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A comprehens ive  d i scuss ion  of W o l f r a m ' s  four c lasses  of  cel lular  a u t o m a t a  is given,  wi th  the  in ten t ion  of  re la t ing  
t h e m  to Conway ' s  cr i ter ia  for a good  g a m e  of Life. A l t h o u g h  it is known t h a t  such  class i f icat ions canno t  be  ent irely 
r igorous,  m u c h  in fo rma t ion  a b o u t  the  behav io r  of  an  a u t o m a t o n  can  be g leaned  f rom the  s ta t i s t i ca l  p roper t i e s  of  i ts 
t r ans i t i on  table.  Still more  i n fo rma t ion  can  be  deduced  f rom the  m e a n  field a p p r o x i m a t i o n  to i ts  s t a t e  dens i t ies ,  in 
par t icu la r ,  f rom the  d i s t r i bu t ion  of hor izonta l  and  d iagona l  t a n g e n t s  of  the  la t ter .  In t u r n  these  charac te r i s t i cs  can  be 
re la ted  to the  presence  or absence  of ce r t a in  loops in t he  de Bru i jn  d i a g r a m  of  the  a u t o m a t o n .  

1. I n t r o d u c t i o n  

It  all began with John Horton Conway's  search 
for an "interesting" cellular automaton;  one which 
would perhaps  have the complexity of John von 
Neumann 's  universal constructor,  but with far 
fewer states, maybe  only two. Having observed 
that  the field of activity of an au tomaton  tended 
either to increase without  limit or to dwindle 
away to nothing, he settled for a delicately bal- 
anced combination which gained widespread pub- 
licity through its introduction in Mart in  Gardner ' s  
monthly column in Scientific American as the 
game of "Life" [1,2]. 

Interest  in the game persisted several years, 
leading to a most surprising series of artifacts 
- oscillators, shuttles, glider guns, puffer trains, 
very orderly collisions and eminently predictable 
t ransformations - culminating in the demonstra-  
tion that  Life was capable of universal computa-  
tion [3]. Even though Life's computer  shares an 
extraordinari ly sprawling layout with such prede- 
cessors as yon Neumann ' s  [4] and Codd 's  [5], nev- 
ertheless they all provided concrete tes t imony that  
arbi trar i ly complicated mathemat ics  could be per- 
formed within a system whose basic organization 
was thoroughly rudimentary.  

There was no lack of awareness that  those cellu- 

lar au toma ta  which seemed to have interesting or 
useful propert ies  had been plucked out of an envi- 
ronment populous beyond any normal concept of 
multitudes.  Nor is it surprising that  comparat ive 
studies of all the au toma ta  possible within some 
given class were not undertaken until computing 
facilities commensura te  with the task were avail- 
able, and even then not until the s tudy of chaotic 
systems had gained a certain popular i ty  [6]. But it 
was just  this combination which enabled Stephen 
Wolfram to s tudy and a t t empt  to classify all pos- 
sible au toma ta  into the four well known categories 
which now bear his name [7]: 

class I: evolution to a constant state; 
class II: evolution to isolated periodic segments; 
class III: evolution which is always chaotic; 
class IV: evolution to isolated chaotic segments. 

A recently published reprint volume [8] contains a 
rather  complete account of his work on au tomata ,  
several closely related papers  and an appendix 
showing sample evolutions. His scheme for num- 
bering rules of evolution is now generally followed, 
as is the notat ion (k, r) for a k-state linear cellu- 
lar au tomaton  whose cells are surrounded by r 
neighbors on each side. When occasion demands 
a neighborhood with an even number  of cells, r 
can be taken to be half-integral. 
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Even though relatively rare, the fourth class was 
the one which a t t rac ted  at tention because it was 
the one whose evolution could be regarded as ac- 
complishing some purpose. It  was thereby a gen- 
eralization of the concept of a good Life, which 
is supposed to be one with a quiescent state, for 
which bounded regions of nonquiescent cells would 
neither die out nor grow without limit. 

Other  rules, variants of Conway's,  have been 
tried without  any having been reported as being 
worthy of further attention; it is not unnatural  to 
inquire whether  the one game is in fact unique. For 
example,  Packard and Wolfram [9] studied two- 
dimensional cellular au t om a t a  after the spirit of 
Wolfram's  survey of one-dimensional au tomata ,  
declaring there were no class IV au toma ta  with 
the exception of "trivial variants on Life". 

Preston and Duff [10] mention experiments  with 
hexagonal lattices, some using a rule proposed by 
Marcel Golay; others with a rule of their own 
devising. Will iam Poundstone [11] reports  a "3-  
4 Life", which had been occasionally mentioned 
in Rober t  T. Wainwright 's  newsletter [12]. The 
newsletter also carried intermit tent  reports  of a 
variant of Life with three states; the live cells were 
colored red and blue, with supplementary  rules for 
determining the color of an offspring. 

The most  recent variation on this theme has 
been a series of articles by Carter  Bays [13-15] 
seeking a worthy three-dimensional variant of Life. 
His latest article [16] discusses the interrelation of 
Conway's  criteria and Wolfram's  classes. 

2. S t a t e m e n t  of  the  prob lem 

The novelty of Wolfram's  classification sufficed 
for a time, but  further scrutiny raised some inter- 
esting questions. Increasing the number  of states, 
the size of the neighborhoods, or even just  the 
length of the row of cells can lead to configura- 
tions which do not reach quiescence until larger 
and larger numbers  of generations have elapsed. 

Not only do randomly selected au t om a t a  ex- 
hibit this tendency; careful representation of the 
states and selection of the evolutionary transitions 
allows the fabrication of au toma ta  which can per- 
form simple computat ions.  Configurations of an 
au tomaton  which behaves as a counter can be de- 

signed to become quiescent after an exponential 
number  of generations relative to the number  of 
its cells, thereby approaching the upper  limit for 
the lengths of transients in a finite automaton.  
Thus it could require a very long t ime for an ex- 
perimental  decision as to whether an au tomaton  
belonged to class I or not. 

Even worse, as Karel Culik and Sheng Yu [17] 
have shown, given that  it is possible to simulate a 
universal Thring machine within a linear cellular 
au tomaton  having a sufficient number  of states, 
and given that  it is undecidable whether  such a 
machine will ever halt with a blank tape,  it only 
requires a certain amount  of care in arranging the 
details of the proof to see that  membership  in 
class I is undecidable for arbi t rary  au tomata .  

Continuing with class II, there can be uncer- 
tainty whether an assignment should not be made 
to class IV instead, if the period is very long. 
Tha t  is, the activity in a fairly large patch of the 
au tomaton ' s  field may look chaotic, but if such 
patches are bounded, the activity must ul t imately 
become periodic. Therefore a true class IV au- 
tomaton  would have to contemplate  the possibility 
of unlimited growth, accompanied by either coa- 
lescence of neighboring chaotic patches or some 
kind of coordinated dilation. 

Even class I I I  is not immune to further scrutiny. 
Not all s tates need occur with comparable  fre- 
quencies, nor are complex but  regular textures ex- 
cluded. Indeed, if the hal lmark of class IV is taken 
to be the occurrence of quiescent intervals of arbi- 
t ra ry  length, there is no reason to exclude similar 
stretches composed of other states or even of in- 
tricate designs. 

