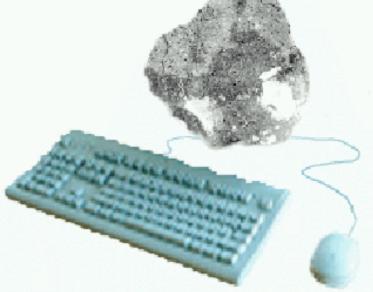


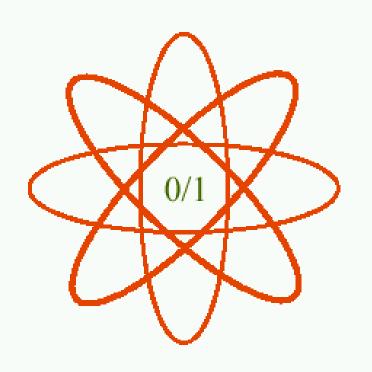
### Computing Beyond Silicon Summer School

# Physics becomes the computer



Norm Margolus

### Physics becomes the computer



### Emulating Physics

» Finite-state, locality, invertibility, and conservation laws

### Physical Worlds

» Incorporating comp-universality at small and large scales

### Spatial Computers

» Architectures and algorithms for large-scale spatial computations

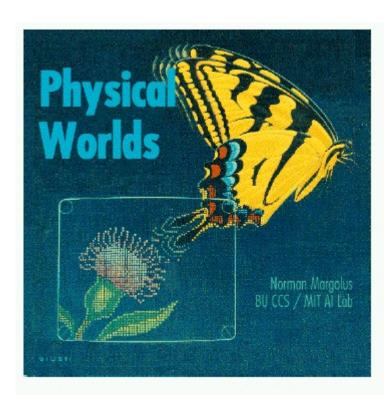
### Nature as Computer

» Physical concepts enter CS and computer concepts enter Physics

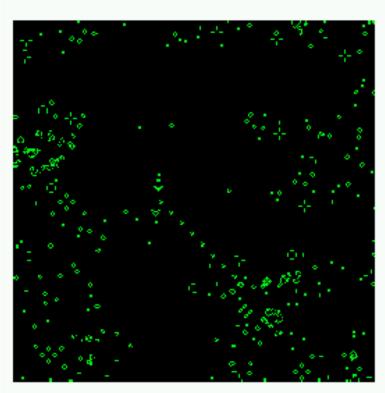
# Emulating Physics

# • Why emulate physics?

- Computation models must adapt to microscopic physics
- Computation models may help us understand nature
- Rich dynamics
- Start with locality:
  - Cellular Automata

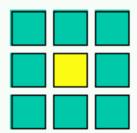


### Conway's "Game of Life"



256x256 region of a larger grid. Glider gun inserted near middle.

In each 3x3 neighborhood, count the ones, not including the center:

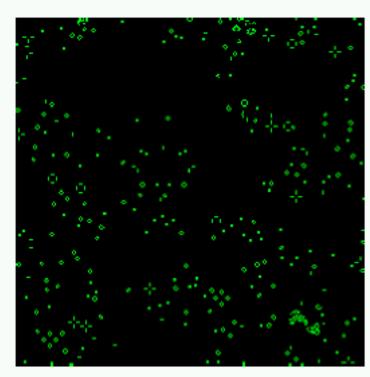


If total = 2: center unchanged

If total = 3: center becomes 1

Else: center becomes 0

## Conway's "Game of Life"



256x256 region of a larger grid. About 1500 steps later.

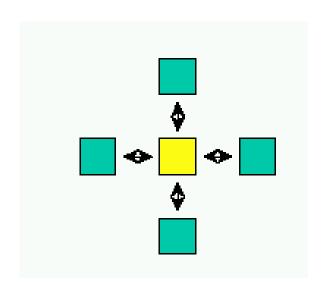
Captures physical locality and finite-state

#### But,

- Not reversible (doesn't map well onto microscopic physics)
- No conservation laws (nothing like momentum or energy)
- No interesting large-scale behavior

### Reversibility & other conservations

- Reversibility is **conservation of information**
- Why does exact conservation seem hard?

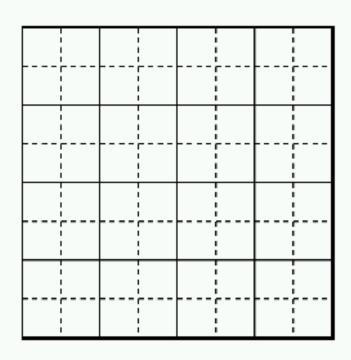


- •The same information is visible at multiple positions
- •For reversibility, one *n* <sup>th</sup> of the <u>neighbor</u> <u>information</u> must be <u>left</u> at the center

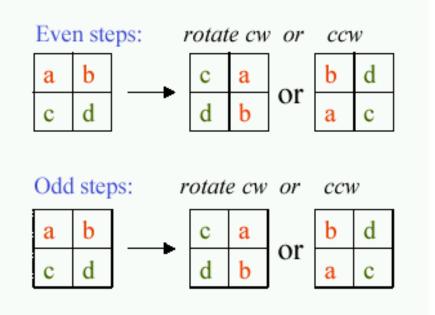
# Adding conservations

- With traditional CA's, conservations are a *non-local* property of the dynamics.
- Simplest solution: redefine CA's so that conservation is a manifestly local property
- CA = regular computation in space & time
  - » Regular in space: repeated structure
  - » Regular in time: repeated sequence of steps

# Diffusion rule



Use 2x2 blockings. Use solid blocks on even time steps, use dotted blocks on odd steps.

