
ACCESS IC LAB

Graduate Institute of Electronics Engineering, NTU

Why SystolicWhy Systolic
Architecture ?Architecture ?

VLSI Signal Processing
�������

�	

Systolic and PipelinedSystolic and Pipelined
ProcessorsProcessors

Andre Hon, Jason Handuber, Michelle Gunning, Berman,
J. Kim, Heiko Schroeder, Hai Tao, Shaaban

Sources:

Systolic Processors Discussed on
Monday, May 26

• 1. Architecture for Matrix Matrix multiplication
• 2. Architecture for Matrix Vector Multiplication
• 3. Convolution, one-dimensional and polynomial

multiplication
• 4. Pipelined Systolic matcher for many gene

patterns in a long chromosome. Count 100%, 75%
and 50 % matches.

• 5. Systolic processor that solves Petrick Function,
SAT, and SAT with minimal literal cost problems.
– (not shown here, if you are interested, ask Newton for the

solution).

Methodology of designing systolic processors.
• 1. Write full equation for results.
• 2. Skew the input flows or put inputs to processors.
• 3. The inputs may come from two different directions, these directions

may be opposite
• 4. Sometimes the processors must be separated by other types of

processors or just delays (do-nothing registers clocked by general clock).
However, sometimes skewing input data is sufficient for this.

• 5. Draw the structure of processors.
• 6. Design data path of each processor.
• 7.Verify the correct operation. Draw snapshots, use color pencils.
• 8. Design the controller of each processor or a SIMD global controller.

Remember about synchronization. Each processor must complete its
work in the exactly same moment (clock pulse). It is somehow similar to
Sieve of Eratostenes but has interesting realization of logic operators
and use of random number generator..

Pipelined Computations
• Pipelined program divided into a series of

tasks that have to be completed one after the
other.

• Each task executed by a separate pipeline
stage

• Data streamed from stage to stage to form
computation

P1 P2 P3 P4 P5f, e, d, c, b, a

Pipelined Computations
• Computation consists of data streaming through pipeline stages
• Execution Time = Time to fill pipeline (P-1)

 + Time to run in steady state (N-P+1)
 + Time to empty pipeline (P-1)

P1 P2 P3 P4 P5f, e, d, c, b, a

a b fedc
a b fedc

a b fedc
a b fedc

a b fedc

time

P5
P4
P3
P2
P1

P = # of processors
N = # of data items
(assume P < N)

Pipelined Example: Sieve of Pipelined Example: Sieve of EratosthenesEratosthenes

• Goal is to take a list of integers greater than 1
and produce a list of primes
– E.g. For input 2 3 4 5 6 7 8 9 10, output is 2 3 5

7

• Fran�s pipelined approach (a little different
than the book):
– Processor P_i divides each input by the ith prime
– If the input is divisible (and not equal to the

divisor), it is marked (with a negative sign) and
forwarded

– If the input is not divisible, it is forwarded
– Last processor only forwards unmarked (positive)

data [primes]

Sieve ofSieve of Eratosthenes Eratosthenes Pseudo-Code Pseudo-Code

• Code for processor Pi
(and prime p_i):
– x=recv(data,P_(i-1))
– If (x>0) then

• If (p_i divides x and p_i
= x) then
send(-x,P_(i+1)

• If (p_i does not divide x
or p_i = x) then
send(x, P_(i+1))

– Else
• Send(x,P_(i+1))

• Code for last processor
– x=recv(data,P_(i-1))
– If x>0 then

send(x,OUTPUT)

P2 P3 P5 P7 out

/

Simple String MatchingSimple String Matching

• Stream text past set of matches

=c1?

&

=c2?

&

=c3?

&

Matrix Vector MultiplicationMatrix Vector Multiplication

• Consider multiplying a 3x2 X 2x1 matrix:

Systolic Arrays

T0

T1

T2

T3

T4

T5

T6

T7

Y values goes left, X values go right, A
values fan in

The processor

• 1. The processor was designed on
Monday by students.

• 2. Ask for their notes or design your
own.

• 3. You need to remember data path
design and register transfer design, as
well as FSM synthesis, in general.

• Every cell is like this:

Systolic Array Example:Systolic Array Example:
 3x3 Systolic Array Matrix Multiplication 3x3 Systolic Array Matrix Multiplication

register

* clear

Clock to all
three registers

ai

bi

register

re
gi

st
er

+

1. Observe multiplier/adder combination, so typical

2. Observe accumulation of results in-place. Every
cell of final matrix is a processor. Results remain in
these processors, next they should be shifted-out, if
necessary.