Finally, there are many  interesting fringe cases, 
even with the simplest au tomata .  If  a binary rule 
consists pr imari ly  of complementat ion,  every sec- 
ond generation may remain relatively constant,  so 
that  the apparent  class of interleaved generations 
may be different from the one that  was originally 
evident. A variant of this theme has the uniform 
neighborhoods al ternating generations (or follow- 
ing a longer cycle when there are sufficient states) 
rather  than one of them being quiescent. Inter- 
esting activity may develop at the interfaces be- 
tween constant patches in a configuration, which 
one might have classified as class IV were it not 
for the al ternation of backgrounds. 



H. V. McIntosh / Life and class IV  107 

The problem, then, is that  Wolfranfs classifica- 
tion is really not susceptible to a precise definition; 
even if it were, it would be bet ter  derived directly 
from descriptive parameters than from behavioral 
observations. Conversely, it would be nice to de- 
duce the parameters from observation. The exper- 
imental da ta  which are easiest to observe and ac- 
cumulate are statistical properties, both regarding 
frequencies of cell states, and of the patterns into 
which they can organize themselves. 

Consequently there has been a growing feeling 
that  Wolfram's classification is really a scale mea- 
suring the distribution of periodic cycles and their 
possible interconnections, class IV forming a tran- 
sition region between class II and class III. Thus 
class I au tomata  admit only cycles of length and 
period 1, those of class II very short periods and 
lengths, class IV requires the quiescent state plus 
long periods, while class III rejects a quiescent 
state or analogous cycles. 

The observable characteristics of the probability 
distributions, which would supposedly follow the 
presence or absence of this substructure,  would be 
the occurrence stable fixed points, limiting config- 
urations lying on the border between stability and 
instability, or some similar arrangement.  

In order to discuss any of these concepts ade- 
quately, it is necessary to review their bases, first 
probability and then de Bruijn diagrams. 

3.  P r o b a b i l i t i e s  a n d  m e a s u r e s  

At first, interest in au tomata  consisted in ob- 
serving their evolution and collecting examples of 
interesting configurations, but eventually the pre- 
cepts of information theory were applied to Life ,  

first in a 1975 paper by Dresden and Wong [18], 
later in 1978 by Schulman and Seiden [19]. 

The simplest procedure would be to judge the 
probability of a state by the number of neigh- 
borhoods generating it. Assuming them all to be 
equally likely often yields good results; an esti- 
mate which can be sharpened by weighting each 
neighborhood according to the frequency of its 
constituents, especially if the evolution is used to 
solve for self consistency. Since the neighborhoods 
from which adjoining cells evolve overlap, there 
are doubts as to whether their probabilities are 

independent; mean field theory results from sup- 
pressing such doubts, while other theories arise 
from the way in which they are taken into account. 

An alternative to working out the cumulants re- 
quired by Schulman and Seiden is to use the prob- 
abilities of sequences of cells rather than those of 
individual cells; just recently Wilbur, Lipman and 
Shamma [20] calculated some densities in linear 
cellular au tomata  using this approach. Gutowitz, 
Victor and Knight [21] made a more detailed anal- 
ysis along the same lines, basing their approach on 
Kolmogoroff's theory of probability measures, jus- 
tifying their estimates in terms of Bayes theorem, 
and even describing an extension applicable in two 
dimensions and beyond [22]. 

In order to fix our ideas, consider the one- 
dimensional (2,1) cellular automaton evolving by 
Wolfram's rule 22, which also happens to be the 
rule of evolution of a cross section of Conway's 
Life.  Moreover, it is totalistic rule 2 by the same 
scheme of reckoning, which means that a cell lives 
in the next generation if there is a single live cell 
anywhere in the neighborhood during the present 
generation. Since three of eight transitions pro- 
duce a live cell, the a pr io r i  probability of live 
cells would be 0.375. 

According to mean field theory, i fp  is the prob- 
ability that  a cell lives, q = 1 - p  is the probability 
that  it is dead or inactive, and altogether 3pq 2 that 
the neighborhood meets the requirement for a live 
cell in the following generation. 

The requirement for self-consistency is then 

p = 3pq 2 

or equivalently, p(1 - 3q 2) = 0, whose roots are 
p = 0.0 and q = l / x / 3  or p = 0.42. The derivative 
of the right-hand side at the origin is 3.0; an unsta- 
ble fixed point there is clearly consistent with the 
fact that at low densities isolated cells persist and 
give birth to two neighbors, multiplying the total 
population by three. The derivative at the other 
fixed point is approximately -0.46,  which implies 
a moderate alternating approach to stability. 

Fig. 1 shows a graph of this probability (the up- 
per curve) together with the diagonal line of un- 
changed probability; the two fixed points and their 
properties are quite clearly visible. Displaying the 
self-consistency equations graphically is always il- 
luminating; even more so is plotting the empiri- 
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Fig. 1. Self-consistent mean field probability for rule 22. 
The top curve is for one generation of evolution, the second 
for two generations. Empirical evolutionary pairs for a 320- 
cell ring form the cloud of dots. 

cal pairs representing successive generations, such 
would be encountered in an iterative approach to 
the fixed point. 

The most  striking observation is that  the em- 
pirical points do not str ict ly follow the mean field 
curves, tending to cluster about  a sort of average 
value, frequently near a fixed point; fig. 1 exhibits 
a cloud of 50 pairs, showing this effect clearly. As 
might be expected, in similar environments with 
unstable fixed points two separate clusters strad- 
dle the diagonal. 

It  can also be noted that  the variance per unit 
length of au tomaton  is quite large, strips of several 
thousand cells being required before the variance 
in the mean of the large sample allows predictions 
of three-figure accuracy to be obtained. Perhaps 
the intrinsic variance for a given rule could some- 
how be computed,  but serviceable est imates can 
be obtained from the general knowledge that  the 
variance of a sample of size n scales according to 
1/~/n. Thus rows with hundreds of cells, typical 
of video displays, have enough variance to be con- 
spicuous, yet not overwhelming; au toma ta  of fifty 

cells or less, common when results are presented 
on a printed line, leave considerable doubt  that  
any probabilistic influences are at work at all. 

Careful simulations of rule 22 agree with the 
stability of its fixed points, but not with the pre- 
cise location of 0.42. Gutowitz et al. examine 
this si tuation at considerable length, concluding 
that  block probabilities for blocks of length six 
or more are required before the self-consistent nu- 
merical probabil i ty agrees with empirical observa- 
tions, which favor a value of 0.35. 

Fig. 2 shows a contour plot for the self-consis- 
tency of pair, or 2-block, probabilities according 
to their formulae. Often the equations have multi- 
pie solutions; many can be identified with specific 
periodic configurations, but one will be related to 
a limiting measure.  Longer blocks require so many 
parameters  that  the overview afforded by a graph- 
ical presentation is no longer feasible; neverthe- 
less numerical solutions by iteration can always 
be sought. 

Another manifestat ion of correlations lies in the 
difference between i terated one-generation proba- 
bilities (having the same fixed points) and genuine 
two-generation probabilities taken from the com- 
pounded rule of evolution (with their own fixed 
points); the lower curve in fig. 1 shows the mean 
field probabil i ty corresponding to two generations 
of rule 22. 

4. F u r t h e r  i n t e r p r e t a t i o n  

Since there are several levels of refinement avail- 
able for working with probabilities, one wonders 
which to use. The a pr ior i  est imate is surely the 
easiest to obtain; in any event it is the first step 
in i terating the mean field approximation,  s tart ing 
out with initially uniform probabilities. 

