
CMPUT 680 - Compiler Design and Optimization 1

CMPUT680 - Winter 2001

Topic 6: Register Allocation and
Instruction Scheduling

José Nelson Amaral
http://www.cs.ualberta.ca/~amaral/courses/680

CMPUT 680 - Compiler Design and Optimization 2

Reading ListReading ListReading ListReading List

❚ Tiger book: chapter 10 and 11
❚ Dragon book: chapter 10
❚ Other papers as assigned in

class or homeworks

CMPUT 680 - Compiler Design and Optimization 3

Register Allocation

❚ Motivation
❚ Live ranges and interference graphs
❚ Problem formulation
❚ Solution methods

CMPUT 680 - Compiler Design and Optimization 4

Goals of OptimizedGoals of OptimizedGoals of OptimizedGoals of Optimized
Register AllocationRegister AllocationRegister AllocationRegister Allocation

❚ To assign registers to variables
that are more profitable to keep in
registers.

❚ Use the same register for multiple
variables when it is legal to do so.

CMPUT 680 - Compiler Design and Optimization 5

Liveness

Intuitively a variable v is live if it holds a
value that may be needed in the future. In
other words, v is live at a point pi if:

(i) v has been defined in a statement that
 precedes pi in any path, and

(ii) v may be used by a statement sj,
 and there is a path from pi to sj.

(iii) v is not killed between pi and sj.

CMPUT 680 - Compiler Design and Optimization 6

Live Variables

a: s1 = ld(x)
b: s2 = s1 + 4
c: s3 = s1 ∗∗∗∗ 8
d: s4 = s1 - 4
e: s5 = s1/2
f: s6 = s2 * s3
g: s7 = s4 - s5
h: s8 = s6 * s7

A variable v is live between
the point pi immediately after
its definition and the point
pj immediately after its last use.

The interval [pi, pj] is the
live range of the variable v.

Which variables have the longest
live range in the example?

Variables s1 and s2 have a live range
of four statements.

s2
s1

CMPUT 680 - Compiler Design and Optimization 7

Register Allocation

a: s1 = ld(x)
b: s2 = s1 + 4
c: s3 = s1 ∗∗∗∗ 8
d: s4 = s1 - 4
e: s5 = s1/2
f: s6 = s2 * s3
g: s7 = s4 - s5
h: s8 = s6 * s7

How can we find out
what is the minimum number
of registers required by this
basic block to avoid
spilling values to memory?

We have to compute the live
range of all variables and find
the “fatest” statement.

Which statements have the most
variables live simultaneously?

CMPUT 680 - Compiler Design and Optimization 8

Register Allocation

a: s1 = ld(x)
b: s2 = s1 + 4
c: s3 = s1 ∗∗∗∗ 8
d: s4 = s1 - 4
e: s5 = s1/2
f: s6 = s2 * s3
g: s7 = s4 - s5
h: s8 = s6 * s7

s7
s6

s5
s4

s3
s2

s1

At statement d variables
s1, s2, s3, and s4 are live,
and during statement e
variables s2, s3, s4,
and s5 are live.

But we have to use some math:
our choice is liveness analysis.

CMPUT 680 - Compiler Design and Optimization 9

Live-in and Live-out

a: s1 = ld(x)
b: s2 = s1 + 4
c: s3 = s1 ∗∗∗∗ 8
d: s4 = s1 - 4
e: s5 = s1/2
f: s6 = s2 * s3
g: s7 = s4 - s5
h: s8 = s6 * s7

s7
s6

s5
s4

s3
s2

s1 live-in(r): set of variables
that are live at the point
immediately before
statement r.

live-out(r): set of variables
that are live at the point
immediately after statement r.

CMPUT 680 - Compiler Design and Optimization 10

Live-in and Live-out:
Program Example

a: s1 = ld(x)
b: s2 = s1 + 4
c: s3 = s1 ∗∗∗∗ 8
d: s4 = s1 - 4
e: s5 = s1/2
f: s6 = s2 * s3
g: s7 = s4 - s5
h: s8 = s6 * s7

s7
s6

s5
s4

s3
s2

s1

What are live-in(e) and live-out(e)?

live-in(e) = {s1, s2, s3, s4} live-out(e) = {s2, s3, s4, s5}

CMPUT 680 - Compiler Design and Optimization 11

Live-in and Live-out in
Control Flow Graphs

The entry point of a basic block B is the point before
its first statement. The exit point is the point after
its last statement.

live-in(B): set of variables that are live at the entry
point of the basic block B.

live-out(B): set of variables that are live at the exit
point of the basic block B.