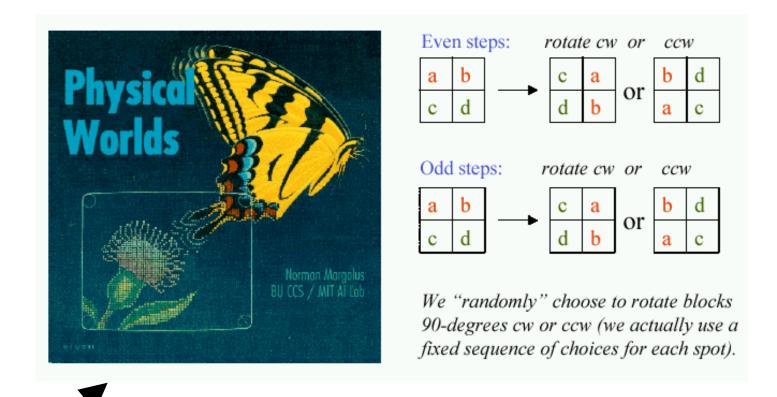


We "randomly" choose to rotate blocks 90-degrees cw or ccw (we actually use a fixed sequence of choices for each spot).

cw = clockwise

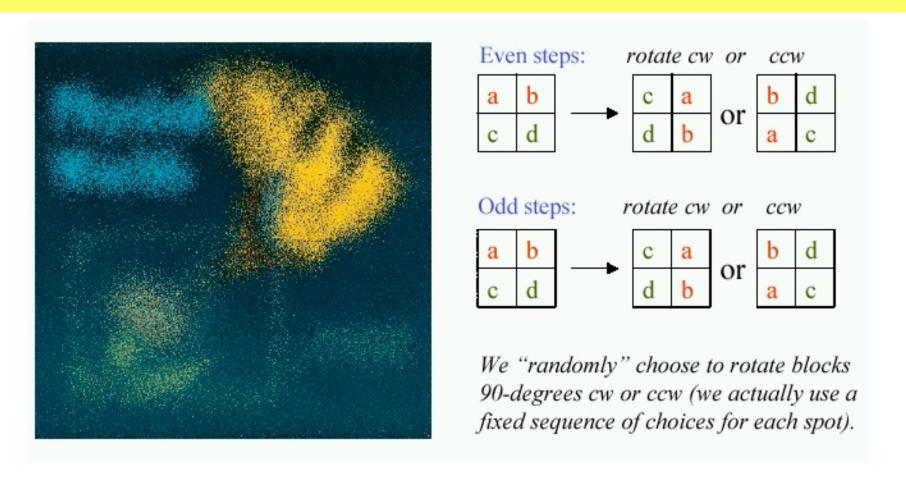
ccw = counter-clockwise

### Diffusion rule

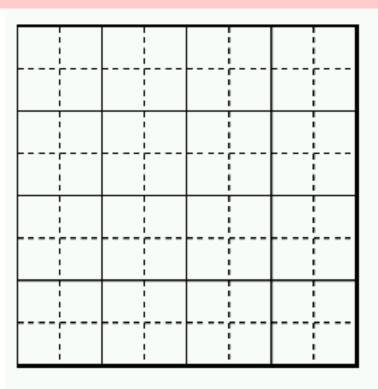


Take this image as our working environment

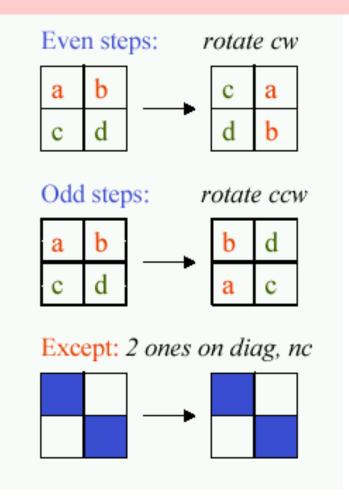
### Diffusion rule



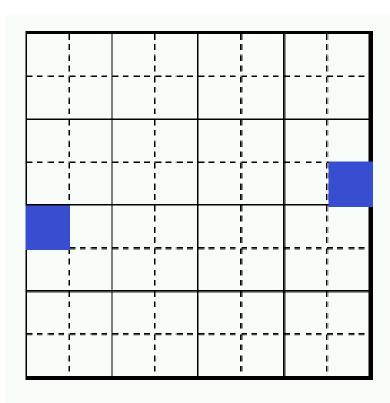
... and this is <u>what is created</u> after some number of generations



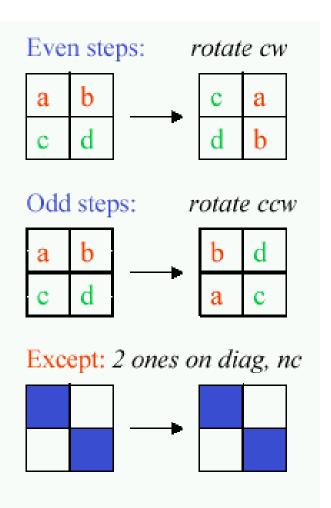
Use 2x2 blockings. Use solid blocks on even time steps, use dotted blocks on odd steps.