Mean field theory works with polynomials; in- 
deed the Bernstein polynomials of probabil i ty and 
spectral theory consti tute an appropr ia te  basis. 
Strictly speaking, a "Bernstein polynomial" is one 
which has been derived from an arbi t rary  polyno- 
mial by a process of dissection intended to facili- 
ta te  the calculation of moments  and their conver- 
gence. When applied to ordinary monomials  typi- 
cal probabilistic expressions result, such as p i q n - i  

with p + q = 1; these special cases yield what 
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Fig. 2. Contours showing the degree of self-consistency for 
the evolution of pairs of cells according to rule 22, using 
local structure theory. Horizontal: probability of a live cell; 
vertical: probability of a live pair. Only the lower right 
triangular region is physically significant. 

is here called a Bernstein polynomial. The general 
theory is described in a book by G.G. Lorentz [23]; 
applications to the moment problem can be found 
in the memoir of Shohat and Tamarkin [24]. 

As regards accuracy and convenience, block 
probability theories, committed as they are to ra- 
tional fractions, are much more complicated and 
time consuming; negative factors to be balanced 
against their superior accuracy. Mean field theory 
is not only a workable compromise, it is recom- 
mended by numerous antecedents from statistical 
mechanics by which difficult probabilistic situa- 
tions have been satisfactorily approximated by the 
same technique. 

This does not mean that what one understands 
by mean field theory is the same for au tomata  as 
for disordered phenomena (it is not), only that 
the kinds of approximation involved are similar; 
not only are they regarded as successful, they are 
well calibrated through comparison with more ex- 
act theories. It would lead too far afield to dis- 
cuss probabilistic automata,  where the analogy is 

closer; but they can be borne in mind as another 
source of support for mean field theory. 

Whatever the reasons for choosing to work with 
mean field theory, it turns out that the results are 
generally quite reasonable; even when evidently 
lacking in precision, they still lie within the range 
of 10% accuracy. No less impressive are the quali- 
tative features, such as the observation that some 
automata  have a variety of fixed points while oth- 
ers do not. 

For example, it is hardly surprising that au- 
tomata  which would be judged to lie in class III  
tend to possess stable fixed points away from the 
origin (the origin, if fixed, would be unstable), in 
contrast to the others. Consequently the details of 
any analysis tend to focus on the degree to which 
the empirical densities actually correspond to val- 
ues given by the fixed points, and the interpreta- 
tion of observed behavior when they do not. 

It is likewise not unexpected that a quiescent 
state occupies a stable fixed point for class I au- 
tomata; it is often observed that class IV au- 
tomata  are associated with tangencies to the di- 
agonal of the fixed point graphs, and that class II 
sometimes goes with near misses. However these 
are mere visual impressions, although formed by 
prolonged observation, whose validity one would 
like to either explain or disprove. 

The easiest aspect to describe is the ocurrence 
of the quiescent state. As far as binary linear cellu- 
lar automata  go, quiescence evidently requires the 
absence of the term qn from the evolution equa- 
tion for live states (zero is traditionally a quies- 
cent state, n is the size of the neighborhood). The 
term p q ~ - i  arises two ways - if isolated live cells 
survive, and if cells are born from contagion: hav- 
ing a single live cell nearby. The first alternative 
alone produces a curve with a diagonal tangent at 
the origin; denying both possibilities means that 
regions of live cells will not expand and that the 
curve has a horizontal tangent at tile origin. 

The distance of contagion is an important  pa- 
rameter. It will always extend to the radius of the 
neighborhood, the number of cells thereby affected 
varying with the dimension of the automaton.  
Gutowitz and Victor [25] have noticed this effect 
while comparing two seven-cell neighborhoods, 
one taken from a hexagonal lattice with nearest 
neighbor interactions, the other a linear lattice 
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with third neighbor interactions. In the hexagonal 
case, it is sufficient to exclude the terms q7 and 
pq6 from the self-consistent probability, but in the 
linear automaton p2q5 and p3q4 also have to be 
excluded to observe class II or class IV behavior. 
They found similar contrasts between the nine-cell 
neighborhoods representing two-dimensional Life 
and (2,4) linear automata,  respectively. 

Bays [13] has proven theorems regarding the be- 
havior of three-dimensional automata  with vari- 
ous constraints on the neighborhoods (in his semi- 
totalistic notation).  Thus there seems to be a gen- 
eral agreement that the evolution of certain neigh- 
borhoods containing large numbers of quiescent 
states must preserve quiescent states, which is half 
of Conway's original argument that isolated or rel- 
atively isolated states must die out in order to 
provide an interesting automaton.  

Although the other half of his argument - how 
cells die from overpopulation - still has to be 
taken into account, the implications of quiescent 
domains and similar structures can be explored 
even further. 

5. De Bruijn diagrams 

Whether  working with probabilities, measures, 
or evolution, overlap between adjoining neighbor- 
hoods is the greatest technical obstacle to compu- 
tations; unless this problem is resolved adequately, 
further progress is almost impossible. Fortunately, 
a diagrammatic technique lying at the heart of 
shift register theory [26] saves the situation; the 
diagrams are called de Bruijn diagrams, but are 
merely simple graphs showing the possible ways 
for neighborhoods to overlap [27]. Erica Jen has 
shown how many properties of au tomata  can be 
extracted from such diagrams, especially the static 
and periodic configurations on a cylinder of fixed 
circumference [28]. Wolfram used these subdia- 
grams earlier in his theoretical analysis [29] of 
cellular automata;  although he called it a "reg- 
ular expression diagram," Wentian Li [30] used 
exactly the same concept to locate the periodic 
strings in an automaton;  there is no doubt that  the 
ideas have also been used elsewhere with greater 
or lesser degrees of formality. 

In principle, such a diagram could be extended 

to automata  of higher dimensions, but a problem 
arises from selecting partial neighborhoods that 
will join to form full neighborhoods in all direc- 
tions. The straightforward approach of building 
up strips of successively higher dimension runs 
afoul of Post 's correspondence principle when ar- 
bi trary intermediate strips have to be matched to 
form the layers of the next higher dimension. If 
only periodic solutions are required, the problem 
is still soluble. Hopcroft and Ullman [31, ch. 8] 
give a good explanation of the difficulties involved, 
which are related to the fact that  the halting prob- 
lem for a Turing machine can be worked into a 
similar context. This, of course, is the prototypical 
example of a problem without an algorithmic so- 
lution; Minsky [32, pp.273ff] also contains a short 
description. 

At least in one dimension, there is nothing dif- 
ficult about a de Bruijn diagram; as applied to 
cellular au tomata  it is simply a graph in which 
partial neighborhoods are the nodes, with links 
connecting those which may overlap to form a full 
neighborhood. Given this correspondence between 
links and full neighborhoods, each link is also as- 
sociated with the evolved cell belonging to the 
neighborhood. Consequently characteristics of the 
evolution can be used to select subgraphs of the 
de Bruijn diagram; for example, there is a sub- 
graph composed of the neighborhoods whose cen- 
tral cell never changes. Global properties of the 
automaton can be read off from the chains inher- 
ent in the subdiagram; in this example, the chains 
yield all the static configurations. 