CMPUT 680 - Compiler Design and Optimization 12

Live-in and Live-out of
basic blocks

a := b + c
d := d - b
e := a + f

b := d + c

b := d + f
e := a - c

f := a - d

B4

B3B2

B1

• live-in(B4)={c,d,e,f}

• live-out(B4)={b,c,d,e,f}

b, d, e, f live

b, c, d, e, f live

(Aho-Sethi-Ullman, pp. 544)

• live-in(B1)={b,c,d,f}

• live-out(B1)={a,c,d,e,f}

• live-in(B2)={a,c,d,e}

• live-out(B2)={c,d,e,f}

• live-in(B3)={a,c,d,f}

• live-out(B3)={b,c,d,e,f}

Compute live-in
and live-out for
each basic block

CMPUT 680 - Compiler Design and Optimization 13

Register-Interference GraphRegister-Interference GraphRegister-Interference GraphRegister-Interference Graph

A register-interference graph is an undirected
graph that summarizes live analysis at the variable
level as follows:

❚ A node is a variable/temporary that is a candidate for
register allocation.

❚ An edge connects nodes v1 and v2 if there is some
statement in the program where variables v1 and v2
are live simultaneously. (Variables v1 and v2 are
said to interfere, in this case).

CMPUT 680 - Compiler Design and Optimization 14

Register Interference
Graph: Program Example

a: s1 = ld(x)
b: s2 = s1 + 4
c: s3 = s1 ∗∗∗∗ 8
d: s4 = s1 - 4
e: s5 = s1/2
f: s6 = s2 * s3
g: s7 = s4 - s5
h: s8 = s6 * s7

s7
s6

s5
s4

s3
s2

s1

s1

s2

s3

s4s5

s7

s6

CMPUT 680 - Compiler Design and Optimization 15

Register AllocationRegister AllocationRegister AllocationRegister Allocation
by Graph Coloringby Graph Coloringby Graph Coloringby Graph Coloring

Background: A graph is k-colorable if each
node has been assigned one of k colors in such
a way that no two adjacent nodes have the
same color.

Basic idea: A k-coloring of the interference
graph can be directly mapped to a legal register
allocation by mapping each color to a distinct
register. The coloring property ensures that no
two variables that interfere with each other are
assigned the same register.

CMPUT 680 - Compiler Design and Optimization 16

The basic idea behind register allocation
by graph coloring is to

1. Build the register interference graph,
2. Attempt to find a k-coloring for the

 interference graph.

Register Allocation byRegister Allocation byRegister Allocation byRegister Allocation by
Graph ColoringGraph ColoringGraph ColoringGraph Coloring

CMPUT 680 - Compiler Design and Optimization 17

Complexity of the GraphComplexity of the GraphComplexity of the GraphComplexity of the Graph
Coloring ProblemColoring ProblemColoring ProblemColoring Problem

❚ The problem of determining if
an undirected graph is k-
colorable is NP-hard for k ≥ 3.

❚ It is also hard to find
approximate solutions to the
graph coloring problem.

CMPUT 680 - Compiler Design and Optimization 18

Question: What to do if a register-interference
graph is not k-colorable? Or if the compiler
cannot efficiently find a k-coloring even if the
graph is k-colorable?

Answer: Repeatedly select less profitable
variables for “spilling” (i.e. not to be assigned
to registers) and remove them from the
interference graph till the graph becomes k-
colorable.