Systolic Array Example:
 3x3 Systolic Array Matrix Multiplication

 b2,2
 b2,1 b1,2
b2,0 b1,1 b0,2
b1,0 b0,1
b0,0

 a0,2 a0,1 a0,0

 a1,2 a1,1 a1,0

a2,2 a2,1 a2,0

Alignments in time

• Processors arranged in a 2-D grid
• Each processor accumulates one
 element of the product

Rows of A

Columns of B

T = 0
Example source: http://www.cs.hmc.edu/courses/2001/spring/cs156/

Systolic Array Example:
 3x3 Systolic Array Matrix Multiplication

 b2,2
 b2,1 b1,2
b2,0 b1,1 b0,2
b1,0 b0,1

 a0,2 a0,1

 a1,2 a1,1 a1,0

a2,2 a2,1 a2,0

Alignments in time

• Processors arranged in a 2-D grid
• Each processor accumulates one
 element of the product

T = 1

b0,0

a0,0
a0,0*b0,0

Example source: http://www.cs.hmc.edu/courses/2001/spring/cs156/

Systolic Array Example:
 3x3 Systolic Array Matrix Multiplication

 b2,2
 b2,1 b1,2
b2,0 b1,1 b0,2

 a0,2

 a1,2 a1,1

a2,2 a2,1 a2,0

Alignments in time

• Processors arranged in a 2-D grid
• Each processor accumulates one
 element of the product

T = 2

b1,0

a0,1
 a0,0*b0,0
+ a0,1*b1,0

a1,0

a0,0

b0,1

b0,0

 a0,0*b0,1

 a1,0*b0,0

Example source: http://www.cs.hmc.edu/courses/2001/spring/cs156/

Systolic Array Example:
 3x3 Systolic Array Matrix Multiplication

 b2,2
 b2,1 b1,2

 a1,2

a2,2 a2,1

Alignments in time

• Processors arranged in a 2-D grid
• Each processor accumulates one
 element of the product

T = 3

b2,0

a0,2
 a0,0*b0,0
+ a0,1*b1,0
+ a0,2*b2,0

a1,1

a0,1

b1,1

b1,0

 a0,0*b0,1
+ a0,1*b1,1

 a1,0*b0,0
+ a1,1*b1,0 a1,0

b0,1

a0,0

b0,0

b0,2

a2,0

 a1,0*b0,1

 a0,0*b0,2

 a2,0*b0,0

Example source: http://www.cs.hmc.edu/courses/2001/spring/cs156/

Systolic Array Example:
 3x3 Systolic Array Matrix Multiplication

 b2,2Alignments in time

• Processors arranged in a 2-D grid
• Each processor accumulates one
 element of the product

T = 4

 a0,0*b0,0
+ a0,1*b1,0
+ a0,2*b2,0

a1,2

a0,2

b2,1

b2,0

 a0,0*b0,1
+ a0,1*b1,1
+ a0,2*b2,1

 a1,0*b0,0
+ a1,1*b1,0
+ a1,2*a2,0

a1,1

b1,1

a0,1

b1,0

b1,2

a2,1

 a1,0*b0,1
+a1,1*b1,1

 a0,0*b0,2
+ a0,1*b1,2

 a2,0*b0,0
+ a2,1*b1,0

b0,1

a1,0

b0,2

a2,0 a2,0*b0,1

 a1,0*b0,2

a2,2

Example source: http://www.cs.hmc.edu/courses/2001/spring/cs156/

Systolic Array Example:
 3x3 Systolic Array Matrix Multiplication

Alignments in time

• Processors arranged in a 2-D grid
• Each processor accumulates one
 element of the product

T = 5

 a0,0*b0,0
+ a0,1*b1,0
+ a0,2*b2,0

 a0,0*b0,1
+ a0,1*b1,1
+ a0,2*b2,1

 a1,0*b0,0
+ a1,1*b1,0
+ a1,2*a2,0

a1,2

b2,1

a0,2

b2,0

b2,2

a2,2

 a1,0*b0,1
+a1,1*b1,1
+ a1,2*b2,1

 a0,0*b0,2
+ a0,1*b1,2
+ a0,2*b2,2

 a2,0*b0,0
+ a2,1*b1,0
+ a2,2*b2,0

b1,1

a1,1

b1,2

a2,1 a2,0*b0,1
+ a2,1*b1,1

 a1,0*b0,2
+ a1,1*b1,2

b0,2
a2,0 a2,0*b0,2

Example source: http://www.cs.hmc.edu/courses/2001/spring/cs156/

Systolic Array Example:
 3x3 Systolic Array Matrix Multiplication

Alignments in time

• Processors arranged in a 2-D grid
• Each processor accumulates one
 element of the product

