Lecture of Norm Margolus

Physics becomes the computer

Emulating Physics

» Finite-state, locality, invertibility, and conservation laws

Physical Worlds

» Incorporating comp-universality at small and large scales

Spatial Computers

» Architectures and algorithms for large-scale spatial computations

Nature as Computer

» Physical concepts enter CS and computer concepts enter Physics

Review: Why emulate physics?

- Comp must adapt to microscopic physics
- Comp models may help us understand nature
- Rich dynamics

 Started with locality (Cellular Automata).

Review: Conway's "Life"

256x256 region of a larger grid. Activity has mostly died off.

 Captures physical locality and finitestate

But,

- Not reversible (doesn't map well onto microscopic physics)
- No conservation laws (nothing like momentum or energy)
- No interesting large-scale behavior

Observation:

 It's hard to create (or discover) conservations in conventional CA's.

Review: CA's with conservations

To make reversibility and other conservations manifest, we employ a multi-step update, in each step of which either

- The data are rearranged without any interaction, or
- The data are partitioned into disjoint groups of bits that change as a unit. Data that affect more than one such group don't change.

Conservations allow computations to map efficiently onto microscopic physics, and also allow them to have interesting macroscopic behavior. *Such CA's have hardly been studied*.

Physical Worlds

- Some regular spatial systems:
 - 1. Programmable gate arrays at the atomic scale
 - 2. Fundamental finite-state models of physics
 - 3. Rich "toy universes"
- All of these systems must be computation universal

Computation Universality

- If you can build basic logic elements and connect them together, then you can construct any logic function -- your system can do anything that any other digital system can do!
 - It doesn't take much "material".
 - Can construct CA that support logic.
 - Can discover logic in existing CAs (eg. Life)
 - Universal CA can simulate any other

Logic circuit in gate-array-like CA

What's wrong with Life?

One can build signals,
 wires, and logic out of patterns of bits in the
 Life CA

- Glider guns in Conway's "Game of Life" CA.
- Streams of gliders can be used as signals in Life logic circuits.

What's wrong with Life?

 One can build signals, wires, and logic out of patterns of bits in the Life CA

• BUT:

- Life is short!
- Life is microscopic
- Can we do better with a more physical CA?

Life on a 2Kx2K space, run from a random initial pattern. All activity dies out after about 16,000 steps.

Billiard Ball Logic reminder.

- Simple reversible logic gates can be universal
 - Turn continuous model into digital at discrete times!
 - (A,B) --> AND(A,B) isn't reversible by itself
 - Can do better than just throw away extra outputs
 - Need to also show that you can *compose* gates

Fredkin's reversible Billiard Ball Logic Gate. Interaction gate.

This is NOT the Fredkin Gate that you know from class. He invented many gates!

Billiard Ball Logic review

A BBM CA rule

• Now we map these BB behaviors not to gates as before but to CA rules.

2x2 blockings.

The solid blocks are used at even time steps, the dotted blocks at odd steps.

BBMCA rule.

Single one goes to opposite corner, 2 ones on diagonal go to other diag, no other cases change.

A BBMCA collision:

The "Critters" rule

Use 2x2 blockings.

Use solid blocks on even time steps, use dotted blocks on odd steps.

- •This rule is applied both to the even and the odd blockings.
- •We show all cases: each rotation of a case on the left maps to the corresponding rotation of the case on the right.
- •Note that the number of ones in one step equals the number of zeros in the next step.

These rules are not the same as shown in an earlier lecture.

The "Critters" rule

Reversible "Critters" rule, started from a low-entropy initial state (2Kx2K).

- •Standard question: what will happen after N generations.
- Predict the dynamics.

"Critters" is universal

Comparison of collisions in Critter and BBMCA models

 Real world Hardsphere collision

conserves momentum

- Can't make simple CA out of this that does conserve momentum
 - Problem: finite impact parameter required
 - Suggestion: find a new physical model!

Hard sphere collision

SSM = Soft sphere Model

Swap gate realization

SSM collisions on other lattices

Getting rid of mirrors

- SSM with mirrors does *not* conserve momentum
- Mirrors must have infinite mass
- Want both universality and mom conservation
- Can do this with just the SSM collision!

Mirrors allow signals to cross without interacting.

Getting rid of mirrors - the rest particle

Getting rid of mirrors

- The rule is very simple without mirrors: just one collision and it's inverse.
- All other cases, including the rest particle case, go straight through.

Getting rid of mirrors - signal and its complement

- The rule is very simple without mirrors: just one collision and it's inverse.
- All other cases, including the rest particle case, go straight through.

Pairing every signal with its complement allows constant streams of 1's to act like mirrors

Getting rid of mirrors

The concept of dual-rail logic is important also in asynchronous, reversible, low power and self-assembly circuits. No negations necessary or possible.

Macroscopic universality

- With exact microscopic control of every bit, the SSM model lets us compute reversibly and with momentum conservation, but
 - an interesting world should have macroscopic complexity!
 - Relativistic invariance would allow large-scale structures to move: laws of physics same in motion
 - This would allow a robust Darwinian evolution
 - Requires us to reconcile forces and conservations with invertibility and universality.

SSM = Soft sphere Model

Relativistic conservation

Non-relativistic:

$$\sum \frac{1}{2} m_i v^2 = \sum \frac{1}{2} m_i' v'^2 \quad \text{(energy)}$$

$$\sum m_i = \sum m_i' \quad \text{(mass)}$$

$$\sum m_i \vec{v}_i = \sum m_i' \vec{v}_i' \quad \text{(mom)}$$

• <== Nonrelativistically, mass and energy are conserved separately

Relativistic:

$$\sum E = \sum E' \qquad \text{(energy)}$$

$$\sum E_i \vec{v}_i = \sum E'_i \vec{v}'_i \qquad \text{(mom)}$$
(since $\vec{p} = \gamma m \vec{v} = \gamma m c^2 \times \vec{v}/c^2$)

• <== Simple lattice gasses that conserve only *m* and *mv* are more like rel than non-rel systems!

Relativistic conservation

Dual-rail signals have a defect when it comes to allowing rotated signals to interact with each other.

LGA = lattice gas

- We used dual-rail signalling to allow constant 1's to act as mirrors
- Dual rail signals don't rotate very easily
- Suggestion: make an LGA in which you don't need dualrail

Relativistic conservation

The rule we infer from this is:

Can we add *macroscopic* forces?

becomes:

Particles six sites apart along the lattice attract each other.

3D momentum conserving crystallization.

Crystallization using irreversible forces (Jeff Yepez, AFOSR)

Summary

- Universality is a <u>low threshold</u> that separates triviality from arbitrary complexity
- More of the richness of physical dynamics can be captured by adding physical properties:
 - Reversible systems last longer, and have a realistic thermodynamics.
 - Reversibility plus conservations leads to robust "gliders" and interesting macroscopic properties & symmetries.
- We know how to <u>reconcile</u> <u>universality</u> with <u>reversibility</u> and <u>relativistic</u> <u>conservations</u>