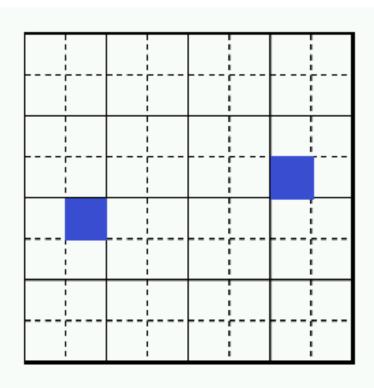


• TM = Toffoli/Margolus

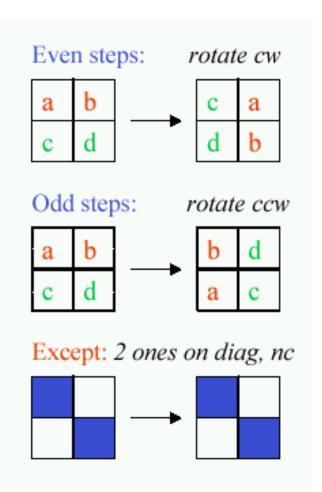


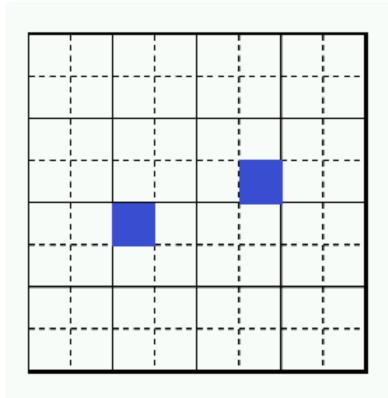
Even step: update solid blocks.