T = 6

 a0,0*b0,0
+ a0,1*b1,0
+ a0,2*b2,0

 a0,0*b0,1
+ a0,1*b1,1
+ a0,2*b2,1

 a1,0*b0,0
+ a1,1*b1,0
+ a1,2*a2,0

 a1,0*b0,1
+a1,1*b1,1
+ a1,2*b2,1

 a0,0*b0,2
+ a0,1*b1,2
+ a0,2*b2,2

 a2,0*b0,0
+ a2,1*b1,0
+ a2,2*b2,0

b2,1

a1,2

b2,2

a2,2 a2,0*b0,1
+ a2,1*b1,1
+ a2,2*b2,1

 a1,0*b0,2
+ a1,1*b1,2
+ a1,2*b2,2

b1,2
a2,1 a2,0*b0,2

+ a2,1*b1,2

Example source: http://www.cs.hmc.edu/courses/2001/spring/cs156/

Systolic Array Example:
 3x3 Systolic Array Matrix Multiplication

Alignments in time

• Processors arranged in a 2-D grid
• Each processor accumulates one
 element of the product

T = 7

 a0,0*b0,0
+ a0,1*b1,0
+ a0,2*b2,0

 a0,0*b0,1
+ a0,1*b1,1
+ a0,2*b2,1

 a1,0*b0,0
+ a1,1*b1,0
+ a1,2*a2,0

 a1,0*b0,1
+a1,1*b1,1
+ a1,2*b2,1

 a0,0*b0,2
+ a0,1*b1,2
+ a0,2*b2,2

 a2,0*b0,0
+ a2,1*b1,0
+ a2,2*b2,0

 a2,0*b0,1
+ a2,1*b1,1
+ a2,2*b2,1

 a1,0*b0,2
+ a1,1*b1,2
+ a1,2*b2,2

b2,2
a2,2 a2,0*b0,2

+ a2,1*b1,2
+ a2,2*b2,2

Done

Example source: http://www.cs.hmc.edu/courses/2001/spring/cs156/

Hexagonal Systolic Array forHexagonal Systolic Array for
matrix-matrix multiplicationmatrix-matrix multiplication

This is an
interesting

modification of
previous design

in which
movement is in
three directions
and the results
are not stored
but flow out

It is your task to
design each

processor in detail

Example Systolic Algorithm: Matrix Multiplication

• Problem: multiply two
nxn matrices A ={a_ij}
and B={b_ij}. Product
matrix will be R={r_ij}.

• Systolic solution uses
2D array with NxN
cells, 2 input streams
and 2 output streams

