CSE621

Parallel Algorithms
 Lecture 4

Matrix Operation

September 20, 1999

Overview

${ }^{\circ}$ Review of the previous lecture
${ }^{\circ}$ Parallel Prefix Computations
${ }^{\circ}$ Parallel Matrix-Vector Product
${ }^{\circ}$ Parallel Matrix Multiplication
${ }^{\circ}$ Pointer Jumping
${ }^{\circ}$ Summary
${ }^{\circ}$ Sorting on 2-D : n-step algorithm
${ }^{\circ}$ Sorting on 2-D : 0-1 sorting lemma

- Proof of correctness and time complexity
${ }^{\circ}$ Sorting on 2-D : $\operatorname{|root}(\mathrm{n})(\log \mathrm{n}+1)$-step algorithm
- Shear sort
${ }^{\circ}$ Sorting on 2-D : 31root(n) + o(lroot(n)) algorithm
- Reducing dirty region
${ }^{\circ}$ Sorting : Matching lower bound
- 3\root(n) - o($(\operatorname{rroot}(n))$
${ }^{\circ}$ Sorting on 2-D : word-model vs. bit-model

Parallel Prefix

${ }^{\circ}$ A primitive operation
${ }^{\circ}$ prefix computations: $\mathrm{x}_{1} \triangle \mathrm{X}_{2} \triangle \ldots \Delta \mathrm{X}_{\mathrm{i}}, \mathrm{i}=1, \ldots, \mathrm{n}$ where \triangle is any associative operation on a set X.

Used on applications such as carry-lookahead addition, polynomial evaluation, various circuit design, solving linear recurrences, scheduling problems, a variety of graph theoretic problems.
${ }^{\circ}$ For the purpose of discussion,

- identity element exists
- operator is an addition
- S_{ij} denote the sum $\mathrm{x}_{\mathrm{i}}+\mathrm{X}_{\mathrm{i}+1+\ldots+\mathrm{X}_{\mathrm{j}}, \mathrm{l}=\mathrm{j}}$

Parallel Prefix : PRAM

${ }^{\circ}$ Based on parallel binary fan-in method (used by MinPRAM)
${ }^{\circ}$ Use a recursive doubling
${ }^{\circ}$ Assume that the elements $\mathrm{X}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{X}_{\mathrm{n}}$ resides in the array $\mathrm{X}[0: \mathrm{n}]$ where $\mathrm{X}[\mathrm{i}]=\mathrm{xi}$.

- Algorithm
- In the first parallel step, Pi reads $\mathrm{X}[i-1]$ and $\mathrm{X}[i]$ and assigns the result to Prefix[i].
- In the next parallel step, Pi reads Prefix[i-2] and Prefix[i], computes Prefix[i-2]+Prefix[i], and assigns the result to Prefix[i]
- Repeat until $m=\log n$ steps.
${ }^{\circ}$ See Figure 11.1

procedure PrefixPRAM(X[1:n],Prefix [1:n])

Model: EREW PRAM with $p=n$ processors

Input: $X[0: n]$ (an array of elements $\left.x_{1}, x_{2}, \ldots, x_{n}\right)\left\{X[0]=0, n=2^{m}\right\}$
Output: Prefix $[1: n]\left(\right.$ Prefix $\left.[i]=x_{1} \oplus \cdots \oplus x_{i}, i=1, \ldots, n\right)$
for $1 \leq i \leq n$ do in parallel
Prefix $[i]:=X[i-1] \oplus X[i]$
end in parallel
$k:=2$
while $k<n$ do
or $k+1 \leq i \leq n$ do in parallel
$\operatorname{Prefix}[i]:=\operatorname{Prefix}[i-k] \oplus \operatorname{Prefix}[i]$
end in parallel
$k:=k+k$
endwhile
end PrefixPRAM

Parallel Prefix : On the complete binary tree

${ }^{\circ}$ Assume that n operands are input to the leaves of the complete binary tree
${ }^{\circ}$ Algorithm

- Phase1: binary fan-in computations are performed starting at the leaves and working up to the processors P_{0} and P_{1} at level one.
- Phase2: for each pair of operands $\mathbf{x i}, x_{i+1}$ in leaf nodes having the same parent, we replace the operand $\mathrm{Xi}_{\mathrm{i}+1}$ in the right child by $\mathrm{Xi}+\mathrm{Xi}_{\mathrm{i}+1}$.
- Phase3: each right child that is not a leaf node replaces its binary fanin computation with that of its sibling (left child), and the sibling replaces its binary fan-in computation with the identity element.
- Phase 4: binary fan-in computations are performed as follows. Starting with the processors at level one and working our way down level by level to the leaves, a given processor communicates its element to both its children, and then each child adds the parent value to its value.
${ }^{\circ}$ See the figure
${ }^{\circ}$ Time: Phase1 $: \log n-1$, Phase2: 2 , Phase 3: 2, Phase 4: $\log n-1$

(a) Phase 1: Input the numbers in the leaves of $P T_{2 n-1}$.

(b) Compute binary fan-in sums.