De Bruijn diagrams transform automata  prob- 
lems into known path tracing problems. For in- 
stance, no loop can be longer than the total num- 
ber of nodes in the graph without repeating some 
segment; but the way is open for still other loops 
in which the repeated segment is traversed any ar- 
bi trary number of times. As an example, since a 
binary automaton depending upon nearest neigh- 
bors has eight distinct neighborhoods, represent- 
able as eight links connecting four nodes, it follows 
that no static configuration can be more than five 
cells long without repeating some two-cell partial 
neighborhood. 

Many more characteristics than the static, or 
"still life", configurations of an automaton can be 
deduced from its de Bruijn diagram. Translational 
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Fig. 4. A de Bruljn diagram which results in macrocells: 
(3,1) rule 022221211221211012222111120. The sequence 
102 defines a cell membrane. Darker lines represent static 
links; all incoming links at node 10 and all outgoing links 
at node 02 define still lifes. 

Fig. 3. Sample evolution of a typical (3,1) macrocell rule. 
For this rule, the state sequence 102 creates a barrier, vis- 
ible as a vertical streak. Macrocells form in the intervals 
between barriers; small ones quickly become periodic. 

un i fo rmi ty  having  been bu i l t  in to  the  very  defini- 
t ion of ce l lu la r  a u t o m a t a ,  shi f t ing conf igura t ions  
which cover a d i s t ance  d each genera t ion  are  as 
easi ly  found as the  s t a t i c  ones.  By work ing  in s t ead  
wi th  the  c o m p o u n d  rule governing  severa l  gener-  
a t ions  of evolu t ion ,  and  en la rg ing  the  "ne ighbor-  
hood"  unde r  cons ide ra t ion ,  the  cha rac t e r i s t i c  can 
be e x t e n d e d  to a shift  of  d cells every  g genera-  
t ions;  a m o n g  these  are  the  very  in t e re s t ing  class 
of  superluminal  conf igura t ions  - those  which move 
fu r the r  t h a n  an average of 7" cells pe r  genera t ion .  

A l t h o u g h  ra re ly  r e p e a t i n g  beyond  a s ingle gen- 
e ra t ion ,  any  Boolean  (for k = 2) c o m b i n a t i o n  of 
the  s t a tes  of  a n e i g h b o r h o o d  and  i ts  evolu tes  can 
be de t ec t ed  v ia  the  de Bru i j n  d i ag ram;  for exam-  
ple conf igura t ions  which evolve into cons tan t s ,  or 
in to  the i r  complemen t .  

Some t imes  the  de Bru i jn  d i a g r a m  reveals  in- 

f o rma t ion  a b o u t  local ized a spec t s  of a configura-  
t ion.  I f  an accep t ab l e  p a t h  t e r m i n a t e s  at  a node  
in which all the  ou tgo ing  l inks  are  accep tab l e ,  it  
need cont inue  no fur ther .  Likewise  if al l  the  in- 
coming  l inks are  accep tab le ,  the  p a t h  m a y  begin  
j u s t  as t h o u g h  it  had  been  pa r t  of a loop.  Thus  
semi- inf in i te  s t r uc tu r e s  m a y  be loca ted ,  or  even fi- 
n i te  ones if  b o t h  ends  have such universa l  t e r m i n a -  
t ions.  Th is  l eads  to the  p h e n o m e n o n  of m e m b r a n e s  
and  macroce l l s  which W o l f r a m  not iced  du r ing  his 
inves t iga t ions .  Dav id  Brown [33] has also shown 
a nice e x a m p l e  of such ba r r i e r s  and  she l t e red  re- 
gions.  T h a t  is, an a u t o m a t o n  m a y  have pa tches  
which are  i so la ted  from one a n o t h e r  by s t a t i c  re- 
gions; the  pa tches  evolve qu i te  i ndependen t ly .  

T h a t  the  (3,1) a u t o m a t o n  whose evo lu t ion  is 
dep i c t ed  in fig. 3 mee ts  the  r e qu i r e me n t s  m a y  be 
d i scerned  t h r o u g h  e x a m i n a t i o n  of  the  de Bru i jn  
d i a g r a m  p re sen ted  in fig. 4. 

Conversely ,  a rule of evo lu t ion  of an a u t o m a t o n  
is def inable  by  p o s t u l a t i n g  t h a t  the  de Bru i j n  dia-  
g r a m  have p r e sc r i be d  p rope r t i e s ;  for e x a m p l e  t ha t  
the  sequence (01)* nms t  be s ta t ic .  To the  ex ten t  
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the requirements do not contradict  one another,  
and all the alternatives are covered, au t om a t a  may 
be created to fulfill ones wishes. 

Enumerat ing  the paths through a graph is a 
classical task, to which many  papers have been 
devoted, but which has a part icularly elegant so- 
lution in terms of regular expressions. Conway's  
book on regular algebra [34] expounds the tech- 
nique; a later article of Backhouse and Carrd [35] 
gives a very thorough presentation. 

The only requirement for partial  neighborhoods 
is that  all be similar, yet overlap sufficiently to cre- 
ate complete neighborhoods. The usual choice of 
a linear segment just  one cell short of a (k, r) au- 
tomaton ' s  quota  of 2r ÷ 1 cells per neighborhood 
- creating the max imum overlap possible - yields 
k 2" different part ial  neighborhoods. Each defines 
a node in the de Bruijn diagram, all of them in- 
terconnected by k 2~+1 links, associated with the 
neighborhoods themselves. Omit t ing  the right cell 
from a link reveals its source, excluding its left cell 
shows the destination node, making the relation- 
ship to a 2r-stage shift register apparent .  

Many a t t empt s  at artistic representations of 
de Bruijn diagrams have been made; extensive line 
crossings cannot  be avoided except for the very 
simplest of them. The most  systematic represen- 
tat ion may be through selected chords of a regular 
k2~-gon; arranged around the circumference of a 
circle, the vertices can be numbered sequentially 
as though the states of the cells were digits in a 
k-adic number.  The connectivity matr ix  of the di- 
agram would have the matr ix  elements 

Mij  = 1, j = ki + l ( m o d k  2~) 

k i + k - 1  

= 0, otherwise. 

Traces of powers of the de Bruijn mat r ix  readily 
show that  there are k n loops of length n, counting 
each loop once for each distinct node. However, 
a loop for which no node is repeated can have 
at most k 2~ links. Long sequences necessarily re- 
peat  some of their subsequences, rendering really 
long loops redundant.  Such counting arguments  
yield rapid derivations of various interesting re- 
suits, such as the bounds obtained by Guan and 

He [36] for the number  of cycles in border decisive 
au tomata .  

6. Loops,  tangencies ,  Wolfram classes 

There are many  kinds of subdiagrams in the 
de Bruijn diagram; indeed the diagram's  most im- 
por tant  role is that  of a common upper  bound for 
all the diagrams, whether constructed from for- 
mal  language theory or for other reasons, that  are 
then used in au toma ta  theory. Fairly evident for 
subdiagrams which are nearly full subsets, the re- 
lationship can be readily overlooked or missed en- 
tirely in the case of sparse diagrams, especially if 
they have been extensively simplified. Yet this is 
the situation in which knowledge of their existence 
may well be the most valuable. 

