
CSE621/JKim
Lec4.19/20/99

CSE621

Parallel Algorithms
Lecture 4

Matrix Operation

September 20, 1999

9/20/99 CSE621/JKim
Lec4.2

Overview

� Review of the previous lecture
� Parallel Prefix Computations
� Parallel Matrix-Vector Product
� Parallel Matrix Multiplication
� Pointer Jumping
� Summary

9/20/99 CSE621/JKim
Lec4.3

Review of the previous lecture

� Sorting on 2-D : n-step algorithm
� Sorting on 2-D : 0-1 sorting lemma

• Proof of correctness and time complexity

� Sorting on 2-D : \root(n)(log n + 1)-step algorithm
• Shear sort

� Sorting on 2-D : 3\root(n) + o(\root(n)) algorithm
• Reducing dirty region

� Sorting : Matching lower bound
• 3\root(n) - o(\root(n))

� Sorting on 2-D : word-model vs. bit-model

9/20/99 CSE621/JKim
Lec4.4

Parallel Prefix

� A primitive operation

� prefix computations: x1%%%% x2%%%% …%%%% xi, i=1, … , n where %%%%
is any associative operation on a set X.

� Used on applications such as carry-lookahead addition,
polynomial evaluation, various circuit design, solving
linear recurrences, scheduling problems, a variety of
graph theoretic problems.

� For the purpose of discussion,
• identity element exists
• operator is an addition
• Sij denote the sum xi+ xi+1+…+xj, I<= j

9/20/99 CSE621/JKim
Lec4.5

Parallel Prefix : PRAM

� Based on parallel binary fan-in method (used by
MinPRAM)

� Use a recursive doubling
� Assume that the elements x1, x2, …, xn resides in the

array X[0:n] where X[i]=xi.

� Algorithm
• In the first parallel step, Pi reads X[i-1] and X[i] and assigns the result

to Prefix[i].
• In the next parallel step, Pi reads Prefix[i-2] and Prefix[i], computes

Prefix[i-2]+Prefix[i], and assigns the result to Prefix[i]
• Repeat until m = log n steps.

� See Figure 11.1

9/20/99 CSE621/JKim
Lec4.6

9/20/99 CSE621/JKim
Lec4.7

Parallel Prefix : On the complete binary tree
� Assume that n operands are input to the leaves of the

complete binary tree
� Algorithm

• Phase1: binary fan-in computations are performed starting at the
leaves and working up to the processors P0 and P1 at level one.

• Phase2: for each pair of operands xi, xi+1 in leaf nodes having the
same parent, we replace the operand xi+1 in the right child by xi+xi+1.

• Phase3: each right child that is not a leaf node replaces its binary fan-
in computation with that of its sibling (left child), and the sibling
replaces its binary fan-in computation with the identity element.

• Phase 4: binary fan-in computations are performed as follows.
Starting with the processors at level one and working our way down
level by level to the leaves, a given processor communicates its
element to both its children, and then each child adds the parent value
to its value.

� See the figure
� Time: Phase1 : log n - 1, Phase2: 2 , Phase 3: 2, Phase 4: log n - 1

9/20/99 CSE621/JKim
Lec4.8

9/20/99 CSE621/JKim
Lec4.9

Parallel Prefix : 2-D Mesh

� 2-D Mesh Mq,q, n = q*q
� Elements are stored in row-major order in the

distributed variable Prefix.
� Algorithm

• Phase 1: consists of q-1 parallel steps where in the jth step column j
of Prefix is added to column j+1.

• Phase 2: consists of q-1 steps, where in the ith step PPi,q:prefix is
communicated to processor PPi+1,q and is then added to PPi+1,q:Prefix,
i=1,…,q-1

• Phase 3: we add the value PPi-1,q:prefix to PPi,j thereby obtaining the
desired prefix sum S1,(i-1)q+j in PPi,j:Prefix, i=2,…,q

� Time : 3*q steps

9/20/99 CSE621/JKim
Lec4.10

9/20/99 CSE621/JKim
Lec4.11

Parallel Prefix : Carry-Lookahead Addition

� When add two binary numbers, carry propagation is the
delaying part.

