CSE621

Parallel Algorithms
Lecture 4

Matrix Operation

September 20, 1999

CSE621/JKim

9/20/99 Leca 1

Overview

° Review of the previous lecture
> Parallel Prefix Computations

° Parallel Matrix-Vector Product
° Parallel Matrix Multiplication

° Pointer Jumping

> Summary

CSE621/JKim

9/20/99 Lecd. 2

Review of the previous lecture

° Sorting on 2-D : n-step algorithm

° Sorting on 2-D : 0-1 sorting lemma
* Proof of correctness and time complexity

° Sorting on 2-D : \root(n)(log n + 1)-step algorithm

e Shear sort

° Sorting on 2-D : 3\root(n) + o(\root(n)) algorithm
 Reducing dirty region

° Sorting : Matching lower bound
* 3\root(n) - o(\root(n))

® Sorting on 2-D : word-model vs. bit-model

CSE621/JKim

9/20/99 Lecd 3

Parallel Prefix

> A primitive operation

> prefix computations: X1 A X2A ... A X, i=1,..,n Where A
IS any associative operation on a set X.

° Used on applications such as carry-lookahead addition,
polynomial evaluation, various circuit design, solving
linear recurrences, scheduling problems, a variety of
graph theoretic problems.

° For the purpose of discussion,
 identity element exists
e operator is an addition
e Sijdenote the sum Xi+ Xi+1+...+Xj, I<=|

CSE621/JKim

9/20/99 Lecd a

Parallel Prefix : PRAM

° Based on parallel binary fan-in method (used by
MinPRAM)

® Use arecursive doubling

> Assume that the elements x1, X2, ..., Xn resides in the
array X[0:n] where X[i]=Xxi.
> Algorithm

* In the first parallel step, Pi reads X][i-1] and X[i] and assigns the result
to Prefix|i].

* In the next parallel step, Pi reads Prefix[i-2] and Prefix[i], computes
Prefix[i-2]+Prefix[i], and assigns the result to Prefix[i]

 Repeat until m =log n steps.

> See Figure 11.1

CSE621/JKim
9/20/99 LecA 5

procedure PrefixPRAM(X[1:n],Prefix[1:n])

Model: EREW PRAM with p = n processors

Input: X[0:x] (an array of elements x|, x,, ..., x,) {X[0] = 0, n = 2™}
Output: Prefix[1:n] (Prefix[i]=x@ -+ @x,i=1,...,n)

for 1 £i<ndo in parallel
Prefix[i] := X[i - 1] ® X[i]
end in parallel _
) index 0 1
while k < n do X[0:8]
for k + 1 <i < ndo in parallel
Prefix[i] := Prefix|i — k] ® Prefix[i]

end in parallel

endwhile

after step 1 Su
‘end PrefixPRAM ‘
PrefixComp|[1:8}
after step 2 Si
PrefixComp[1:8]
after step 3 Su
9/20/99

2

S12

Sl2

3

Sa3

Py

4

S34

P,

5

S4S

P,

6

S56

Pg

7

867

P,

8

0 X, X, X5 X, Xs X4 Xq Xg
SNININININININ N
P, P, P, P, P Py P, Py
ki=k+k PrefixComp[1:8] l 1 l l l l l l

S78

Py

AR

Si3

Sia

SM

S25

Py

S36

P

S47

P,

S58

Py

Cob

Sis

SIG

S17

St

CSE621/JKim
Lec4.6

Parallel Prefix : On the complete binary tree

> Assume that n operands are input to the leaves of the
complete binary tree

> Algorithm

 Phasel: binary fan-in computations are performed starting at the
leaves and working up to the processors Po and P1 at level one.

 Phase?2: for each pair of operands xi, xi+1 in leaf nodes having the
same parent, we replace the operand xi+1 in the right child by xi+xi+1.

 Phase3: each right child that is not a leaf node replaces its binary fan-
In computation with that of its sibling (left child), and the sibling
replaces its binary fan-in computation with the identity element.

* Phase 4: binary fan-in computations are performed as follows.
Starting with the processors at level one and working our way down
level by level to the leaves, a given processor communicates its
element to both its children, and then each child adds the parent value
to its value.