For example,  it is generally understood that  fi- 
nite cellular au tomata  must  evolve into periodic 
cycles, whose temporal  length is bounded by the 
total  number  of configurations, albeit exponen- 
tially large in te rms of the numbers of cells and 
states. The finiteness of the de Bruijn diagram 
similarly bounds the spatial periodicity of an infi- 
nite or periodic automaton,  in the sense that  the 
period must be constructed from a closed loop 
within the diagram appropr ia te  to the period un- 
der consideration. Again the bound may be expo- 
nentially large in terms of the number  of states 
and length of the partial  neighborhoods; in prac- 
tice both bounds are extremely liberal. 

So it is that  many  kinds diagrams are pertinent 
to au toma ta  theory, not a few arising from the de- 
scription of configurations or their evolution via 
a formal language. Thus diagrams are often con- 
structed to realize some regular expression; really 
the two concepts are coextensive. The part icular  
role of de B r u i j n  diagrams lies in their ability to 
describe overlapping sequences; for example,  all 
the segments of a regular expression of a given 
length. In turn,  the algebraic properties of the 
de Bruijn matr ix  - the connectivity matr ix  of a 
de Bruijn diagram - lead to precise numerical es- 
t imates  of such things as the number of possible 
sequences of given type, or to the bounds which 
have been mentioned. 

One application consists of marking all the links 
evolving into one specific state, say the quiescent 
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state. Varying the evolved state part i t ions the 
links into equivalence classes. Interestingly, such 
a subdiagram consists exclusively of closed loops 
when the evolutionary rule is totalistic. A totalis- 
tic rule depends only on the sum of the values of 
the cells in a neighborhood, causing all its permu- 
tations to evolve the same way. Because passing 
from one link to the next implies dropping a cell 
from the left and adding another  to the right, a 
cyclic shift will always yield a continuation pre- 
serving the given sum. 

The precursors of a static configuration would 
be described by a path  through the appropr ia te  
subdiagram,  but the individual links can be used 
for other purposes. For example the probabilities 
represented by the links evolving to live cells could 
simply be summed,  to obtain the Bernstein poly- 
nomial to be used in self-consistent comparisons. 
Many other arrangements  of links into subdia- 
grams are also possible, such as those which cor- 
respond to a static central cell (still lifes), or to 
uniformly shifting configurations (some of which 
are called gliders). 

If  there is to be either a class I I  or a class IV 
region, the still life diagram should contain a self 
loop to the quiescent neighborhood, together with 
some other loop. I f  the self loop is not present, qui- 
escent regions of arbi t rary  length cannot exist, and 
if there are no loops at all, there are no extended 
still lifes. I f  there are additional loops connected 
to the quiescent self loop, there is a correspond- 
ingly greater  variety of still life possible; otherwise 
every island of still life would be identical and no 
one would call it chaotic. Since it is a proper ty  
of diagrams that  a loop which may be traversed 
at all may be traversed an arbi t rary  number  of 
times, the variable separat ion between live regions 
in these classes of au t om a t a  becomes understand- 
able, as well as the min imum separation which is 
sometimes required. 

The self loop to the quiescent partial  neigh- 
borhood corresponds to the Bernstein monomial  
qn; incoming and outgoing links to the rest of 
the diagram belong to the monomials  p q ' - l .  The 
self loop cannot be associated with the live state, 
by definition. Connecting links establish whether 
contagion is to be avoided, and in some cases how 
isolated cells behave. If  the decision is for quies- 
cence, all these monomials  must  be excluded from 

the self-consister~t probabil i ty of the live state. 
Thus requiring a horizontal tangent at the origin 
of the probabil i ty curve relates directly to some of 
the finer details of the de Bruijn diagram. 

The quiescent state places zero as a fixed point 
of the probabil i ty curve, but expansivity or viru- 
lent contagion render it unstable. Stability, maybe  
even superstability, results whenever quiescent re- 
gions are not so readily invaded, which is surely 
one of the hal lmarks of Wolfram's  class IV; but the 
rest of the probabil i ty curve has to be accounted 
for, as well as the degree of internal chaos neces- 
sary to distinguish class I I  from class IV. Whether  
there are additional fixed points, and the nature  
of their stabili ty should be investigated. 

If  the mean field probabilities were reliably fol- 
lowed during the evolution of an automaton,  well 
developed theories of functional i teration could be 
applied. One of the best known of these utilizes the 
Mandelbrot  set and related concepts to param- 
eterize the behavior of i teration in the complex 
plane as well as the real line. As it is, the empiri- 
cal cell frequencies observed in each generation do 
not track the functional i teration of the probabil- 
ity curve very well. Nevertheless gross propert ies 
of the fixed points appear  to be valid; where the 
slope of the curve is negative, higher and lower 
densities tend to alternate,  for example. Points on 
the borderline of stability, which is to say, those 
for which there is a diagonal tangency or near tan- 
gency at the fixed point, seem to be especially sig- 
nificant. In such instances, there is more of a fixed 
interval than a fixed point, permit t ing a greater 
variety of permanent  s tructures than otherwise. 

If  there are not many ways of producing or con- 
serving a live cell, the probabil i ty curve will never 
reach very high values, especially if it is already 
constrained to begin with a horizontal tangent.  
Thus even its max imum value may not even be 
sufficient to sustain its own density for the next 
generation, a reasonable conclusion if the curve 
does not even cross the diagonal. Alternatively, 
the production of live cells in the new generation 
may just  barely meet the break even point,  rep- 
resented by a tangency. Finally it may be that  
modest  densities proliferate freely, as would be ex- 
pected from a curve whose values lay well on the 
other side of the diagonal. 

This reasoning could well describe the transi- 
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tion from class II, where maintaining a live pop- 
ulation is difficult and the regions which survive 
are nonexpansive, through class IV, where it is 
just  barely possible over a limited range but with 
quiescent regions freely interspersed, until the op- 
posite extreme of a class III ,  in which quiescent 
regions do not last long, and never dominate  the 
field of evolution. 

7. A s u r v e y  o f  s m a l l  b i n a r y  a u t o m a t a  

In summary,  it is proposed to explain Wolfram's  
classes by a mixture of probabil i ty theory and 
de Bruijn diagrams,  resulting in a classification 
based on readily visible propert ies of the mean 
field theory curve: 

class I: monotonic, entirely on one side of 
diagonal; 

class II: horizontal tangency, never reaches 
diagonal; 

class IV: horizontal plus diagonal tangency, 
no crossing; 

class III:  no tangencies, curve crosses diagonal. 

Classes being undecidable in principle, and mean 
field theory being approximate ,  the utility of this 
classification must  be judged on empirical evi- 
dence. Although reasons have been given for its 
justification, the part  concerning horizontal tan- 
gencies at the origin has the best foundation, be- 
ing an accurate description of both au t om a t a  and 
desirable mean field curves, whatever  the actual 
relationship between the two. To illustrate the 
procedure, consider some simple examples: 

7.1. ( 2 , 1 / 2 )  au tomata  

The simplest au tom a t a  are probably the sixteen 
of radius 1/2 corresponding to the sixteen prim- 
itive Boolean functions of two variables. Their  
Bernstein polynomials  are formed from a basis of 
p 2  pq, and q2, which does not provide much vari- 
ety for tangencies; nevertheless much of the mis- 
chief possible in rendering classifications is already 
visible in this e lementary example. In te rms of the 
mean field curves, there are essentially four groups 
to consider: 

eight noncrossing rules, 0, 2, 4, 8, 11, 13, 14, 15; 

four diagonal and antidiagonal rules, 3, 5, 10, 12; 

two superstable rules, 6, 9; 

two with unstable crossings rules, 1, 7. 

