Combinational Problems: Unate Covering, Binate Covering, Graph Coloring and Maximum Cliques

Example of application: Decomposition

In many logic synthesis, formal verification or testing problems we can reduce the problem to some well-known and researched problem

These problems are called combinational problems or discrete optimization problems

In our area of interest the most often used are the following:

- Set Covering (Unate Covering)
- Covering/Closure (Binate Covering)
- Graph Coloring
- Maximum Clique

Basic Combinational ProblemsThere are many problems that can be

There are many problems that can be reduced to Graph Coloring.

They include

- Two-Level (SOP) minimization
- Three-Level minimization
- Minimum test set
- Boolean and Multiple-valued Decomposition

There are many problems that can be reduced to <u>Unate Covering</u>

They include

- Two-Level (SOP) minimization
- Three-Level CDEC minimization (Conditional DECoder)
- Minimum test set generation
- Boolean and Multiple-valued Decomposition
- Physical and technology mapping

There are many problems that can be reduced to **Binate Covering**

They include

- Three-Level TANT minimization (Three Level AND NOT Networks with True Inputs)
- FSM state minimization (Finite State Machine)
- Technology mapping

Binate Covering is basically the same as Satisfiability that has hundreds of applications Ashenhurst created a method to decompose a single-output Boolean function to sub-functions

Curtis generalized this method to decompositions with more than one wire between the subfunctions.

Miller and Muzio generalized to Multi-Valued Logic functions

Perkowski et al generalized to Relations

Multiple-valued logic relations

Example of a relation with 4 binary inputs and one 4-valued (quaternary) output variable

- VLSI design
- Machine learning and data mining
- Finite state machine design

Two-level decomposition is recursively applied to few functions H_i and G_i , until smaller functions G_t and H_t are created, that are not further decomposable.

Thus Curtis decomposition is multi-level, and each two-level stage should create the candidates for the next level that will be as well decomposable as possible.

Decomposed Function Cardinality is the total cost of all blocks, where the cost of a binary block with n inputs and m outputs is $m * 2^n$.

Example of DFC calculation

Find a set of partitions (A_i, B_i) of input variables (X) into free variables (A) and bound variables (B)

For each partitioning, find decomposition $F(X) = H_i(G_i(B_i), A_i)$ such that column multiplicity is minimal, and calculate DFC

Repeat the process for all partitioning until the decomposition with minimum DFC is found.

- Since the process is iterative, it is of high importance that minimizing of the column multiplicity index was done as fast as possible.
- At the same time it is important that the value of column multiplicity was close to the absolute minimum value for a given partitioning.

- Decomposition of Boolean or multi-valued functions and relations can be converted to combinatorial problems that we know.
- Ashenhurst decomposition has been extended by Curtis
 - The research is going on to further generalize concepts of Ashenhurst/Curtis decomposition to incompletely specified multi-valued functions, relations, fuzzy logic, reversible logic and other
- Our group has done much research in this area and we continue our research
- Next lecture will show some of possible reductions and method of solving combinational problems

Perkowski et al, DAC'99 paper, slides by Alan Mishchenko