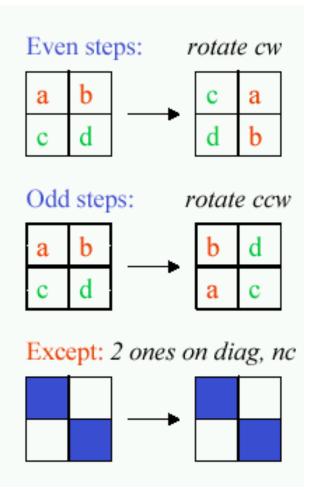


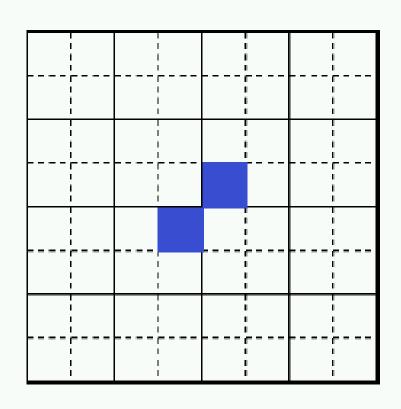
Odd step: update dotted blocks



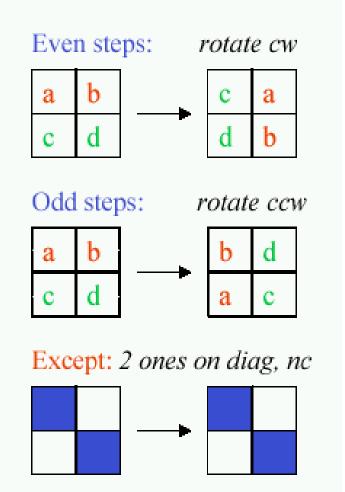


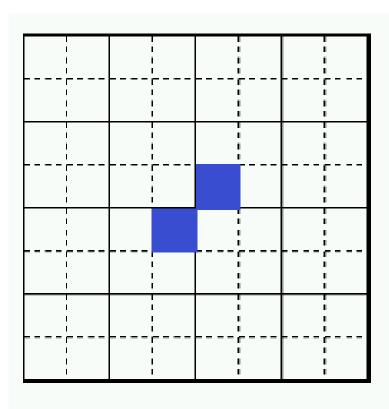
Even step: update solid blocks



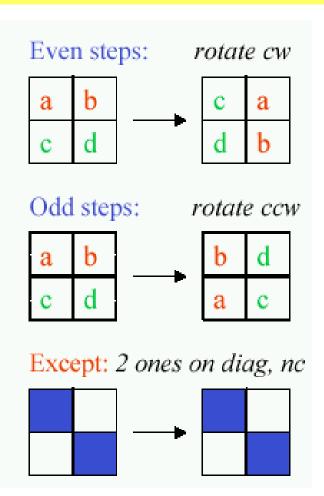


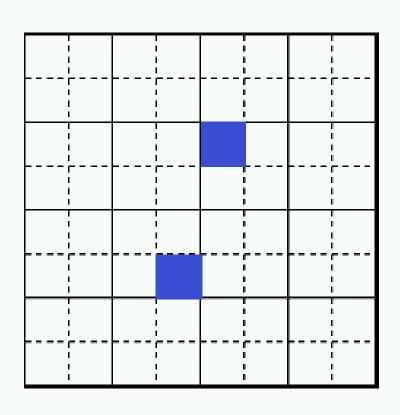
Odd step: update dotted blocks



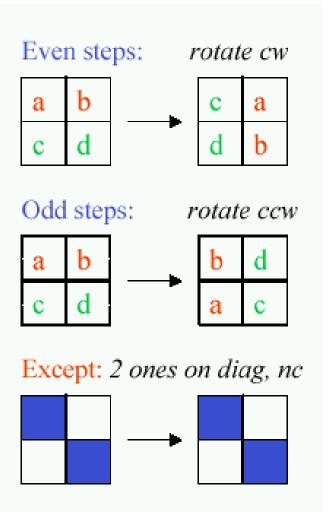


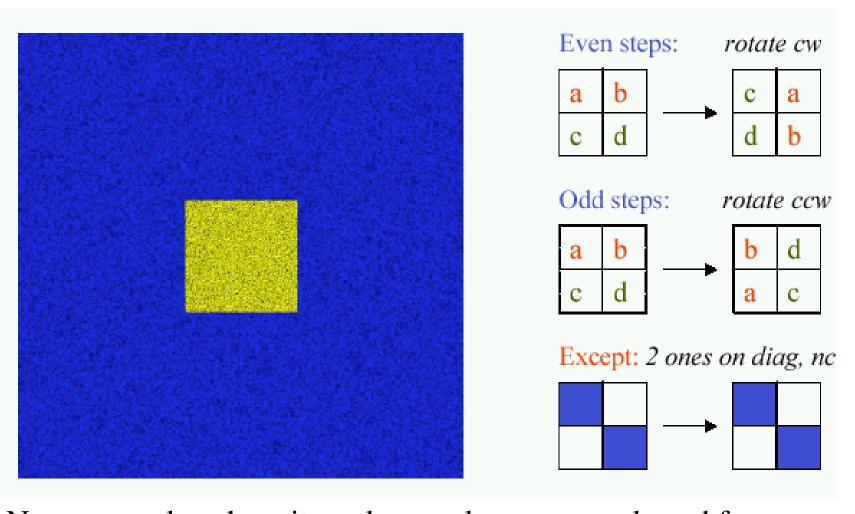
Even step: update solid blocks



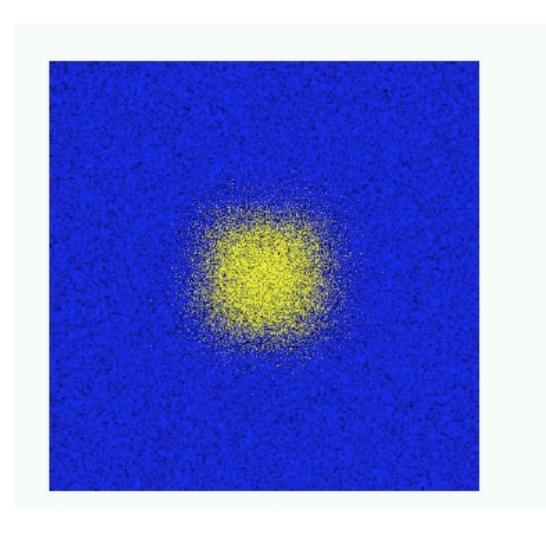


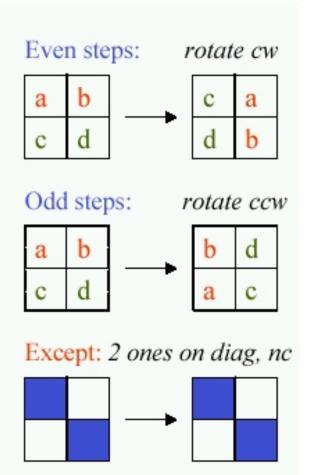
Odd step: update dotted blocks

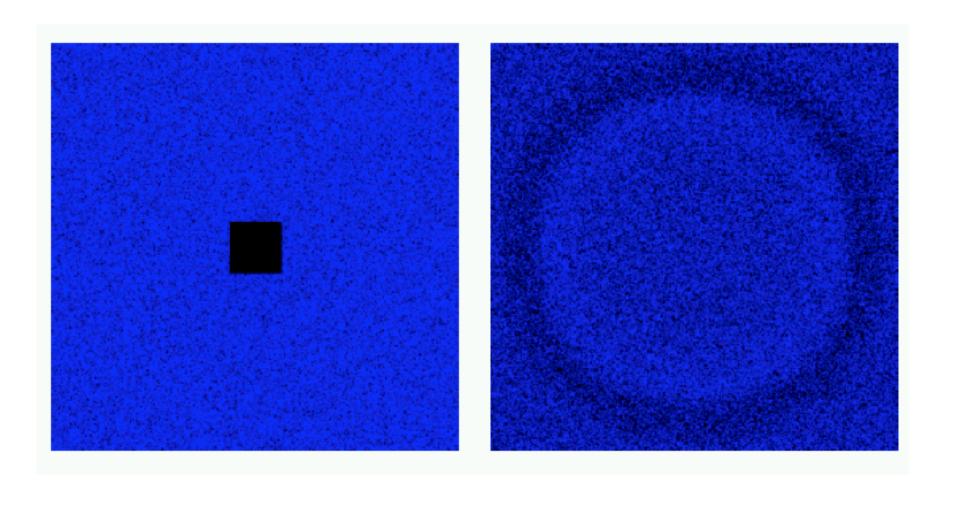


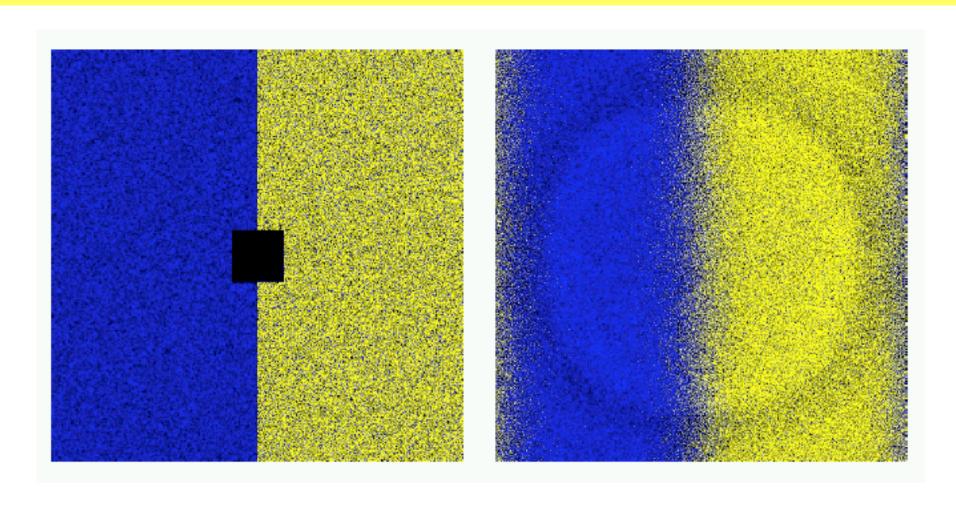