Systolic Matrix Multiplication

P34

P31

P32

P33

P44

P41

P42

P43

P14

P11

P12

P13

P24

P21

P22

P23

a44 a34 a24 a14 == == ==

a43 a33 a23 a13 == ==

a42 a32 a22 a12 ===

a41 a31 a21 a11

-- -- --

-- --

--

 b41 b42 b43 b44

b31 b32 b33 b34

 b21 b22 b23 b24

b11 b12 b13 b14

 -- -- --
 -- --
 --

Operation at each cell

• Each cell updates at each time step as shown
below

• initialized to 0

k
jir ,

0
, jir

jkki
k
ji

k
ji

bar

r

,,
1

,

,

+

=
−

kia , jkb ,

kia ,jkb ,

Data Flow for Systolic MM

• Beat 1 • Beat 2

1
1,1

r
11a 11b

2
1,1

r
1

1,2
r 1

2,1r

12a
21a

21b
12b

Data Flow for Systolic MM

• Beat 3 • Beat 4

3
1,1

r
2

1,2
r 2

2,1r

13a
22a

31b

13b31a
22b

1
1,3

r 1
2,2

r 1
3,1

r

4
1,1

r
3

1,2
r 3

2,1r

14a
23a

41b

23b32a 32b

2
1,3

r 2
2,2

r 2
3,1

r41a
14b

1
1,4

r 1
2,3

r 1
3,2r

1
4,1r

Data Flow for Systolic MM

• Beat 5 • Beat 6

42a

1,1
r

4
1,2

r 4
2,1r

24a

33b33a 42b

3
1,3

r 3
2,2

r 3
3,1

r
24b

2
1,4

r 2
2,3r

2
3,2r

2
4,1r

1
2,4r

1
3,3r

1
4,2r

1,1
r

1,2
r 2,1r

43a 43b34a
4

1,3
r 4

2,2
r 4

3,1
r

34b
3

1,4
r 3

2,3r
3

3,2r
3
4,1r

2
2,4r

2
3,3r

2
4,2r

1
3,4r

1
4,3r

Data Flow for Systolic MM

• Beat 7 • Beat 8

1,1
r

1,2
r 2,1r

44a
1,3

r
2,2

r
3,1

r
44b

4
1,4

r 4
2,3

r 4
3,2r

4
4,1r

3
2,4r

3
3,3r

3
4,2r

2
3,4r

2
4,3r

1
4,4r

1,1
r

1,2
r 2,1r

1,3
r

2,2
r

3,1
r

1,4
r

2,3
r 3,2r

4
2,4r

4
3,3r

4
4,2r

3
3,4r

3
4,3r

2
4,4r

4,1r

Data Flow for Systolic MM
• Beat 9 • Beats 10 and 11

1,1
r

1,2
r 2,1r

1,3
r

2,2
r

3,1
r

1,4
r

2,3
r 3,2r

2,4r 3,3r 4,2r
4

3,4r
4
4,3r

3
4,4r

4,1r

1,1
r

1,2
r 2,1r

1,3
r

2,2
r

3,1
r

1,4
r

2,3
r 3,2r

2,4r 3,3r 4,2r
3,4r 4,3r

4
4,4r

4,1r

1,1
r

1,2
r 2,1r

1,3
r

2,2
r

3,1
r

1,4
r

2,3
r 3,2r

2,4r 3,3r 4,2r
3,4r 4,3r

4,4r

4,1r

ACCESS IC LAB

Graduate Institute of Electronics Engineering, NTU

�������

�	

1. Use this method for 1D polynomial multiplication

2. Generalize to two dimensions.

Design B1

- Broadcast input , move results , weights stay
- (Semi-systolic convolution arrays with global data
communication

• Previously proposed

for circuits to

implement a pattern

matching processor and

for a circuit to

implement polynomial

multiplication.

=

Design B2

Broadcast input , move weights , results stay
[(Semi-) systolic convolution arrays with global data communication]

• The path for moving yi�s is wider then wi�s because of yi�s carry more bits then wi�s in
numerical accuracy.

• The use of multiplier-accumulators may also help increase precision of the result ,
since extra bit can be kept in these accumulators with modest cost.

=
=

Design F

- Fan-in results, move inputs, weights stay
- Semi-systolic convolution arrays with global data communication

• When number of cell is large , the adder can be implemented as a pipelined adder
tree to avoid large delay.

• Design of this type using unbounded fan-in.

Design R1

- Results stay, inputs and weights move in opposite directions
- Pure-systolic convolution arrays with global data communication

• Design R1 has the advantage that it dose not require a bus , or any other global net-
work , for collecting output from cells.

• The basic ideal of this de-sign has been used to implement a pattern matching chip.

Design R2

- Results stay , inputs and weights move in the same direction but at different speeds
- Pure-systolic convolution arrays with global data communication

• Multiplier-accumulator can be used effectively and so can tag bit method to signal the
output of each cell.

• Compared with R1 , all cells work all the time when additional register in each cell to
hold a w value.

Design W1

 -Weights stay, inputs and results move in opposite direction
- Pure-systolic convolution arrays with global data communication

• This design is fundamental in the sense that it can be naturally extend to perform
recursive filtering.

• This design suffers the same drawback as R1 , only approximately 1/2 cells work at
any given time unless two independent computation are interleaved in the same array.

Design W2

-Weights stay, inputs and results move in the same direction but at different speeds
- Pure-systolic convolution arrays with global data communication

• This design lose one advan-tage of W1 , the constant response time.
• This design has been extended to implement 2-D convolution , where high
throughputs rather than fast response are of concern.

Remarks
• Above designs are all possible systolic designs for the
 convolution problem.

• Using a systolic control path , weight can be selected on-
 the-fly to implement interpolation or adaptive filtering.

• We need to understand precisely the strengths and
 drawbacks of each design so that an appropriate design
 can be selected for a given environment.

• For improving throughput, it may be worthwhile to
 implement multiplier and adder separately to allow
 overlapping of their execution. (Such as next page show)

• When chip pin is considered , pure-systolic requires four;
 semi-systolic requires three I/O ports.

Overlapping the executions of
multiply-and-add in design W1

Criteria and advantages

• The design makes multiple use of each input
 data item
 Because of this property , systolic systems can achieve high
 throughputs with modest I/O bandwidths for outside
 communication.

• The design uses extensive concurrency
 Concurrency can be obtained by pipelining the stages involved in
 the computation of each single result , by multiprocessing many
 results in parallel, or by both.