(c) Phase 2: For leaves, add sums in siblings and leave resulting sum in right child sibling. Phase 3: For non-root, non-leaf, left children, transfer binary fan-in sum to sibling then zero out own sum.

(d) Phase 4: Compute binary fan-out sums. Parallel prefix sums now reside in leaves.

Parallel Prefix : 2-D Mesh

${ }^{\circ}$ 2-D Mesh Mq,q, $\mathbf{n}=\mathbf{q}^{\star} \mathbf{q}$
${ }^{\circ}$ Elements are stored in row-major order in the distributed variable Prefix.
${ }^{\circ}$ Algorithm

- Phase 1: consists of q-1 parallel steps where in the jth step column j of Prefix is added to column $\mathrm{j}+1$.
- Phase 2: consists of $q-1$ steps, where in the ith step $P i, q:$ prefix is communicated to processor $\mathrm{P}_{\mathrm{i}+1, \mathrm{q}}$ and is then added to $\mathrm{P}_{\mathrm{i}+1, \mathrm{q}}$:Prefix, $i=1, \ldots, q-1$
- Phase 3: we add the value $\mathrm{P}_{\mathrm{i}-1, \mathrm{q}}$: prefix to $\mathrm{P}_{\mathrm{i}, \mathrm{j}}$ thereby obtaining the desired prefix sum S1,(i-1)q+j in Pi,j:Prefix, i=2,...,q
${ }^{\circ}$ Time : 3*q steps

Parallel Prefix : Carry-Lookahead Addition

${ }^{\circ}$ When add two binary numbers, carry propagation is the delaying part.
${ }^{\circ}$ Three states

- Stop Carry State $\{\mathrm{s}\}$
- Generate Carry State \{r\}
- Propagate Carry State \{p\}
${ }^{\circ}$ Prefix operation determines the next carry
${ }^{\circ}$ Definition of prefix operation on $\{s, r, p\}$
${ }^{\circ}$ Carry-Lookahead algorithm
- Find a carry state
- Find a parallel prefix
- Find a binary modular sum

Figure 11.6 Using prefix computations and Proposition 11.1 .2 to compute the binary sum of $x=10101001$ and $y=01101011$

Parallel Matrix-Vector Product

${ }^{\circ}$ Used often in scientific computations.
${ }^{\circ}$ Given an $\mathbf{n x} \mathbf{n}$ matrix $\mathbf{A}=\left(\mathrm{a}_{\mathrm{ij}}\right) \mathrm{nxn}$ and the column vector $X=\left(x_{1}, X_{2}, \ldots, x_{n}\right)$, the matrix vector product $A X$ is the column vector $B=\left(b_{1}, b_{2}, \ldots, b_{n}\right)$ defined by

$$
b_{i}=\Sigma a_{i j} X_{j}, i=1, \ldots, n
$$

${ }^{\circ}$ CREW PRAM Algorithm

- Stored in the array $A[1: n, 1: n]$ and $X[1: n]$
- Number of processors : n**2
- Parallel call of DotProduct
- Time : $\log \mathbf{n}$

> Output: $\operatorname{Prod}[1: n]$ (matrix-vector product, where $\operatorname{Prod}[i]=$ $\left.\qquad a_{i 1} x_{1}+a_{i 2} x_{2}+\cdots+a_{i n} x_{n}, i=1, \ldots, n\right)$

```
for 1\leqi\leqn do in parallel
    Prod[i]:= DotProdPRAM(A[i,1:n],X[1:n])
    end in parallel
end MatVecProdCREW
```


Parallel Matrix-Vector Product : 1-D Mesh

${ }^{\circ}$ Systolic Algorithm : Matrix and Vector are supplied as input
${ }^{\circ}$ Each processor holds one value of the matrix and vector in any processor's memory at each stage.

- The value received from the top and the value received from the left is multiplied and added to the value kept in the memory.
${ }^{\circ}$ The value received from the top is passed to the bottom and the value received from the left is passed to the right.
${ }^{\circ}$ The total time complexity is $\mathbf{2 n} \mathbf{- 1}$


```
for \(1 \leq i \leq n\) do in parallel \(\{\) initialize Prod\}
    \(\mathbf{P}_{i}\) :Prod:=0
end in parallel
```

 \{Phase 1\}
 for \(j:=1\) to \(n\) do
 for \(P_{i}, 1 \leq i \leq j\) do in parallel
 if \(i<j\) then
 \(\mathbf{P}_{i+1}: X \Leftarrow \mathbf{P}_{i}: X \quad\) \{propagate \(X\) right \(\}\)
 endif
 \(\operatorname{read}\left(\boldsymbol{P}_{1}: X\right) \quad\left\{\mathbf{P}_{1}: X=x_{j}\right\}\)
 \(\operatorname{read}\left(\mathbf{P}_{i}: A\right) \quad\left\{\mathbf{P}_{i}: A=a_{i, j-i+1}\right\}\)
 Prod :=Prod \(+A * X\)
 end in parallel
 endfor
\{Phase 2 \}

```
    for \(j:=2\) to \(n\) do
    for \(P_{i}, j-1 \leq i \leq n-1\) do in parallel
            \(\mathbf{P}_{i+1}: X \Leftarrow \mathbf{P}_{i}: X\)
                (propagate \(X\) right
            \(\operatorname{read}\left(\mathbf{P}_{i}: A\right)\)
```