° See the figure

°Time: Phasel: logn -1, Phase2: 2, Phase 3: 2, Phase 4: log n - 1

CSE621/JKim

9/20/99 Lecd 7

(c) Phase 2: For leaves, add sums in siblings and leave resulting

(a) Phase 1: Input the numbers in the leaves of PT,, ;. sum in right child sibling. Phase 3: For non-root, non-leaf, left children,
transfer binary fan-in sum to sibling then zero out own sum.

[P, |a+b+c+d

[Poxo | [Poot || Povo| [Pou| [Puwo] a atb | atbtctd | a+brctd | a+b+ctd+e
a b ¢ d e f & h tetf | +f+g+h
a+b+c a+b+c+d+e a+b+c+d+etf+g

(b) Compute binary fan-in sums.
(d) Phase 4: Compute binary fan-out sums. Parallel prefix sums

now reside in leaves.

CSE621/JKim

9/20/99
Lec4.8

°2-D Mesh Mgq,q, N = g*qg

° Elements are stored in row-major order in the
distributed variable Prefix.

> Algorithm

 Phase 1: consists of q-1 parallel steps where in the jth step column j
of Prefix is added to column j+1.

 Phase 2: consists of -1 steps, where in the ith step Pig:prefix is

communicated to processor Pi+1,q and is then added to Pi+1,q:Prefix,
i=1,...,9-1

 Phase 3: we add the value Pi-1,q:prefix to Pi,j thereby obtaining the
desired prefix sum Si,.i-1)g+j in Pij:Prefix, i=2,...,q

> Time : 3*q steps

CSE621/JKim

9/20/99 Lecd.9

x) > X > X3 >y x| S12 S13 S14

X5 » Xg »x; Pxg X5 Ssg Ss7 iss
Xg » Xig X1 —»x}) Xg S9.10 So.11 i9,12
X P xy x5 Px16 X S13,14 S13,15 S13,16
(a) Initial contents of Prefix and direc- (b) Contents of Prefix after phase 1
tion for performing the summing in and direction for performing the
phase 1. summing in phase 2.
x) % Sia xy Si2 Si3 S1a
) "SSG%S” & B B " B
) ‘59,10%39,1131,12 St S1,10 Si,i1 S1,12
x| S13 74 S13,15 Sii6 S1,13 $1.14 S1,15 S1,16
(c) Contents of Prefix after phase 2. (d) Contents of Prefix upon comple-
Arrow from processor P;_ | q 0 P,-j tion.

indicates that P;;: Prefix should be
replaced with P;;:Prefx ® P, _; -
Prefix in phase 3. This can be
accomplished in g parallel steps.

CSE621/JKim

9/20/99 Lec4.10

Parallel Prefix : Carry-Lookahead Addition

>When add two binary numbers, carry propagation is the
delaying part.

> Three states
o Stop Carry State {s}
 Generate Carry State {r}
 Propagate Carry State {p}

> Prefix operation determines the next carry

> Definition of prefix operation on {s, r, p}

> Carry-Lookahead algorithm Defining the binary operation ® ot (S8} v veersssusssnen
e Find a carry state Rop s+
e Find a parallel prefix plp s r
 Find a binary modular sum 10
r r r r
9/20/99 CSE621/JKim

Lec4.11

i 8 7 6 5 4 3 2 1 0

X, 1 01 01 0 0 1

y; 01 10 1 0 1 1
A

i P P r S r s P r L)

S; r r r s r s r r §
C; 1 110 1 0 1 1 O
Z; 1 0 0 01 01 0 0 z=0(+y+c)mod?2

Figure 11.6 Using prefix computations and Proposition 11.1.2 to compute the binary sum of x = 10101001
and y=01101011

CSE621/JKim

9/20/99 Lec4.12

Parallel Matrix-Vector Product
° Used often in scientific computations.