Now we analyze how it works on a larger example and for more generations

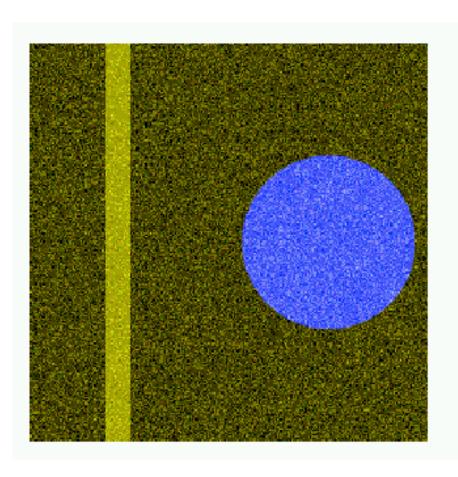






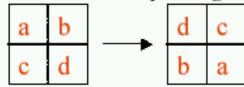


# Lattice gas refraction

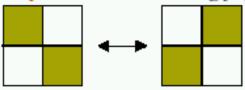


• *Half the time:* HPP gas rule everywhere:

Even & odd: swap along diags

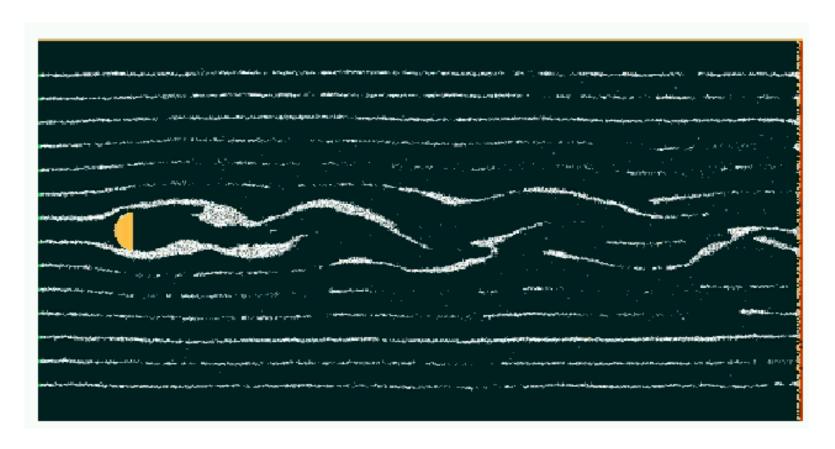


Except: two ones on diag flip



 Half the time: HPP gas rule outside of blue region, ID rule inside (no change).

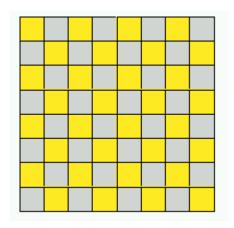
### Lattice gas hydrodynamics



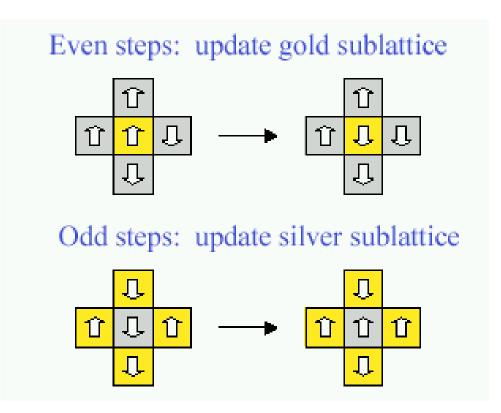
Six direction LGA flow past a half-cylinder, with vortex shedding. System is 2Kx1K.