Visual inspection places the noncrossing rules in 
class I or class I I  according to whether some non- 
quiescent cells remain after a few generations or 
not. Diagonals result from copying one of the an- 
cestors, antidiagonals to its complementat ion;  the 
former produce shifts, the lat ter  dramat ic  differ- 
ences from generation to generation which could 
be assigned to class III .  

The four remaining rules qualify for class I I I  
through fixed points interior to the interval (0,1); 
in two cases the fixed point is stable, in the other 
two it is not. Assignments to class I I I  on the basis 
of the widespread complementat ion due to an un- 
stable fixed point are always dubious; Wolfram [7] 
would probably sidestep the issue by classifying 
the composite rule for which enough generations 
have elapsed to possess a quiescent state. 

By this criterion, only rule 6 (EXCLUSIVE OR) 
and rule 9 (EXCLUSIVE NOR) belong strictly to 
class III ,  none to class IV, the rest to class I or 
class II. 

7.2. (2,1)  au tomata  

The next simplest comparisons are worthwhile 
because the (2,1) au toma ta  have been extensively 
studied. Arranging the eight possible neighbor- 
hoods in sequence corresponding to Wolfram's 
codes, the transitions required by quiescence and 
guaranteed contagion can be inserted. 

111 110 101 100 011 010 001 000 
1 1 0 

Thir ty  two rules arise from the five free choices 
remaining: 

18 22 26 30 50 54 58 62 
82 86 90 94 114 118 122 126 

146 150 154 158 178 182 .186 .190 
210 214 .218 *222 *242 *246 *250 *254 

Compute r  simulation or examination of Wol- 
f ram's  tables [6,8], shows that  these are Wolfram's  
class I I I  au tomata ,  although not quite. The rules 
whose numbers  are prefixed with stars resemble 
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class II more closely than class III, quite in agree- 
ment with the failure of their curves to cross the 
diagonal. Rule 58 might not be considered part 
of class III  because of evolving towards a very 
strongly shifting pattern,  albeit space filling; its 
curve has a superstable fixed point. 

Among the remaining rules, there is a group 
complementary to the ones just considered, for 
which live cells would consti tute the quiescent 
background. Beyond this, there are many non- 
symmetrical with respect to contagion which can 
mostly be classified according to the combina- 
tion of their one-sided behaviors, leaving the non- 
expansive rules to fall into Wolfram's class I or 
class II, with very little remarkable behavior. 

The de Bruijn diagram shows how to form 
macrocells, for example with rule 73. All one-cell 
environments of the segment 0110 yield still lifes, 
yet not all form loops; instead they form barriers 
enclosing macrocells. Similarly all single cell ex- 
tensions to the segment 11 in rule 154 shift left, 
bounding a moving macrocell. Boundaries which 
were not originally present may jell during the 
course of evolution, remaining thereafter. For au- 
tomata  with more than two states, partial barriers 
as well as complete barriers may exist, be formed, 
or dissolve, according to how many terminal links 
share the properties of the interior of a segment. 

As an example of automaton design, one could 
postulate that  the quiescent loop 0* be linked to 
the loop (01)*, fixing five of the eight links in the 
de Bruijn diagram. Of the three links and eight 
choices remaining, rule 4, of class II, results from 
rejecting any additional still lifes. Its Bernstein 
polynomial, pq2, always lies below the diagonal, 
with a diagonal tangency at the origin. The rule is 
nonexpansive, but low concentrations of live cells 
are conserved, so that  it is noncontractive as well. 
The discrepancy with the proposed classification 
arises from the ocurrence of pq2 through the sur- 
vival of isolated cells rather  than from contagion. 
This distinction must often be made to reconcile 
the correct classification. 

Some of the other extensions of rule 4 incor- 
porate additional loops, up to the extreme of the 
identity rule, rule 204, which is best left unclassi- 
fied. Is it class II for extensive still life, or class IV 
for its blatant tangency? Its Bernstein polynomial 
is p = p(p + q)2 = pq2 + 2p2q + p3. 

Rule 104 is totalistic rule 4 for (2,1) automata,  
which places it in an interesting category. For 
(k,r) automata  with integer r, totalistic rule 
pk p(~+I) has an isolated still life consisting of the 
string 0"p'+10", as well as for all rules whose Wol- 
fram number is a nonzero multiple (mod k) of this 
basic number. For example, (2,1) totalistic rules 4 
and 12, which are rules 104 and 232. A similar ef- 
fect is even seen in Conway's Life, for which any 
large region in which every 3 x 3 square contains 
exactly four live cells is a still life, and will persist 
until its border is eaten away. 

Let us call this particular block an (~-block. A 
rule whose still lifes include (~-blocks should be 
expected to behave anomalously with respect to 
block probabilities calculated for blocks shorter 
than 2 r +  1-blocks, a conclusion which is borne out 
by experience; in this instance, significant proba- 
bilities for live cells do not appear until 4-blocks 
are considered. 

The Bernstein polynomial for an (~-block rule 
would be 

(2r + 1)! p,+lq~ 
(r + 1)!r! 

which is slightly asymmetrical and agrees with 
class II by approaching but not crossing the di- 
agonal. Its presence in the de Bruijn diagram is 
manifested by a closed loop with incoming and 
outgoing links to the quiescent loop. 

7.3. (2,3/2) automata 

Four cells per neighborhood signify an automa- 
ton which can be one-dimensional with radius 3/2 
or two-dimensional with radius 1/2, for which the 
effects of a difference in dimensionality can be ob- 
served. The neighborhoods of au tomata  with half- 
integer radii lack a central cell, so the survival of 
isolated cells is not a direct issue, although "still 
lifes" can span two generations. 

Interestingly, totalistic rule 4 yields the Bern- 
stein polynomial pZq2 shown in fig. 5, which al- 
most displays a diagonal tangency. In two dimen- 
sions, this rule possesses several still lifes of period 
2 which coincide with actual Life still lifes on al- 
ternate generations. Gliders have not yet been ob- 
served; the five cell gliders which work with Life 
do not glide in this environment. 
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Fig. 5. Mean field probability curves. Upper: generic 
rule 30376, lower: totalistic rule 4 (rule 5736). 

A systematic way to find diagonal tangencies is 
to expand the Lagrange interpolation polynomials 
of numerical analysis in a basis of Bernstein poly- 
nomials, or better yet, to use Lagrange-Hermite 
interpolation. Lagrange polynomials are defined as 
polynomials of nth degree which vanish at n points 
and take unit value at one additional point. With 
Lagrange-Hermite interpolation, derivatives may 
be specified in addition. Unfortunately, all such 
polynomials are extremely non-orthogonal, expos- 
ing the determination of coefficients to a very 
sensitive dependence on parameters. Furthermore, 
positive integral coefficients are required, creating 
a problem in integer programming. 

