

Computing Beyond Silicon Summer School

Physics becomes the computer

Norm Margolus

Physics becomes the computer

Emulating Physics

» Finite-state, locality, invertibility, and conservation laws

Physical Worlds

» Incorporating comp-universality at small and large scales

Spatial Computers

» Architectures and algorithms for large-scale spatial computations

Nature as Computer

» Physical concepts enter CS and computer concepts enter Physics

Emulating Physics

• Why emulate physics?

- Computation models must adapt to microscopic physics
- Computation models may help us understand nature
- Rich dynamics
- Start with locality:
 - Cellular Automata

Conway's "Game of Life"

256x256 region of a larger grid. Glider gun inserted near middle.

In each 3x3 neighborhood, count the ones, not including the center:

If total = 2: center unchanged

If total = 3: center becomes 1

Else: center becomes 0

Conway's "Game of Life"

256x256 region of a larger grid. About 1500 steps later.

Captures physical locality and finite-state

But,

- Not reversible (doesn't map well onto microscopic physics)
- No conservation laws (nothing like momentum or energy)
- No interesting large-scale behavior

Reversibility & other conservations

- Reversibility is **conservation of information**
- Why does exact conservation seem hard?

- •The same information is visible at multiple positions
- •For reversibility, one *n* th of the <u>neighbor</u> <u>information</u> must be <u>left</u> at the center

Adding conservations

- With traditional CA's, conservations are a *non-local* property of the dynamics.
- Simplest solution: redefine CA's so that conservation is a manifestly local property
- CA = regular computation in space & time
 - » Regular in space: repeated structure
 - » Regular in time: repeated sequence of steps

Diffusion rule

Use 2x2 blockings. Use solid blocks on even time steps, use dotted blocks on odd steps.

We "randomly" choose to rotate blocks 90-degrees cw or ccw (we actually use a fixed sequence of choices for each spot).

cw = clockwise

ccw = counter-clockwise

Diffusion rule

Take this image as our working environment

Diffusion rule

... and this is <u>what is created</u> after some number of generations

Use 2x2 blockings. Use solid blocks on even time steps, use dotted blocks on odd steps.

• TM = Toffoli/Margolus

Even step: update solid blocks.

Odd step: update dotted blocks

Even step: update solid blocks

Odd step: update dotted blocks

Even step: update solid blocks

Odd step: update dotted blocks

Now we analyze how it works on a larger example and for more generations

Lattice gas refraction

• *Half the time:* HPP gas rule everywhere:

Even & odd: swap along diags

Except: two ones on diag flip

 Half the time: HPP gas rule outside of blue region, ID rule inside (no change).

Lattice gas hydrodynamics

Six direction LGA flow past a half-cylinder, with vortex shedding. System is 2Kx1K.

Dynamical Ising rule

Gold/silver checkerboard

We divide the space into two sublattices, updating the gold on even steps, silver on odd.

A spin is flipped if exactly 2 of its 4 neighbors are parallel to it.

After the flip, exactly 2 neighbors are still parallel.

Dynamical Ising rule

Even steps: update gold sublattice

Odd steps: update silver sublattice

A spin is flipped if exactly 2 of its 4 neighbors are parallel to it. After the flip, exactly 2 neighbors are still parallel.

Dynamical Ising rule

Even steps: update gold sublattice

Odd steps: update silver sublattice

A spin is flipped if exactly 2 of its 4 neighbors are parallel to it. After the flip, exactly 2 neighbors are still parallel.

Question: What will be the state in 100 generations, if he picture above is the initial state? What in 10,000 generations?

Bennett's 1D rule

Gold/silver 1D lattice

- At each site in a 1D space, we put 2 bits of state.
- We'll call one the "gold" bit and one the "silver" bit.
- We update the gold bits on even steps, and the silver on odd steps.

- A spin is flipped if exactly 2 of its 4 neighbors are parallel to it.
- After the flip, exactly 2 neighbors are still parallel.

Bennett's 1D rule

Bennett's rules creation: 2D picture from 1D rules

Bennett's rules:

Odd steps: update silver sublattice

A spin is flipped if exactly 2 of its 4 neighbors are parallel to it. After the flip, exactly 2 neighbors are still parallel.

3D Ising with heat bath

If the heat bath is initially much cooler than the spin system, then domains grow as the spins cool.

Gold/silver checkerboard

Even steps: update gold sublattice

Odd steps: update silver sublattice

• We divide the space into two sublattices, updating the gold on even steps, silver on odd.

- A spin is flipped if all 4 of its neighbors are the same.
- Otherwise it is left unchanged.

Even steps: update gold sublattice

Odd steps: update silver sublattice

A spin is flipped if all 4 of its neighbors are the same. Otherwise it is left unchanged.

Even steps: update gold sublattice

Odd steps: update silver sublattice

A spin is flipped if all 4 of its neighbors are the same. Otherwise it is left unchanged.

Reversible aggregation rule

Gold/silver checkerboard

Even steps: update gold sublattice

- We update the gold sublattice, then let gas and heat diffuse, then update silver and diffuse.
- When a gas particle diffuses next to exactly one crystal particle, it crystallizes and emits a heat particle.
- The reverse also happens.

Reversible aggregation rule

- When a gas particle diffuses next to exactly one crystal particle, it crystallizes and emits a heat particle.
- The reverse also happens.

Adding forces irreversibly

becomes:

Particles six sites apart along the lattice attract each other.

3D momentum conserving crystallization.

Adding forces irreversibly

Crystallization using irreversible forces (Jeff Yepez, AFOSR)

Conservations summary

- To make conservations manifest, we employ a sequence of steps, in each of which either
 - 1. the data are rearranged without any interaction, or
 - 2. the data are partitioned into disjoint groups of bits that change as a unit.
- Data that affect more than one such group don't change.
- Conservations allow computations to map efficiently onto microscopic physics, and also allow them to have interesting macroscopic behavior.