# Dynamical Ising rule

### Gold/silver checkerboard



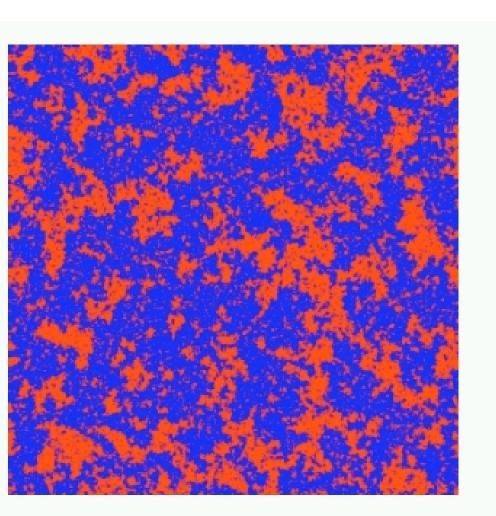
We divide the space into two sublattices, updating the gold on even steps, silver on odd.



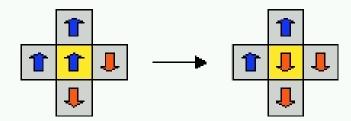
A spin is flipped if exactly 2 of its 4 neighbors are parallel to it.

After the flip, exactly 2 neighbors are still parallel.

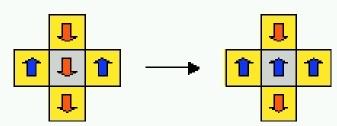
### Dynamical Ising rule



Even steps: update gold sublattice

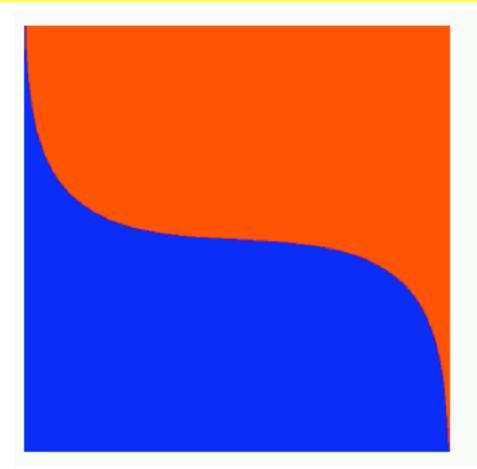


Odd steps: update silver sublattice

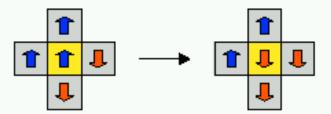


A spin is flipped if exactly 2 of its 4 neighbors are parallel to it. After the flip, exactly 2 neighbors are still parallel.

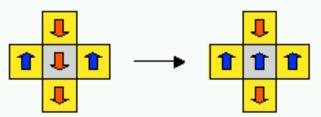
### Dynamical Ising rule



Even steps: update gold sublattice



Odd steps: update silver sublattice

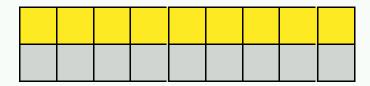


A spin is flipped if exactly 2 of its 4 neighbors are parallel to it. After the flip, exactly 2 neighbors are still parallel.

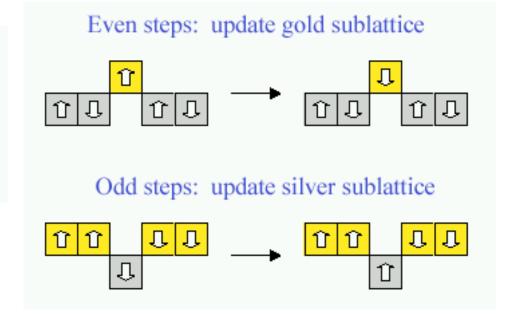
Question: What will be the state in 100 generations, if he picture above is the initial state? What in 10,000 generations?

## Bennett's 1D rule

#### Gold/silver 1D lattice



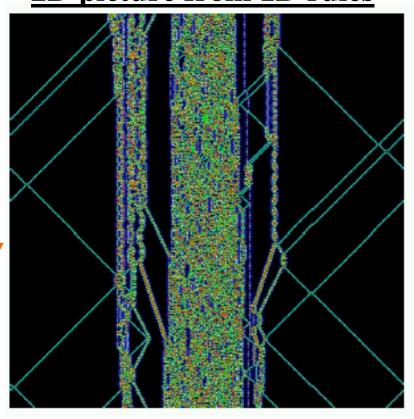
- At each site in a 1D space, we put 2 bits of state.
- We'll call one the "gold" bit and one the "silver" bit.
- We update the gold bits on even steps, and the silver on odd steps.



- A spin is flipped if exactly 2 of its 4 neighbors are parallel to it.
- After the flip, exactly 2 neighbors are still parallel.

### Bennett's 1D rule

### **Bennett's rules creation: 2D picture from 1D rules**



### **Bennett's rules:**



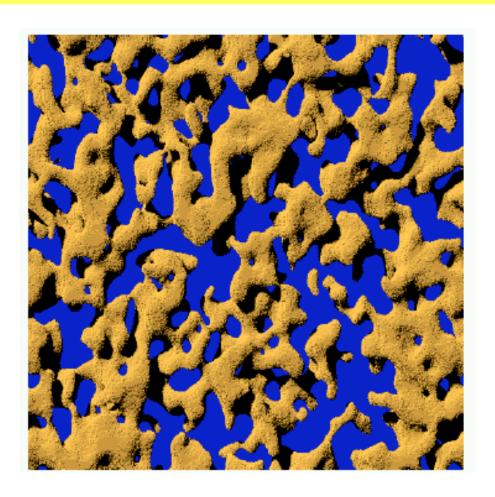


Odd steps: update silver sublattice



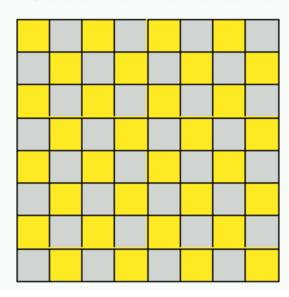
A spin is flipped if exactly 2 of its 4 neighbors are parallel to it. After the flip, exactly 2 neighbors are still parallel.