All these difficulties beset the selection of a 
polynomial whose interpretation is not all that  
precise; much better results are obtained empir- 
ically by graphing the polynomial belonging to 
a given rule, and then tinkering with individual 
neighborhoods to alter the tangencies which are 
visible. Since ~he monomial p i q ~ - i  has a single, 
not too broad, maximum at i / n ,  it is not hard 
to decide which values to adjust, while simultane- 
ously evaluating the position of the neighborhood 
in the de Bruijn diagram. Indeed, the classical rea- 

Fig. 6. The one-dimensional (2,3/2) totalistic rule 4 belongs 
to class II, its mean field curve falling short of the diagonal. 
The temporal evolution of the nearby class IV rule 30376 
is shown. 

m m u m ¢ | l . l l m . , m | m m :  

n | $¢ I$ i i  I I  

I10 
':' u 

! ! 
i t  so 

I . 
| l  | 

t 

s s l s | l s n~ua l s l t  *#s~ l~sss l | l  

Fig. 7. Sample field of evolution for the two-dimensional 
(2,1/2) (just barely) class IV totalistic rule 4, while 
rule 30376 is class III. 

son for using Bernstein polynomials, in their gen- 
eral sense, was the ability to work in a given in- 
terval with functions which were entirely positive 
and well localized, becoming even more so in the 
limit of high degree. 

Fig. 6, several generations of one-dimensional 
evolution, and fig. 7, a typical two-dimensional 
field, contrast the differences in dimensionalities. 
Low dimensions require high degrees of tangency 
at the origin to produce class IV. The classes are 
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also sensitive to the closeness of the diagonal tan- 
gency. 

7.4. (2,2) automata 

Wolfram has classified the 32 quiescent totalis- 
tic (2,2) linear au tomata  [7] as follows: 

class I: 0, 4, 16, 32, 36, 48, 54, 60, 62; 
class II: 8, 24, 40, 56, 58; 
class III: 2, 6, 10, 12, 14, 18, 22, 26, 28, 30, 34, 

38, 42, 44, 46, 50; 
class IV: 20, 52. 

By and large, class I follows Wolfram's descrip- 
tion, although many of the rules listed have simple 
structures of low period. For example, the regular 
expression (0011)* describes a still life for totalis- 
tic rule 4 and some of the others, while (01)* and 
(000111)* have period 2. While not evolution to a 
quiescent state, neither is it evolution into discon- 
nected periodic regions, the province of class II. 
Wolfram dismisses such anomalies by invoking ex- 
ceptions "of measure zero", but one suspects that  
they are inherent in the classification system and 
part of the reason for its approximate nature. 

Class II consists principally of the rules with ~- 
blocks, except for rule 58, and including rule 24, 
which has an exemplary class IV tangency. Its 
excellence notwithstanding, graphing the ninth- 
degree polynomial for two generations of evolution 
confirms the assignment to class II. 

The class III au tomata  behave as expected; 
their rules are all expansive. Whenever long gaps 
arise they begin to fill up immediately. 

The two class IV rules are similar in their be- 
havior, but rule 52 is especially interesting for be- 
ing self-complementary; its evolution can resem- 
ble certain Escher prints at times. On account 
of nonorthogonali ty its mean field polynomial, 
10p2q3 + 5p4q + pS, gives a fairly good represen- 
tation of the function p; its graph is symmetric 
by 180 ° rotation. All au tomata  have similar rules, 
especially those of larger radii. 

7. 5. (2, 7/2)  automata 

Eight cells per neighborhood allows another  di- 
mensional comparison: one-dimensional au tomata  
of radius 7/2, or three-dimensional of radius 1/2. 

The three-dimensional diagonally tangent totalis- 
tic rule yields bet ter  candidates for class II au- 
tomata  than class IV, but it is possible to locate 
such artifacts as a cube-octahedron pair which os- 
cillates with period 2, following totalistic rule 24. 
Larger composite structures of similar form also 
exist. Variants on the theme of semitotalistic rules 
yield other candidates for class IV. 

In any event, the experience of Gutowitz and 
Victor [25], that  similar pat terns do not transfer 
from one dimension to another,  and that  a higher 
degree of tangency is required to obtain class IV in 
the lower dimension, is confirmed. Likewise Bays' 
experience of finding small artifacts is repeated, 
without encountering the larger structures char- 
acteristic of Life. 

8.  O t h e r  a u t o m a t a  

8.1. Totalistic rules 

Totalistic rules give some fairly strange results, 
until it is understood that  they do not form a 
representative sampling of all the possible rules. 
For binary automata,  a totalistic sum can only 
remain constant, increase, or decrease by 1 from 
one neighborhood to the next, so that adjoining 
cells assuredly do not enjoy independent proba- 
bilities. Were the probabilities truly independent, 
the sums would approximate a Gaussian distribu- 
tion, but with such a restriction they would follow 
a much flatter distribution characteristic of the 
dominant eigenvector of a Markov chain. By favor- 
ing quiescent domains, this distortion of statistics 
enhances class IV automata  among totalistic rules 
relative to the general population. 

Another characteristic of totalistic rules is the 
fact that  they lead to closed loops in the de Bruijn 
diagram. Summing the cells of a neighborhood de- 
fines an equivalence relation for neighborhoods, 
thus for links also. Cyclic shift assures every link 
of a continuation with the same sum in either 
direction, so that  an equivalence class contains 
only closed loops. Totalistic rules map equivalence 
classes, and the result follows. In:~urn there is a 
closer affinity between totalistic rnles and mean 
field probabilities, because there is no need to 
choose between permutations in assigning a Bern- 
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stein polynomial to an entire equivalence class. 

8.2. Near totalistic rules 

When totalistic rules do not allow for sufficient 
variation in parameterizing an automaton, the so- 
called semitotalistic rules are useful, sharing many 
of the statistical characteristics of totalistic rules. 
One reason for their use is that they arise natu- 
rally when small neighborhoods are submitted to 
symmetry requirements. Then the central cell may 
distinguish two kinds of evolution according to its 
value, as in Life. Automata with half-integer radii 
lack such a central cell, but there are substitutes, 
such as summing separately the even-parity cells 
and the odd-parity cells, or choosing a two-cell 
central region. 

8.3. Automata which are not binary 

When there are more than two states per cell, 
the Bernstein polynomials become multinomials, 
and the probabilities for all the states have to be 
fit at once, complicating the discussion of tangen- 
cies. Two.correctives seem to be efficacious; one of 
them is to calculate a sum of squares of differences 
between the individual probabilities from one gen- 
eration to the next - a distance between vectors of 
probabilities. Even so, it is not a function which 
is easily graphed except perhaps for trinary au- 
tomata and with considerably greater difficulty of 
visual presentation for quaternary automata. 

The second technique is to use the parameter 
X introduced by Christopher Langton [37], which 
is the average probability of all the nonquiescent 
states. If the probability space is supposed to be 
a simplex, X is the distance from the quiescent 
vertex to the opposite face, measured along an al- 
titude. As such it may miss some of the twistings 
<and turnings of the contours of constant deviation; 
it has the advantage of being a single representa- 
tive parameter, but interpreting crossings of the 
diagonal must take into account its following a 
direct line rather than the gradients. Experience 
shows that it is a reasonable guide, but that it 
must be used rather cautiously. Fig. 8 shows an 
instance of a curved arc in a class IV automaton. 

8.4. Probabilistic automata 

Variants on the theme of cellular automata are 
interesting topics of study, either for modeling 
some particular physical process or for more in- 
trinsic reasons. One is the coupled map lattice, 
another the probabilistic automaton. In the for- 
mer an assemblage of iterative functions of a real 
variable (not necessarily probabilities) is coupled 
together in some way, typically as lattice neigh- 
bors. In the latter the state of the cells of the lat- 
tice is not known, only the probability that each 
is in one of its possible states. 