Register AllocationRegister AllocationRegister AllocationRegister Allocation

CMPUT 680 - Compiler Design and Optimization 19

Estimating RegisterEstimating RegisterEstimating RegisterEstimating Register
ProfitabilityProfitabilityProfitabilityProfitability

. variable to
 assigned asregister w a if ,block basic

in nsinstructio store and load ofnumber
 reduced a todue saved be uld that wo
 cyclesprocessor ofnumber estimated :
 analysis), staticby or profilingby (obtained

block basic offrequency execution estimated :

:by estimated is variableofity profitabilregister The

v
i

, i)savings (v
i

freq(i)

, i) savings(vfreq(i) ity(v) profitabil

v

i
∑ ×=

CMPUT 680 - Compiler Design and Optimization 20

HeHeHeHeuristic uristic uristic uristic Solution for GraphSolution for GraphSolution for GraphSolution for Graph
ColoringColoringColoringColoring

Key observation:

G G’

Then G is k-colorable if G’ is k-colorable.

Remove a node x
with degree < k

from G, and all
associated edges

CMPUT 680 - Compiler Design and Optimization 21

A 2-Phase RegisterA 2-Phase RegisterA 2-Phase RegisterA 2-Phase Register
Allocation AlgorithmAllocation AlgorithmAllocation AlgorithmAllocation Algorithm

Build
IG Simplify

Select
and

 Spill

Forward pass Reverse pass

CMPUT 680 - Compiler Design and Optimization 22

/* neighbor(v) contains a list of
 the neighbors of v. */
/* Build step */
Build the register-interference

graph, G;

/* Forward pass */
Initialize an empty stack;
repeat
 while G has a node v such that
 |neighbor(v)| < k do
 /* Simplify step */
 Push (v, neighbors(v), no-spill)
 Delete v and its edges from G
 end while

 if G is non-empty then
 /* Spill step */
 Choose “least profitable” node v
 as a potential spill node;
 Push (v, neighbors(v), may-spill)
 Delete v and its edges from G
 end if
until G is an empty graph;

Heuristic “Optimistic”Heuristic “Optimistic”Heuristic “Optimistic”Heuristic “Optimistic”
AlgorithmAlgorithmAlgorithmAlgorithm

CMPUT 680 - Compiler Design and Optimization 23

/* Reverse Pass */
while the stack is non-empty do
 Pop (v, neighbors(v), tag)
 N := set of nodes in neighbors(v);
 if (tag = no-spill) then
 /* Select step */
 Select a register R for v such that
 R is not assigned to nodes in N;
 Insert v as a new node in G;
 Insert an edge in G
 from v to each node in N;
 else /* tag = may-spill */

 if v can be assigned a register R
 such that R is not assigned
 to nodes in N then
 /* Optimism paid off: need not spill */
 Assign register R to v;
 Insert v as a new node in G;
 Insert an edge in G from
 from v to each node in N;
 else
 /* Need to spill v */
 Mark v as not being allocate a register
 end if
end if
end while

Heuristic “Optimistic”Heuristic “Optimistic”Heuristic “Optimistic”Heuristic “Optimistic”
AlgorithmAlgorithmAlgorithmAlgorithm

CMPUT 680 - Compiler Design and Optimization 24

RemarksRemarksRemarksRemarks

The above register allocation algorithm
based on graph coloring is both efficient
(linear time) and effective.

It has been used in many industry-
strength compilers to obtain significant
improvements over simpler register
allocation heuristics.

CMPUT 680 - Compiler Design and Optimization 25

Extensions

❚ Coalescing

❚ Live range splitting

CMPUT 680 - Compiler Design and Optimization 26

CoalescingCoalescingCoalescingCoalescing

In the sequence of intermediate level instructions with a
copy statement below, assume that registers are
allocated to both variables x and y.

x := …
. . .
y := x
. . .
… := y

There is an opportunity for further
optimization by eliminating the
copy statement if x and y are
assigned the same register.

The constraint that x and y receive the same register
can be modeled by coalescing the nodes for x and y
in the interference graph i.e., by treating them as the
same variable.

CMPUT 680 - Compiler Design and Optimization 27

SimplifyBuild
IG

Select
and

 Spill
Coalesce

An Extension with
Coalesce

CMPUT 680 - Compiler Design and Optimization 28

Register Allocation with
Coalescing

2. Simplify: one at a time, remove non-move-related
 nodes of low (< K) degree from G.

1. Build: build the register interference graph G and
 categorize nodes as move-related
 or non-move-related.

3. Coalesce: conservatively coalesce G: only coalesce
 nodes a and b if the resulting a-b node has
 less than K neighbors.