# 3D Ising with heat bath

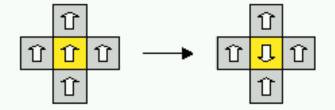


If the heat bath is initially much cooler than the spin system, then domains grow as the spins cool.

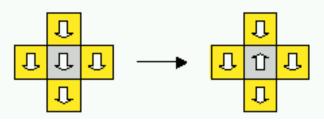
#### Gold/silver checkerboard



Even steps: update gold sublattice

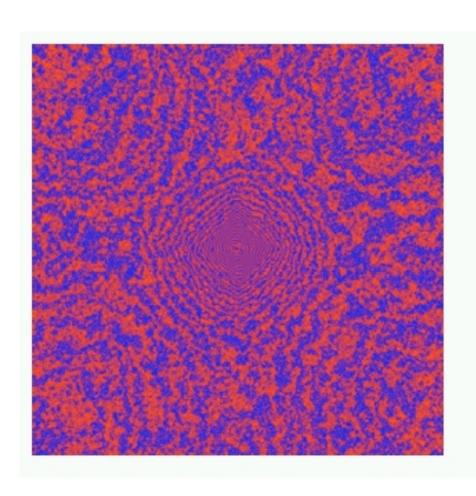


Odd steps: update silver sublattice

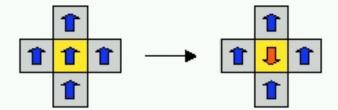


• We divide the space into two sublattices, updating the gold on even steps, silver on odd.

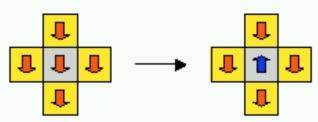
- A spin is flipped if all 4 of its neighbors are the same.
- Otherwise it is left unchanged.



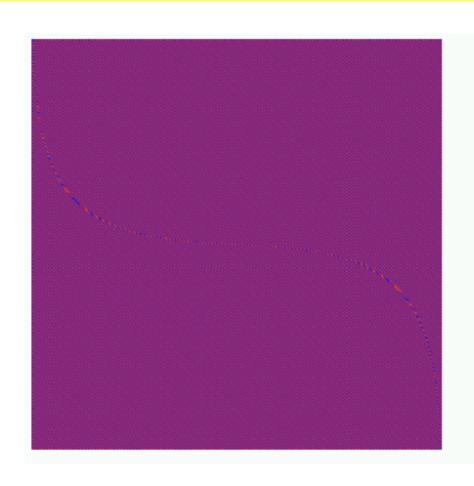
Even steps: update gold sublattice



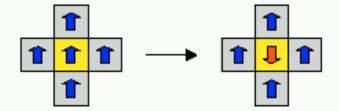
Odd steps: update silver sublattice



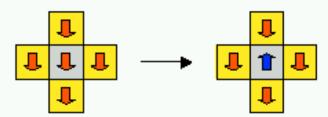
A spin is flipped if all 4 of its neighbors are the same. Otherwise it is left unchanged.



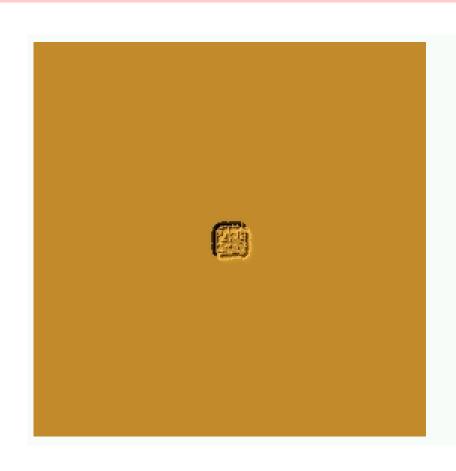
Even steps: update gold sublattice

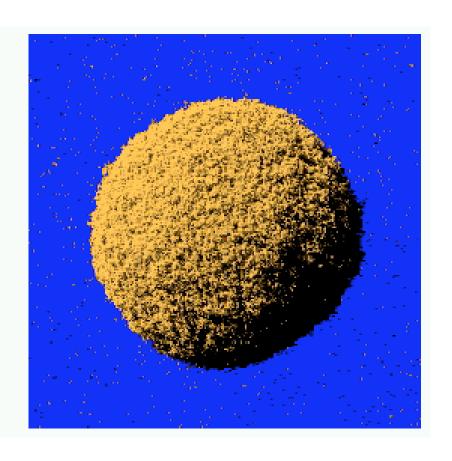


Odd steps: update silver sublattice



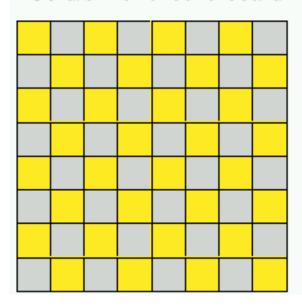
A spin is flipped if all 4 of its neighbors are the same. Otherwise it is left unchanged.