> Given an n x n matrix A = (aij)nxn and the column vector
X=(X1,X2,...,Xn), the matrix vector product AX is the
column vector B=(b1,b2,...,bn) defined by

bi = Z aijXj, i=1,...,n

> CREW PRAM Algorithm
o Stored in the array A[1:n,1:n] and X[1:n]
* Number of processors : n**2
« Parallel call of DotProduct
« Time : logn

Qutput: Prod[1:n] (matrix-vector product, where Prod[i] =
aﬂxl+ai2x2+"-+ainxn, [= 1., e ,n)

for 1 <i <ndoin parallel
Prod[i] := DotProdPRAM(AL[I,1:n],.X[1:n])
end in parallel

end MatVecProdCREW

9/20/99 CSE621/JKim

Lec4.13

Parallel Matrix-Vector Product : 1-D Mesh

> Systolic Algorithm : Matrix and Vector are supplied as
Input

> Each processor holds one value of the matrix and
vector in any processor’s memory at each stage.

* The value received from the top and the value received
from the left is multiplied and added to the value kept in
the memory.

> The value received from the top Is passed to the bottom
a_ncri] the value received from the left is passed to the
right.

° The total time complexity is 2n-1

CSE621/JKim

9/20/99 Lec4.14

Q44
Computation of as, ay3
AX whenn =4,
a4 ass Q4
a4 ar azz a4
a3 a a3 l
ap ax
ap
Py P, Py P,
8 Step 1 xl — a“xl * * *
Step 2 xz—b; a12x2 a21x1 * *
Phase 1 {
*
Step3 x3—w-a3X3 ApXy d3X
L Stepd Xy a1 Gz ApXy gk
[*
Step 5 QyaXy G3aX3 QgpX
Phase 2 { Stcp 6 * * a34X4 a43X3
| Step 7 * * ¥ aux,

9/20/99

Step 7
Step 6
Step 5
Step 4
Step 3
Step 2

Step 1

* indicates idle

Products shown are
computed at the given
step, and then added to
Prod

CSE621/JKim
Lec4.15

for 1 <i < ndo in parallel {initialize Prod}
P;Prod := 0
end in parallel
{Phase 1}
forj:=1tondo
for P, 1 <i<jdo in parallel
if i <j then
P, X<P:X {propagate X right}
endif
read(P:X) {P;X=x}
read(P:A) (PiA=a;;_ ;]
Prod := Prod + A*X
end in paraliel
endfor
{Phase 2}
for j:=2tondo
for P,,j—1<i<n-1doin parallel
P, X&=P:X {propagate X right}
read(P;:A) {inputa, ,,;_ ;toP;A}
Prod := Prod + AxX
end in parallel
endfor

end MatVecProdl DMesh

CSE621/JKim

9/20/99 Lec4.16

Parallel Matrix-Vector Product : 2-D Mesh and MOT

° Matrix and Vector values are initially distributed.
> 2-D Mesh Algorithm

 Broadcast the dot vector to rows.
 Each processor multiplies.
« Sum at the leftmost processor by shifting the values to left.

> 2-D Mesh of Trees Algorithm
« See the architecture
 Broadcast the dot vector to rows.
« Each processor multiplies.
« Sum at the tree by summing the children’s values