4. Freeze: If neither coalesce nor simplify works, freeze a
 move-related node of low degree, making it
 non-move-related and available for simplify.

(Appel, pp. 240)

CMPUT 680 - Compiler Design and Optimization 29

Register Allocation with
Coalescing

5. Spill: if there are no low-degree nodes, select a
 node for potential spilling.

6. Select: pop each element of the stack assigning
 colors.

(re)build coalesce freezesimplify

select potential
spill

actual
spill

(Appel, pp. 240)

CMPUT 680 - Compiler Design and Optimization 30

Example:
Step 1: Compute Live Ranges

LIVE-IN: k j
g := mem[j+12]
h := k -1
f := g + h
e := mem[j+8]
m := mem[j+16]
b := mem[f]
c := e + 8
d := c

j := b
k := m + 4

LIVE-OUT: d k j

m
e

f
h

g

k j

b
c

d

CMPUT 680 - Compiler Design and Optimization 31

Example:
Step 3: Simplify (K=4)

b mkj

gh

d

c

e

f

(Appel, pp. 237)

(h,no-spill)

stack

CMPUT 680 - Compiler Design and Optimization 32

Example:
Step 3: Simplify (K=4)

b mkj

g

d

c

e

f

(Appel, pp. 237)

(g, no-spill)
(h, no-spill)

stack

CMPUT 680 - Compiler Design and Optimization 33

Example:
Step 3: Simplify (K=4)

b mkj

d

c

e

f

(Appel, pp. 237)

(k, no-spill)
(g, no-spill)
(h, no-spill)

stack

CMPUT 680 - Compiler Design and Optimization 34

Example:
Step 3: Simplify (K=4)

b mj

d

c

e

f

(Appel, pp. 237)

(f, no-spill)
(k, no-spill)
(g, no-spill)
(h, no-spill)

stack

CMPUT 680 - Compiler Design and Optimization 35

Example:
Step 3: Simplify (K=4)

b mj

d

c

e

(Appel, pp. 237)

(e, no-spill)
(f, no-spill)
(k, no-spill)
(g, no-spill)
(h, no-spill)

stack

CMPUT 680 - Compiler Design and Optimization 36

Example:
Step 3: Simplify (K=4)

b mj

d

c

(Appel, pp. 237)

(m, no-spill)
(e, no-spill)
(f, no-spill)
(k, no-spill)
(g, no-spill)
(h, no-spill)

stack

CMPUT 680 - Compiler Design and Optimization 37

Example:
Step 3: Coalesce (K=4)

bj

d

c

(Appel, pp. 237)

(m, no-spill)
(e, no-spill)
(f, no-spill)
(k, no-spill)
(g, no-spill)
(h, no-spill)

stack

Why we cannot simplify?

Cannot simplify move-related nodes.

CMPUT 680 - Compiler Design and Optimization 38

Example:
Step 3: Coalesce (K=4)

bj

d

c

(Appel, pp. 237)

(m, no-spill)
(e, no-spill)
(f, no-spill)
(k, no-spill)
(g, no-spill)
(h, no-spill)

stack

CMPUT 680 - Compiler Design and Optimization 39

Example:
Step 3: Simplify (K=4)

bj

c-d

(Appel, pp. 237)

(c-d, no-spill)
(m, no-spill)
(e, no-spill)
(f, no-spill)
(k, no-spill)
(g, no-spill)
(h, no-spill)

stack

CMPUT 680 - Compiler Design and Optimization 40

Example:
Step 3: Coalesce (K=4)

bj

(Appel, pp. 237)

(c-d, no-spill)
(m, no-spill)
(e, no-spill)
(f, no-spill)
(k, no-spill)
(g, no-spill)
(h, no-spill)

stack

CMPUT 680 - Compiler Design and Optimization 41

Example:
Step 3: Simplify (K=4)

b-j

(Appel, pp. 237)

(b-j, no-spill)
(c-d, no-spill)
(m, no-spill)
(e, no-spill)
(f, no-spill)
(k, no-spill)
(g, no-spill)
(h, no-spill)

stack

CMPUT 680 - Compiler Design and Optimization 42

Example:
Step 3: Select (K=4)

b mkj

gh

d

c

e

f

(Appel, pp. 237)