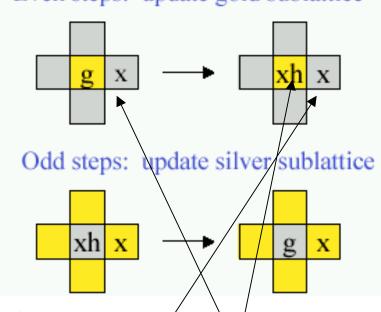


### Reversible aggregation rule

#### Gold/silver checkerboard

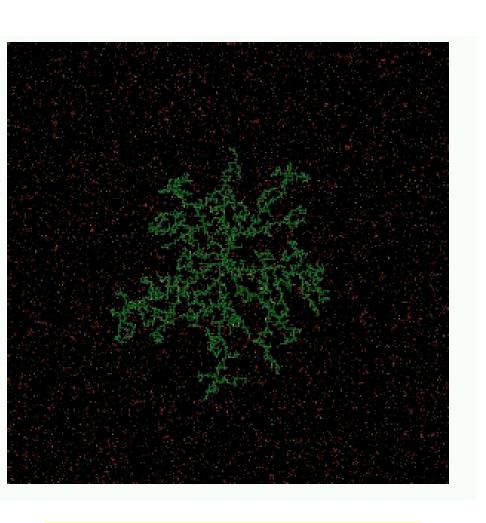


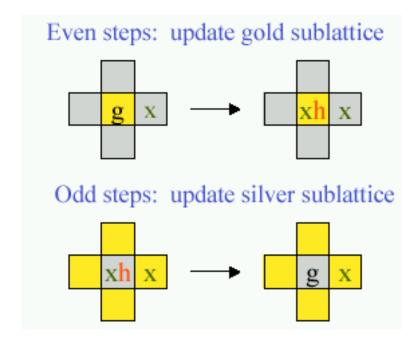
Even steps: update gold sublattice



- We update the gold sublattice, then let gas and heat diffuse, then update silver and diffuse.
- When a gas particle diffuses next to exactly one crystal particle, it crystallizes and emits a heat particle.
- The reverse also happens.

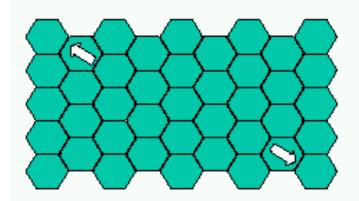
### Reversible aggregation rule



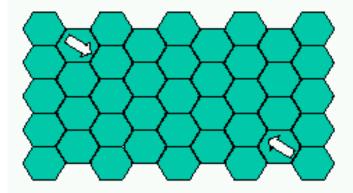


- When a gas particle diffuses next to exactly one crystal particle, it crystallizes and emits a heat particle.
- The reverse also happens.

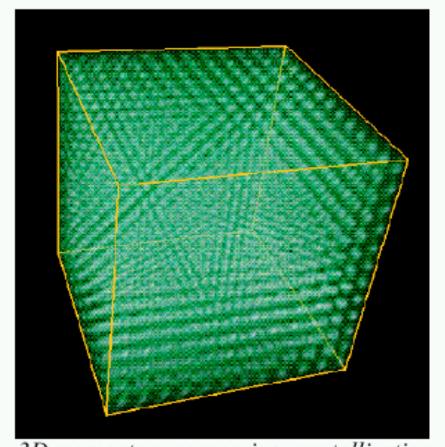
## Adding forces irreversibly



#### becomes:

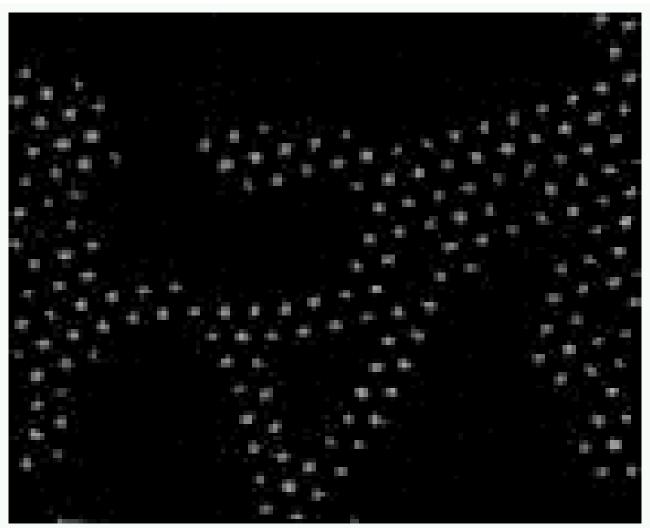


Particles six sites apart along the lattice attract each other.



3D momentum conserving crystallization.

### Adding forces irreversibly



Crystallization using irreversible forces (Jeff Yepez, AFOSR)

## Conservations summary

- To make conservations manifest, we employ a sequence of steps, in each of which either
  - 1. the data are rearranged without any interaction, or
  - 2. the data are partitioned into disjoint groups of bits that change as a unit.
- Data that affect more than one such group don't change.
- Conservations allow computations to map efficiently onto microscopic physics, and also allow them to have interesting macroscopic behavior.