� Three states
• Stop Carry State {s}
• Generate Carry State {r}
• Propagate Carry State {p}

� Prefix operation determines the next carry
� Definition of prefix operation on {s, r, p}
� Carry-Lookahead algorithm

• Find a carry state
• Find a parallel prefix
• Find a binary modular sum

9/20/99 CSE621/JKim
Lec4.12

9/20/99 CSE621/JKim
Lec4.13

Parallel Matrix-Vector Product
� Used often in scientific computations.
� Given an n x n matrix A = (aij)nxn and the column vector

X=(x1,x2,…,xn), the matrix vector product AX is the
column vector B=(b1,b2,…,bn) defined by

bi = ΣΣΣΣ aijxj, i =1,…, n

� CREW PRAM Algorithm
• Stored in the array A[1:n,1:n] and X[1:n]
• Number of processors : n**2
• Parallel call of DotProduct
• Time : log n

9/20/99 CSE621/JKim
Lec4.14

Parallel Matrix-Vector Product : 1-D Mesh

� Systolic Algorithm : Matrix and Vector are supplied as
input

� Each processor holds one value of the matrix and
vector in any processor����s memory at each stage.

� The value received from the top and the value received
from the left is multiplied and added to the value kept in
the memory.

� The value received from the top is passed to the bottom
and the value received from the left is passed to the
right.

� The total time complexity is 2n-1

9/20/99 CSE621/JKim
Lec4.15

9/20/99 CSE621/JKim
Lec4.16

9/20/99 CSE621/JKim
Lec4.17

Parallel Matrix-Vector Product : 2-D Mesh and MOT

� Matrix and Vector values are initially distributed.
� 2-D Mesh Algorithm

• Broadcast the dot vector to rows.
• Each processor multiplies.
• Sum at the leftmost processor by shifting the values to left.

� 2-D Mesh of Trees Algorithm
• See the architecture
• Broadcast the dot vector to rows.
• Each processor multiplies.
• Sum at the tree by summing the children����s values

9/20/99 CSE621/JKim
Lec4.18

9/20/99 CSE621/JKim
Lec4.19

9/20/99 CSE621/JKim
Lec4.20

9/20/99 CSE621/JKim
Lec4.21

Parallel Matrix Multiplication

� Extension of Parallel Matrix Vector Product
� Assume square matrices A and B
� PRAM Algorithm

• n**3 processors
• Parallel extension of DotProduct
• Time : log n

9/20/99 CSE621/JKim
Lec4.22

Parallel Matrix Multiplication : 2-D Mesh

� Systolic Algorithm : Matrices are supplied as input
� Inputing sequence is different
� Each processor holds one value of the matrices in any

processor����s memory at each stage.
� The value received from the top and the value received

from the left is multiplied and added to the value kept in
the memory.

� The value received from the top is passed to the bottom
and the value received from the left is passed to the
right.

� The total time complexity is 3n-1

9/20/99 CSE621/JKim
Lec4.23

9/20/99 CSE621/JKim
Lec4.24

Parallel Matrix Multiplication : 3-D MOT

� Extension of Parallel Matrix Vector Product on 2-D MOT
� Algorithm

• Phase 1: Input aij and bij to the roots of Tij and Tji, respectively
• Phase 2: Broadcast input values to the leaves, so that the leaves of Tij

all have the value aij, and the leaves of Tji all have the vaue bij

• Phase 3: After phase 2 is completed, the leaf processor Ljik has both
the value aik and the value bkj. In a single parallel step, compute the
product aikbkj

• Phase 4: Sum the leaves of tree Tji so that resultant sum is stored in
the root of Tji

� Time : log n steps

9/20/99 CSE621/JKim
Lec4.25

Summary

� Parallel Prefix Computations
• PRAM, Tree, 1-D, 2-D algorithms
• Carry-Lookahead Addition Application

� Parallel Matrix-Vector Product
• PRAM, 1-D, 2-D MOT algorithms

� Parallel Matrix Multiplication
• PRAM, 2-D, 3-D MOT algorithms