(b-j, no-spill)
(c-d, no-spill)
(m, no-spill)
(e, no-spill)
(f, no-spill)
(k, no-spill)
(g, no-spill)
(h, no-spill)

stack

R1

R2

R3

R4

CMPUT 680 - Compiler Design and Optimization 43

Example:
Step 3: Select (K=4)

b mkj

gh

d

c

e

f

(Appel, pp. 237)

(b-j, no-spill)
(c-d, no-spill)
(m, no-spill)
(e, no-spill)
(f, no-spill)
(k, no-spill)
(g, no-spill)
(h, no-spill)

stack

R1

R2

R3

R4

CMPUT 680 - Compiler Design and Optimization 44

Example:
Step 3: Select (K=4)

b mkj

gh

d

c

e

f

(Appel, pp. 237)

(b-j, no-spill)
(c-d, no-spill)
(m, no-spill)
(e, no-spill)
(f, no-spill)
(k, no-spill)
(g, no-spill)
(h, no-spill)

stack

R1

R2

R3

R4

CMPUT 680 - Compiler Design and Optimization 45

Example:
Step 3: Select (K=4)

b mkj

gh

d

c

e

f

(Appel, pp. 237)

(b-j, no-spill)
(c-d, no-spill)
(m, no-spill)
(e, no-spill)
(f, no-spill)
(k, no-spill)
(g, no-spill)
(h, no-spill)

stack

R1

R2

R3

R4

CMPUT 680 - Compiler Design and Optimization 46

Example:
Step 3: Select (K=4)

b mkj

gh

d

c

e

f

(Appel, pp. 237)

(b-j, no-spill)
(c-d, no-spill)
(m, no-spill)
(e, no-spill)
(f, no-spill)
(k, no-spill)
(g, no-spill)
(h, no-spill)

stack

R1

R2

R3

R4

CMPUT 680 - Compiler Design and Optimization 47

Example:
Step 3: Select (K=4)

b mkj

gh

d

c

e

f

(Appel, pp. 237)

(b-j, no-spill)
(c-d, no-spill)
(m, no-spill)
(e, no-spill)
(f, no-spill)
(k, no-spill)
(g, no-spill)
(h, no-spill)

stack

R1

R2

R3

R4

CMPUT 680 - Compiler Design and Optimization 48

Example:
Step 3: Select (K=4)

b mkj

gh

d

c

e

f

(Appel, pp. 237)

(b-j, no-spill)
(c-d, no-spill)
(m, no-spill)
(e, no-spill)
(f, no-spill)
(k, no-spill)
(g, no-spill)
(h, no-spill)

stack

R1

R2

R3

R4

CMPUT 680 - Compiler Design and Optimization 49

Example:
Step 3: Select (K=4)

b mkj

gh

d

c

e

f

(Appel, pp. 237)

(b-j, no-spill)
(c-d, no-spill)
(m, no-spill)
(e, no-spill)
(f, no-spill)
(k, no-spill)
(g, no-spill)
(h, no-spill)

stack

R1

R2

R3

R4

CMPUT 680 - Compiler Design and Optimization 50

Could we do the allocation in
the previous example with 3

registers?

CMPUT 680 - Compiler Design and Optimization 51

Example:
Step 3: Simplify (K=3)

b mkj

gh

d

c

e

f

(Appel, pp. 237)

(h,no-spill)

stack

CMPUT 680 - Compiler Design and Optimization 52

Example:
Step 3: Simplify (K=3)

b mkj

g

d

c

e

f

(Appel, pp. 237)

(g, no-spill)
(h, no-spill)

stack

CMPUT 680 - Compiler Design and Optimization 53

Example:
Step 5: Freeze (K=3)

b mkj

d

c

e

f

(Appel, pp. 237)

(g, no-spill)
(h, no-spill)

stack

Coalescing would make
things worse.

We can freeze the move
d-c.

CMPUT 680 - Compiler Design and Optimization 54

Example:
Step 3: Simplify (K=3)

b mkj

d

c

e

f

(Appel, pp. 237)

(c, no-spill)
(g, no-spill)
(h, no-spill)

stack

CMPUT 680 - Compiler Design and Optimization 55

Example:
Step 6: Spill (K=3)

b mkj

d

e

f

(Appel, pp. 237)

(e, may-spill)
(c, no-spill)
(g, no-spill)
(h, no-spill)

stack

Neither coalescing nor
freezing help us.