CSE621/JKim
9/20/99 Lec4.17

P, P, P, 24| [4] [Goa
214 | []4| | [10]a | 3x] |

| x| |Ex] |Ex

2]x | |5]x | |3]x

1)2.1 P2,2 P23

[ola| | [sla| | [1]a
[o]a| | [eda] | [O]4 x| mx | |3x
x| |Ex | |[Cx
P, P,y P.s

[4]a] | (04| | [5]a
C4]a| | [1]4a] | [5]a \E=lx | |[dx | |O3x

[x [x Cx

(a) Initial values of distributed variable A and X

(c) forP,;, 1<i,j<qdoin parallel
X:=A*X
end in parallel

[214| | [E04| | [0]4] | [2]a] | [c04] | [i0]4 214] [E04] [04| [[234] | E04] | GOl
[2]x | |[5]x | |[3]x =Zx | |Bx | |3Ex Fax | |B)x | |Ex | |Ox | |[@)x| |Box
1 Y Y
_ | [edal | [eJal | [1]a) | [o]a] f[ela] |[1]4 _ | 04 | (614 | [a) | [oda] | CeJal | [ida
[2]x 5]x [3]x [2]x [5]x [3]x Codx | |B&lx| |[3]x 33]x | |[B3]x| |[B]x
4 \ |
[a]a| | [a| | [504| |[3da| | [O04] | (514 [AJa| | (a| | (514| | 04| | 004 | [514
Cx | |COx| |Ox| |@2x| |Bx| |Bx Clx [x| |Ex | (x| |@lx | |0
. (d) Add third column’s X values to those in second column, then add second
(b) Broadcast values of X in first row to rows 2 and 3. column’s X values to first column. Dot product resides in first column’s X.
CSE621/JKim

9/20/99
Lec4.18

procedure MatVecProd2DMesh(AnX)
Model: two-dimensional mesh M, , with p = n’ processors

Input: A (P, ;:A contains a;), range: P, , 1<ijsn
X® X contains x;), range: P, ,, 1<j<n
Output: X (P, :X contains a;, x| + apx, + -+« + a;,x,), range: P, |, 1 Si<n

"R

fori:=1ton—-1do
{broadcast X from ith row to (i + 1)st row]
for P, , 1 <j < ndoin parallel
P, ;X< P, X ({propagate X down}
end in parallel
endfor
{compute a;x; in parallel}
for Pt., P 1 £4,j £ ndo in parallel
Xi=A*X
end in parallel
{sum across rows in parallel }
for j := n down to 2 do
for P, ;, 1 <i<ndoin parallel
P,;_Temp &P, ;X {communicate left from X to Temp)
X:=X+Temp
end in parallel
endfor

end MatVecProd2DMesh

9/20/99 CSE621/JKim
Lec4.19

[*] = leaf processor
[7] = root processor

" | CT,

CSE621/JKim

9/20/99
Lec4.20

Parallel Matrix Multiplication

> Extension of Parallel Matrix Vector Product
> Assume square matrices A and B
> PRAM Algorithm

* N**3 processors
» Parallel extension of DotProduct
« Time: logn

CSE621/JKim

9/20/99 Lec4.21

Parallel Matrix Multiplication : 2-D Mesh

> Systolic Algorithm : Matrices are supplied as input
> Inputing sequence is different

° Each processor holds one value of the matrices in any
processor’s memory at each stage.

* The value received from the top and the value received
from the left is multiplied and added to the value kept in
the memory.

> The value received from the top Is passed to the bottom
a_ncri] the value received from the left is passed to the
right.

° The total time complexity is 3n-1

CSE621/JKim

9/20/99 Lec4.22

9/20/99

234 a3

a4y yp 843

829

[V

33

bys Ba3
by by, ba3
by, bs, b3
B34 D42 bs3
B4 b5,
T |
a5 843 844 5 —
P(1.1) P(1,2) P(1,3)
Q53 8y4 Bp5 - —
P(2,1) P(2,2) P(2,3)
834 835 - - -
P(3.1) P(3,2) P(3.3)
845
P(4,1) P(4,2) P(4.3)

CSE621/JKim
Lec4.23

Parallel Matrix Multiplication : 3-D MOT

° Extension of Parallel Matrix Vector Product on 2-D MOT

> Algorithm
 Phase 1: Input aij and bij to the roots of Tij and Tiji, respectively

 Phase 2: Broadcast input values to the leaves, so that the leaves of Tij
all have the value aij, and the leaves of Tji all have the vaue bij

 Phase 3: After phase 2 is completed, the leaf processor Ljik has both
the value aik and the value bkj. In a single parallel step, compute the
product aikbkj

» Phase 4: Sum the leaves of tree Tji so that resultant sum is stored in
the root of Tiji

°>Time : log n steps

CSE621/JKim
9/20/99 Lec4.24

Summary

> Parallel Prefix Computations
« PRAM, Tree, 1-D, 2-D algorithms
o Carry-Lookahead Addition Application

° Parallel Matrix-Vector Product
« PRAM, 1-D, 2-D MOT algorithms

° Parallel Matrix Multiplication
« PRAM, 2-D, 3-D MOT algorithms

CSE621/JKim

9/20/99 Lec4.25