Criteria and advantages

• There are only a few types of simple cells
 To achieve performance goals, a systolic system is likely to use a

 large number of cells which must be simple and of only a few

 types to curtail design and implementation cost.

• Data and control flow are simple and regular
 Pure systolic system totally avoid long-distance or irregular wires

 for data communication.

Orthogonal Orthogonal TriangularizationTriangularization. On-the-fly least-squares. On-the-fly least-squares
solutions usingsolutions using

one and two dimensional systolic array, with p=4.one and two dimensional systolic array, with p=4.

parallel mergeparallel mergeparallel merge

initial situation:

1.) sort columns
(odd-even-transposition sort)

2.) sort rows
(odd-even-transposition sort)

sorted !!!!

x1 x2 x3 x4 x5 x6

x7

x17 x18

y1 y2 y3 y4 y5 y6

y7

y17 y18

...

...

...

...

0-1 principle0-1 principle

• The 0-1 principle states that
if all sequences of 0 and 1
are sorted properly than this
is a correct sorter.

• The sorter must be based on
moving data.

initially

0s

0s

1s

after vertical
sort

0s

1s

after horizontal
sort

0s

1s

MIMD-mesh (clocked)MIMD-mesh (clocked)

 min max Time: 2n

systolic mergesystolic merge

1 3 3 4
5 5 6 7
9 8 8 7
4 4 3 2

systolic mergesystolic merge

1 3 3 4
5 5 6 7
9 8 8 7
4 4 3 2

systolic mergesystolic merge

1 3 3 4
5 5 6 7
9 8 8 7
4 4 3 2

systolic mergesystolic merge

1 3 3 4
5 5 6 7
9 8 8 7
4 4 3 2

systolic mergesystolic merge

1 3 3 4
5 5 6 7
9 8 8 7
4 4 3 2

1 3 3 4
5 5 6 7
4 4 3 2
9 8 8 7

systolic mergesystolic merge

1 3 3 4
5 5 6 7
4 4 3 2
9 8 8 7

systolic mergesystolic merge

1 3 3 4
4 4 3 2
5 5 6 7
9 8 8 7

systolic mergesystolic merge

1 3 3 4
4 4 3 2
5 5 6 7
9 8 8 7

systolic mergesystolic merge

1 3 3 2
4 4 3 4
5 5 6 7
9 8 8 7

systolic mergesystolic merge

1 3 3 2
4 4 3 4
5 5 6 7
9 8 8 7

systolic mergesystolic merge

1 3 3 2
4 4 3 4
5 5 6 7
9 8 8 7

systolic mergesystolic merge

1 3 2 3
4 3 4 4
5 5 6 7
9 8 8 7

1 3 2 3
4 3 4 4
5 5 6 7
9 8 8 7

systolic mergesystolic merge

1 2 3 3
3 4 4 4
5 5 6 7
9 8 8 7

systolic mergesystolic merge

1 2 3 3
3 4 4 4
5 5 6 7
9 8 8 7

systolic mergesystolic merge

1 2 3 3
3 4 4 4
5 5 6 7
9 8 8 7

systolic mergesystolic merge

1 2 3 3
3 4 4 4
5 5 6 7
8 9 7 8

systolic mergesystolic merge

1 2 3 3
3 4 4 4
5 5 6 7
8 9 7 8

systolic mergesystolic merge

1 2 3 3
3 4 4 4
5 5 6 7
8 7 9 8

systolic mergesystolic merge

systolic mergesystolic merge 1 2 3 3
3 4 4 4
5 5 6 7
8 7 9 8

• sorted !!!

systolic mergesystolic merge 1 2 3 3
3 4 4 4
5 5 6 7
7 8 8 9

Problems to think about
• 1. Compare these designs with sorters

shown earlier in class
• 2. Use these ideas to redesign

sorters/absorbers and sorters that
remove repeated elements.

• 3. Think about other applications of the
ideas shown here for sort and merge.

Applications of SystolicApplications of Systolic
ArrayArray

•FTR , IIR filtering , and 1-D convolution.
•2-D convolution and correlation.
•Discrete Furier transform
•Interpolation
•1-D and 2-D median filtering
•Geometric warping

- Signal and image processing:

• Matrix-vector multiplication
•Matrix-matrix multiplication
•Matrix triangularization
 (solution of linear systems , matrix inversion)
•QR decomposition
 (eigenvalue , least-square computation)
•Solution of triangular linear systems

- Matrix arithmetic:

Applications of Systolic Array

Applications of Systolic Array

•Data structure
•Graph algorithm
•Language recognition
•Dynamic programming
•Encoder (polynomial division)
•Relational data-base operations

- Non-numeric applications:

