and calculate them using Kmaps,
expressions or truth tables. Next, use them to create decision trees and
decision diagrams. Applications of decision diagrams in synthesis,
simulation, verification and representation. Role of canonicity.

6. Fast Transforms and Butterflies. Students should be able to draw kernels
of Fast Fourier Transform, Walsh Transform and Reed-Muller Transform.
Illustrate transformation of a Kmap of Boolean Function to its Positive
Polarity Reed-Muller Form using a butterfly based on RM Kernel. Describe
pipelined, sequential non-pipelined and combinational realization of such
a circuit.

7. Retiming. Given is a sequential circuit with D flip-flops (registers).
Based on retiming rules move registers to improve timing or decrease the
number of flip-flops. For pipelined design insert flip-flops between
combinational blocks or partition combinational blocks first and next add
flip-flops between partitions. Next move registers to optimize the circuit.
For circuits with feedback consider replacing a delay with a sequence of
delays and next do retiming. Sometimes consider also adding additional
delay which makes the circuit not entirely equivalent but equivalent with
accuracy of a delay. Consider cutting the feedback loop and redrawing
circuits to be a DAG before adding delays in all paths and next moving
them.

8. Pipeline design and controller. Students should be able to start from
equations, Laplace, Z or other transform and draw the data flow-graph of
pipelined DSP-like circuits. FIR and IIR Filters, image filters, equation
solvers are good examples. Next the controller FSM for this pipeline
should be designed and optimized. Timing table for a pipeline. Analysis of
this table. Use of this table for verification of retiming, especially of
circuits with feedback.

9. Non-Pipelined Sequential Data Path with Control Unit (this is also called
Controller or Glushkov Machine). Student should be able to create a
flowchart based on problem specification, next design by hand a data path
based on the operations used in the flowchart and synthesize formally a
Mealy or Moore controller from the flowchart. If minimization and
assignment is too difficult, at least the students should know how to
directly convert flowchart to graph of D-flip-flops, OR and branching

gates. Examples: Wave generators, Manchester circuits. Timing analysis and
optimization for speed.

10. Design of parallel controllers. Data path for description on the
level of register-transfer. Do the same as in point 7, but design a Petri-
net like, parallel or non-deterministic controller. Role of nodes JOIN,
FORK, DAND, DEXOR and normal oring nodes in such framework.

11. Reachability analysis. Convert non-deterministic FSM to a
deterministic FSM using reachability analysis. Convert parallel graph to
serial graph using reachability analysis. Role of analysis in formal
verification.

12. Regular expressions. Definition of a regular language. Generating
and accepting regular languages. Rabin-Scott automata. How to write
regular expressions for simple events. Iteration, concatenation and union.
Complex expressions. Examples of complex events. Keys and locks, sequence
acceptors. The role of trap states. Conversion from regular expression to
a regular graph. Adding and removing lambdas. Conversion to deterministic
FSM. Examples of languages that are not regular. Counting and context-free
languages.

13. Iterative circuits. The concept of iterative circuit. One
dimensional and more dimensional iterative circuits. One-directional carry
and two-directional carry signals. Relation between one-directional, one-
dimensional interative circuits and Finite State Machines. Trade-off
between speed and area in digital design. Trade-off between time and space
realization of iteration – most important issue in digital design and how
it relates to iterative circuits and FSMs. Examples of iterative circuits
and FSMs. Comparator A>B, comparator A=B, circuit for finding the first
one from left, circuit to filter ones between the first and the last ones
in the sequence. Maximum circuits, sorters. Iterative versus trees. left
ones, both ones, max A=B

14. Turing Machine. Why is it important? The concept and its realization.
Example of Turing machine to do the following operations: copy n, copy n+1,
2n, n+m, n*m. Design of controllers with data path and control unit for
these Turing machines. How to realize the tape? Control signals for the
tape. Systematic and ad-hoc design of these types of controllers.

15. Machines with stack. As above, but you are controlling a stack
instead of a complete tape. Examples of languages recognized by stack
machines. Palindromes, language A^n B^n and similar. Deterministic and
non-deterministic languages recognized by stack machines.

16. Arithmetic. Rational Arithmetic, complex arithmetic – data paths.
Counter arithmetic. Controllers to add, multiply and divide using up-down
counters. Design of controllers. Role of invariants in optimization.
Waveform generators based on counters. GCD and LCM circuits. Euclid
Algorithm.

17. Compiler optimization for software and hardware. Similarities. Role
of transformations. Timing and area improvements. Use of distributivity,
associativity, etc.

18. Sequential Circuits. Type D, JK, RS, T Flip-flops. Realization of
machines with arbitrary flip-flops. State minimization of completely
specified machines.

19. Minimization of Incompletely Specified Finite State Machines.
Covering closure problem. Relation to binate covering. Maximum compatibles.
Minimization based on maximum cliques. Algorithmic method of finding
covering and closure. Graphic method of finding covering and closure. Ad-
hoc methods of guessing and verifying good compatibles. Triangular table,
its creation and solution.

20. State Assignment of Synchronous Finite State Machines. The problem
of state assignment. Coding and codes. Partitions determined by inputs,
states and outputs. Rule based state assignment. Hypercube-based state
assignment. Many ways of creating the graph for embedding in hypercube.
Numerical method of weighting the edges of the graph. How to draw a
hypercube in n-dimension. Hypercube and a Kmap. Assignment method based on

column and output partitions. Multi-line method and basic theorem. The
concept of partition pairs and partition lattices and how they are useful
in state assignment. Operations on partitions – graphical and algebraic
realizations. How to combine many state assignment methods to get a good
solution quickly. State assignment for JK flip-flops and incompletely
specified state machines.

21. Microprogrammed Control Unit. Structure of the simple
microprogrammed unit without stack. Convert a flowchart to a binary ROM
(RAM) table that programs output signals, next (jump) states and predicate
selection addresses.

22. Scheduling. The scheduling problem. Scheduling without constraints.
Scheduling under timing constraints. Scheduling under resource constraints.
The Integer Linear Programming (ILP) approaches. Heuristic scheduling
based on known methods such as graph coloring. ASAP and ALAP and their
uses. Hu’s algorithm, List scheduling. Force-directed scheduling.
Scheduling with chaining.

23. Resource Sharing. Resource dominated circuits. Flat and hierarchical
graphs. Functional and memory resources. Non-resource dominated circuits.
Concurrent scheduling and binding. Allocation and binding. Optimum sharing
problem. Compatibility graphs and conflict graphs. Algorithmic solutions
to the optimum binding problem. Perfect graphs. Data-Flow graphs, their
properties. ILP formulation of binding. Hierarchical sequencing graphs.
Register binding problem. Multi-Port Memory binding. Bus sharing and
binding. Scheduling and binding resource dominated circuits. Scheduling
and binding approaches: scheduling before or after binding. Module
selection problem and solutions. Examples of comprehensive data path
design based on scheduling and binding algorithms.