In both cases, the law of evolution is exactly 
known, not approximated by mean field theory or 
one of the block structure theories. This was how 
Schulman and Seiden [19] brought estimates of the 
density of live cells in Life into closer agreement 
with their calculations. Recently Bidaux, Boccara, 
and Chat4 [38] used the same approach to study 
the effect of dimension on phase transitions in a 
class of probabilistic automata. If rigorously prob- 
abilistic automata behave reasonably, any discrep- 
ancies observed in cellular automata can be pin- 
pointed as having arisen from correlations among 

Fig. 8. Contours for mean field probability differences after 
one generation for (3,l) totalistic rule 792. There is an arc 

of tangency, which will be poorly sampled by Langton’s 
parameter A. 
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discrete states; useful l imiting behavior might also 
be expected. 

8.5. Automata designed to order 

It  is instructive to invert the process of seeking 
out interesting au toma ta  by examining the sta- 
tistical propert ies  of a u t o m a t a  with known char- 
acteristics. This reverse process is heavily biased 
toward quiescent au tom a t a  with large inactive re- 
gions because those are the ones which our ex- 
perience tells us how to handle; highly parallel 
processes interacting closely are not at all com- 
monplace. It  is easy enough to devise simple au- 
t oma ta  which behave as counters, parenthesis bal- 
ancers, or the like. Comparison of their statistics 
with the description of class IV allows a judge- 
ment of whether  that  is an appropr ia te  niche for 
them; many  examples do meet the requirements.  

9. D i s c u s s i o n  

There does not seem to be a single, infallible 
criterion as to what makes a good "Life", in part  
because the concept itself is somewhat  subjective. 
Nevertheless there is a certain amount  of experi- 
ence in several contexts which indicates tha t  the 
existence of independent isolated s tructures  is fun- 
damental ,  and that  the structures which do exist 
should have a certain stability. 

Isolation is easily tied to the existence of certain 
loops in the de Bruijn d iagram for the au tomaton .  
Knowing the de Bruijn diagram for the still lifes 
does not determine the diagrams for higher peri- 
ods, but their behavior is obviously part  of the cri- 
terion that  one would like to establish. In practice, 
the still lifes seem to give good guidance; moreover 
if the still life diagram does not behave properly 
it is assured that  those for longer periods will not 
do so either. 

Tying the stabili ty of extant  s tructures to tan- 
gencies in the mean field probabil i ty curve like- 
wise seems to be fairly speculative. Nevertheless 
this curve seems to give a fairly good approxi- 
mation to probabilities calculated via more com- 
plex approaches. Additionally, it is possible to al- 
ter the rule of evolution slightly and to observe 
a certain continuity of behavior  as the probabil-  

ity curve changes from tangency to greater  stabil- 
ity for one of the fixed points. For example,  the 
(2,3) totalistic rule 88 seems to stretch the limits 
of what one ought to call a class IV automaton ,  
which is par t ly  why it supports  a glider gun and 
not just  gliders. Also note that  tangency of the 
probabil i ty curve only implies constant density - 
not constancy of evolution - but the contrary as- 
sures a varied evolution. 

The question of the stabil i ty of classification 
against minor changes is an impor tant  one. 
Kunihiko Kaneko [39] has discussed variations in 
the basin of a t t ract ion of a configuration whose in- 
dividual cells have been altered; Li, Packard and 
Langton [40] consider the effect of alterations at 
the level of the de Bruijn diagram. An alteration 
in the evolution of one neighborhood results in re- 
assigning its link from one subdiagram to another.  
This will break some loops and close others, but 
will not affect badly fractured loops. Some rules 
will be more sensitive to such shifting than others, 
depending on the fracture pat terns  arising when 
the subdiagrams are created; relocating one or a 
few links could affect many  loops or none at all. 

10. Conclusion 

Conway's  Life is the prototypical  example of a 
class IV automaton ,  and it remains an interesting 
question as to why it shows such remarkable be- 
havior relative to variants which have been stud- 
fed. In a sense it is almost unique: if a rotat ionally 
and reflectively invariant rule is required, there 
are 102 symmet ry  classes of Life neighborhoods, 
and it is possible to tabulate  the number  of these 
which are used in the evolution of any of Life's 
artifacts. I f  gliders, glider guns, and the two shut- 
tles used in forming glider guns are counted, the 
evolution of all but a few neighborhoods is deter- 
mined. Wha t  is surprising is that  all the transi- 
tions required have such a succint description, via 
an easily described semitotalistic rule. 

Of course there is no principle so far known 
excluding the existence of al ternative collections 
of artifacts,  with still another  style of operation,  
so the uniqueness of Life is only relative to the 
present s tate  of our experience. Maybe the search 
for alternatives has been insufficiently vigorous, or 
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Fig. 9. Mean field curve for Conway's Life; crossing the 
diagonal slightly more than a tangency, quadratic at the 
origin. 

poss ib ly  b i n a r y  a u t o m a t a  wi th  close ne ighbors  op- 
e ra te  in j u s t  one way. Knowledge  and  s y s t e m a t i c  
usage  of  de Bru i j n  d i a g r a m s  has  s p r e a d  slowly; 
here tofore  the  d i scovery  of a r t i f ac t s  has  la rge ly  
been  one of i ngenu i ty  and  i n sp i r a t i on  coup led  wi th  
de t a i l ed  ana lys i s .  Even so, the  exponen t i a l  g rowth  
of  the  d i a g r a m s  st i l l  makes  i t  i m p r a c t i c a l  to search 
for very  la rge  s t ruc tu res .  

W i t h  p resen t  equ ipmen t ,  only  f i r s t -genera t ion  
p a t t e r n s  in s t r ip s  of  w i d t h  less t han  t en  cells are  
feasible  for the  nine-cel l  two-d imens iona l  neigh- 
b o r h o o d s  t h a t  Life or i ts  va r i an t s  ut i l ize,  yet  re- 
p r o d u c i n g  resu l t s  a l r e a d y  known would  need  four 
genera t ions .  T h a t  is one reason  to  work  wi th  half- 
in teger  n e i g h b o r h o o d s  of  four  cells, whe reby  two 
gene ra t ions  can be searched.  One pays  for the  
pr iv i lege  of  a more  comprehens ive  search by  work-  
ing in an a r e n a  wi th  fewer poss ib i l i t ies .  

T h e  foregoing ana lys i s  m a y  well have to be 
j u d g e d  by the  degree  to which  it appl ies  to  th is  one 
case, Life, whose  curve is shown in fig. 9. I t  would  
have been  nice to  say  t h a t  a c lear  cut  class of au- 
t o m a t a  had  been  ident i f ied ,  in which some new 

spec imens  had  been  found exh ib i t i ng  o u t s t a n d -  
ing behav ior .  T h e y  m a y  yet  be found; meanwhi l e  
progress  is more  l ikely to  come from invent ing  in- 
genious me c ha n i sms  which can be  i m p l e m e n t e d  as 
ce l lu lar  a u t o m a t a .  A n d  above  all ,  f rom ca r ry ing  
out  some of the  searches which  are  now possible .  

A c k n o w l e d g e m e n t s  

The  a u t h o r  is gra tefu l  to  the  Organ ize r s  for 
t he i r  k ind  i nv i t a t i on  to a t t e n d  W o r k s h o p  CA89.  
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