At this point we should
use some profitability
analysis to choose a
node as may-spill.

CMPUT 680 - Compiler Design and Optimization 56

Example:
Step 3: Simplify (K=3)

b mkj

d

f

(Appel, pp. 237)

(f, no-spill)
(e, may-spill)
(c, no-spill)
(g, no-spill)
(h, no-spill)

stack

CMPUT 680 - Compiler Design and Optimization 57

Example:
Step 3: Simplify (K=3)

b mkj

d

(Appel, pp. 237)

(m, no-spill)
(f, no-spill)

(e, may-spill)
(c, no-spill)
(g, no-spill)
(h, no-spill)

stack

CMPUT 680 - Compiler Design and Optimization 58

Example:
Step 3: Coalesce (K=3)

bkj

d

(Appel, pp. 237)

(m, no-spill)
(f, no-spill)

(e, may-spill)
(c, no-spill)
(g, no-spill)
(h, no-spill)

stack

CMPUT 680 - Compiler Design and Optimization 59

Example:
Step 3: Coalesce (K=3)

kj-b

d

(Appel, pp. 237)

(d, no-spill)
(m, no-spill)
(f, no-spill)

(e, may-spill)
(c, no-spill)
(g, no-spill)
(h, no-spill)

stack

CMPUT 680 - Compiler Design and Optimization 60

Example:
Step 3: Coalesce (K=3)

kj-b

(Appel, pp. 237)

(k, no-spill)
(d, no-spill)
(m, no-spill)
(f, no-spill)

(e, may-spill)
(c, no-spill)
(g, no-spill)
(h, no-spill)

stack

CMPUT 680 - Compiler Design and Optimization 61

Example:
Step 3: Coalesce (K=3)

j-b

(Appel, pp. 237)

(j-b, no-spill)
(k, no-spill)
(d, no-spill)
(m, no-spill)
(f, no-spill)

(e, may-spill)
(c, no-spill)
(g, no-spill)
(h, no-spill)

stack

CMPUT 680 - Compiler Design and Optimization 62

Example:
Step 3: Select (K=3)

b mkj

gh

d

c

e

f

(Appel, pp. 237)

stack

R1

R2

R3

(j-b, no-spill)
(k, no-spill)
(d, no-spill)
(m, no-spill)
(f, no-spill)

(e, may-spill)
(c, no-spill)
(g, no-spill)
(h, no-spill)

CMPUT 680 - Compiler Design and Optimization 63

Example:
Step 3: Select (K=3)

b mkj

gh

d

c

e

f

(Appel, pp. 237)

stack

R1

R2

R3

(j-b, no-spill)
(k, no-spill)
(d, no-spill)
(m, no-spill)
(f, no-spill)

(e, may-spill)
(c, no-spill)
(g, no-spill)
(h, no-spill)

CMPUT 680 - Compiler Design and Optimization 64

Example:
Step 3: Select (K=3)

b mkj

gh

d

c

e

f

(Appel, pp. 237)

stack

R1

R2

R3

(j-b, no-spill)
(k, no-spill)
(d, no-spill)
(m, no-spill)
(f, no-spill)

(e, may-spill)
(c, no-spill)
(g, no-spill)
(h, no-spill)

CMPUT 680 - Compiler Design and Optimization 65

Example:
Step 3: Select (K=3)

b mkj

gh

d

c

e

f

(Appel, pp. 237)

stack

R1

R2

R3

(j-b, no-spill)
(k, no-spill)
(d, no-spill)
(m, no-spill)
(f, no-spill)

(e, may-spill)
(c, no-spill)
(g, no-spill)
(h, no-spill)

CMPUT 680 - Compiler Design and Optimization 66

Example:
Step 3: Select (K=3)

b mkj

gh

d

c

e

f

(Appel, pp. 237)

stack

R1

R2

R3

(j-b, no-spill)
(k, no-spill)
(d, no-spill)
(m, no-spill)
(f, no-spill)

(e, may-spill)
(c, no-spill)
(g, no-spill)
(h, no-spill)

CMPUT 680 - Compiler Design and Optimization 67

Example:
Step 3: Select (K=3)

b mkj

gh

d

c

e

f

(Appel, pp. 237)

stack

R1

R2

R3

(j-b, no-spill)
(k, no-spill)
(d, no-spill)
(m, no-spill)
(f, no-spill)

(e, may-spill)
(c, no-spill)
(g, no-spill)
(h, no-spill)

This is when our optimism could
have paid off.