 Prod :=Prod \(+A * X\)
 end in parallel
 endfor
 end MatVecProd1DMesh

Parallel Matrix-Vector Product : 2-D Mesh and MOT

${ }^{\circ}$ Matrix and Vector values are initially distributed.
${ }^{\circ}$ 2-D Mesh Algorithm

- Broadcast the dot vector to rows.
- Each processor multiplies.
- Sum at the leftmost processor by shifting the values to left.
${ }^{\circ}$ 2-D Mesh of Trees Algorithm
- See the architecture
- Broadcast the dot vector to rows.
- Each processor multiplies.
- Sum at the tree by summing the children's values

(a) Initial values of distributed variable A and X

(b) Broadcast values of X in first row to rows 2 and 3

(c) for $P_{i, j}, 1 \leq i, j \leq q$ do in paralle $X:=A^{*} X$
end in parallel

(d) Add third column's X values to those in second column, then add second column's X values to first column. Dot product resides in first column's X.

CSE621/JKim
Lec4. 18

procedure MatVecProd2DMesh (A, n, X)

Model: two-dimensional mesh $\mathbf{M}_{n, n}$ with $p=n^{2}$ processors
Input: $\boldsymbol{A}\left(\mathbf{P}_{i, j}: A\right.$ contains $\left.a_{i j}\right)$, range: $P_{i, j}, 1 \leq i, j \leq n$
$X\left(\mathbf{P}_{1, j}: X\right.$ contains $\left.x_{j}\right)$, range: $P_{1, j}, 1 \leq j \leq n$
Output: $X\left(\mathbf{P}_{i, 1}: X\right.$ contains $\left.a_{i 1} x_{1}+a_{i 2} x_{2}+\cdots+a_{i n} x_{n}\right)$, range: $P_{i, 1}, 1 \leq i \leq n$
for $i:=1$ to $n-1$ do
\{broadcast X from i th row to $(i+1)$ st row \}
for $P_{i, j}, 1 \leq j \leq n$ do in parallel
$\mathbf{P}_{i+1, j}: X \Leftarrow \mathbf{P}_{i, j}: X \quad$ \{propagate X down
end in parallel
endfor
\{compute $a_{i j} x_{j}$ in parallel\}
for $P_{i, j}, 1 \leq i, j \leq n$ do in parallel
$X:=A * X$
end in parallel
\{sum across rows in parallel\}
for $j:=n$ down to 2 do
for $P_{i, j}, 1 \leq i \leq n$ do in parallel
$\mathbf{P}_{i, j-1}:$ Temp $\Leftarrow \mathbf{P}_{i, j}: X \quad$ communicate left from X to Temp $\}$
$X:=X+$ Temp
end in parallel
endfor
end MatVecProd2DMesh

Parallel Matrix Multiplication

${ }^{\circ}$ Extension of Parallel Matrix Vector Product
${ }^{\circ}$ Assume square matrices A and B
${ }^{\circ}$ PRAM Algorithm

- ${ }^{* *} 3$ processors
- Parallel extension of DotProduct
- Time : $\log \mathrm{n}$

Parallel Matrix Multiplication : 2-D Mesh

${ }^{\circ}$ Systolic Algorithm : Matrices are supplied as input
${ }^{\circ}$ Inputing sequence is different
${ }^{\circ}$ Each processor holds one value of the matrices in any processor's memory at each stage.
${ }^{\circ}$ The value received from the top and the value received from the left is multiplied and added to the value kept in the memory.
${ }^{\circ}$ The value received from the top is passed to the bottom and the value received from the left is passed to the right.
${ }^{\circ}$ The total time complexity is $\mathbf{3 n - 1}$

Parallel Matrix Multiplication: 3-D MOT

${ }^{\circ}$ Extension of Parallel Matrix Vector Product on 2-D MOT
${ }^{\circ}$ Algorithm

- Phase 1: Input $a_{i j}$ and $b_{i j}$ to the roots of T_{ij} and $\mathrm{T}_{\mathrm{j} i}$, respectively
- Phase 2: Broadcast input values to the leaves, so that the leaves of T_{ij} all have the value aij, and the leaves of T_{ji} all have the vaue b_{ij}
- Phase 3: After phase 2 is completed, the leaf processor Ljik has both the value aik and the value bkj. In a single parallel step, compute the product aikbkj
- Phase 4: Sum the leaves of tree T_{ji} so that resultant sum is stored in the root of T_{ji}
${ }^{\circ}$ Time : $\log \mathbf{n}$ steps
${ }^{\circ}$ Parallel Prefix Computations
- PRAM, Tree, 1-D, 2-D algorithms
- Carry-Lookahead Addition Application
${ }^{\circ}$ Parallel Matrix-Vector Product
- PRAM, 1-D, 2-D MOT algorithms
${ }^{\circ}$ Parallel Matrix Multiplication
- PRAM, 2-D, 3-D MOT algorithms