CMPUT 680 - Compiler Design and Optimization 68

Example:
Step 3: Select (K=3)

b mkj

gh

d

c

e

f

(Appel, pp. 237)

stack

R1

R2

R3

(j-b, no-spill)
(k, no-spill)
(d, no-spill)
(m, no-spill)
(f, no-spill)

(e, may-spill)
(c, no-spill)
(g, no-spill)
(h, no-spill)

CMPUT 680 - Compiler Design and Optimization 69

Example:
Step 3: Select (K=3)

b mkj

gh

d

c

e

f

(Appel, pp. 237)

stack

R1

R2

R3

(j-b, no-spill)
(k, no-spill)
(d, no-spill)
(m, no-spill)
(f, no-spill)

(e, may-spill)
(c, no-spill)
(g, no-spill)
(h, no-spill)

CMPUT 680 - Compiler Design and Optimization 70

Example:
Step 3: Select (K=3)

b mkj

gh

d

c

e

f

(Appel, pp. 237)

stack

R1

R2

R3

(j-b, no-spill)
(k, no-spill)
(d, no-spill)
(m, no-spill)
(f, no-spill)

(e, may-spill)
(c, no-spill)
(g, no-spill)
(h, no-spill)

CMPUT 680 - Compiler Design and Optimization 71

Live Range SplittingLive Range SplittingLive Range SplittingLive Range Splitting

The basic coloring algorithm does not
consider cases in which a variable can be
allocated to a register for part of its live
range.

Some compilers deal with this by splitting live
ranges within the iteration structure of the
coloring algorithm i.e., by pretending to split
a variable into two new variables, one of
which might be profitably assigned to a
register and one of which might not.

CMPUT 680 - Compiler Design and Optimization 72

Length of Live RangesLength of Live RangesLength of Live RangesLength of Live Ranges

The interference graph does not contain information of
where in the CFG variables interfere and what the
lenght of a variable’s live range is. For example, if we
only had few available registers in the following
intermediate-code example, the right choice would be to
spill variable w because it has the longest live range:

x = w + 1
c = a - 2
y = x * 3
z = w + y

CMPUT 680 - Compiler Design and Optimization 73

Effect of InstructionEffect of InstructionEffect of InstructionEffect of Instruction
Reordering on RegisterReordering on RegisterReordering on RegisterReordering on Register

PressurePressurePressurePressure

The coloring algorithm does not take into account the
fact that reordering IL instructions can reduce
interference. Consider the following example:

Original Ordering Optimized Ordering
 (needs 3 registers) (needs 2 registers)

 t1 := A[i] t2 ;= A[j]
 t2 := A[j] t3 := A[k]

 t3 := A[k] t4 := t2 * t3

 t4 := t2 * t3 t1 := A[i]

 t5 := t1 + t4 t5 := t1 + t4

CMPUT 680 - Compiler Design and Optimization 74

Brief History of Register
Allocation

Chaitin: Use the simple stack heuristic for
ACM register allocation. Spill/no-spill
SIGPLAN decisions are made during the
Notices stack construction phase of the
1982 algorithm

Briggs: Finds out that Chaitin’s algorithm
PLDI spills even when there are available
1989 registers. Solution: the optimistic

 approach: may-spill during stack
 construction, decide at spilling time.

CMPUT 680 - Compiler Design and Optimization 75

Brief History of Register
Allocation

Callahan: Hierarchical Coloring Graph,
PLDI register preferencing,
1991 profitability of spilling.

Chow-Hennessy: Priority-based coloring.
SIGPLAN Integrate spilling decisions in the
1984 coloring decisions: spill a variable
ASPLOS for a limited life range.
1990 Favor dense over sparse use regions.

 Consider parameter passing convention.

