

Parallel Algorithms Lecture 4

Matrix Operation

September 20, 1999

- ° Review of the previous lecture
- ° Parallel Prefix Computations
- ° Parallel Matrix-Vector Product
- ° Parallel Matrix Multiplication
- ° Pointer Jumping
- ° Summary

Review of the previous lecture

- ° Sorting on 2-D : n-step algorithm
- ° Sorting on 2-D : 0-1 sorting lemma
 - Proof of correctness and time complexity
- ° Sorting on 2-D : \root(n)(log n + 1)-step algorithm
 - Shear sort
- ° Sorting on 2-D : 3\root(n) + o(\root(n)) algorithm
 - Reducing dirty region
- ° Sorting : Matching lower bound
 - 3\root(n) o(\root(n))
- ° Sorting on 2-D : word-model vs. bit-model

- ° A primitive operation
- ° prefix computations: x₁ ▲ x₂ ▲ ... ▲ xi, i=1, ..., n where ▲ is any associative operation on a set X.
- ^o Used on applications such as carry-lookahead addition, polynomial evaluation, various circuit design, solving linear recurrences, scheduling problems, a variety of graph theoretic problems.
- ° For the purpose of discussion,
 - identity element exists
 - operator is an addition
 - Sij denote the sum xi+ xi+1+...+xj, I<= j

- Based on parallel binary fan-in method (used by MinPRAM)
- ° Use a recursive doubling
- ° Assume that the elements x1, x2, ..., xn resides in the array X[0:n] where X[i]=xi.
- ° Algorithm
 - In the first parallel step, Pi reads X[i-1] and X[i] and assigns the result to Prefix[i].
 - In the next parallel step, Pi reads Prefix[i-2] and Prefix[i], computes Prefix[i-2]+Prefix[i], and assigns the result to Prefix[i]
 - Repeat until m = log n steps.

° See Figure 11.1

procedure *PrefixPRAM*(X[1:n],*Prefix*[1:n]) Model: EREW PRAM with p = n processors **Input:** X[0:n] (an array of elements $x_1, x_2, ..., x_n$) {X[0] = 0, $n = 2^m$ } **Output:** Prefix[1:n] ($Prefix[i] = x_1 \oplus \cdots \oplus x_i$, i = 1, ..., n) for $1 \le i \le n$ do in parallel $Prefix[i] := X[i-1] \oplus X[i]$ end in parallel index 0 1 2 3 5 6 7 4 *k* := 2 while k < n do *X*[0:8] 0 x_2 x_3 x_5 x_6 x_1 x_4 for $k + 1 \le i \le n$ do in parallel $Prefix[i] := Prefix[i-k] \oplus Prefix[i]$ \dot{P}_2 P₃ \dot{P}_4 P₅ \boldsymbol{P}_1 P_6 end in parallel k := k + kPrefixComp[1:8] endwhile S₄₅ S_{34} S 56 **S**₁₁ S_{12} S_{23} after step 1 end PrefixPRAM P_3 P_4 P_5 P_6

8

Parallel Prefix : On the complete binary tree

^o Assume that n operands are input to the leaves of the complete binary tree

° Algorithm

- Phase1: binary fan-in computations are performed starting at the leaves and working up to the processors P0 and P1 at level one.
- Phase2: for each pair of operands xi, xi+1 in leaf nodes having the same parent, we replace the operand xi+1 in the right child by xi+xi+1.
- Phase3: each right child that is not a leaf node replaces its binary fanin computation with that of its sibling (left child), and the sibling replaces its binary fan-in computation with the identity element.
- Phase 4: binary fan-in computations are performed as follows. Starting with the processors at level one and working our way down level by level to the leaves, a given processor communicates its element to both its children, and then each child adds the parent value to its value.

° See the figure

^o **Time:** Phase1 : log n - 1, Phase2: 2 , Phase 3: 2, Phase 4: log n - 1

(a) Phase 1: Input the numbers in the leaves of PT_{2n-1} .

(b) Compute binary fan-in sums.

(c) Phase 2: For leaves, add sums in siblings and leave resulting sum in right child sibling. Phase 3: For non-root, non-leaf, left children, transfer binary fan-in sum to sibling then zero out own sum.

(d) Phase 4: Compute binary fan-out sums. Parallel prefix sums now reside in leaves.

Parallel Prefix : 2-D Mesh

- ° 2-D Mesh Mq,q, $n = q^*q$
- ^o Elements are stored in row-major order in the distributed variable Prefix.
- ° Algorithm
 - Phase 1: consists of q-1 parallel steps where in the jth step column j of Prefix is added to column j+1.
 - Phase 2: consists of q-1 steps, where in the ith step Pi,q:prefix is communicated to processor Pi+1,q and is then added to Pi+1,q:Prefix, i=1,...,q-1
 - Phase 3: we add the value Pi-1,q:prefix to Pi,j thereby obtaining the desired prefix sum S1,(i-1)q+j in Pi,j:Prefix, i=2,...,q

° Time : 3*q steps

CSE621/JKim Lec4.10

*S*₁₄

S₅₈

*S*_{9,12}

S_{13,16}

*S*₁₄

*S*₁₈

 $S_{1,12}$

 $S_{1,16}$

Parallel Prefix : Carry-Lookahead Addition

- ^o When add two binary numbers, carry propagation is the delaying part.
- ° Three states
 - Stop Carry State {s}
 - Generate Carry State {r}
 - Propagate Carry State {p}
- [°] Prefix operation determines the next carry
- ^o Definition of prefix operation on {s, r, p}
- ° Carry-Lookahead algorithm
 - Find a carry state
 - Find a parallel prefix
 - Find a binary modular sum

Parallel Matrix-Vector Product

- ^o Used often in scientific computations.
- ^o Given an n x n matrix A = (aij)nxn and the column vector X=(x1,x2,...,xn), the matrix vector product AX is the column vector B=(b1,b2,...,bn) defined by

bi =
$$\sum a_{ij}x_{j}$$
, i =1,..., n

° CREW PRAM Algorithm

- Stored in the array A[1:n,1:n] and X[1:n]
- Number of processors : n**2
- Parallel call of DotProduct
- Time : log n

Output: Prod[1:n] (matrix-vector product, where $Prod[i] = a_{i1}x_1 + a_{i2}x_2 + \dots + a_{in}x_n$, $i = 1, \dots, n$) for $1 \le i \le n$ do in parallel

Prod[i] := DotProdPRAM(A[i,1:n],X[1:n])end in parallel

```
end MatVecProdCREW
```

Parallel Matrix-Vector Product : 1-D Mesh

- ^o Systolic Algorithm : Matrix and Vector are supplied as input
- ^o Each processor holds one value of the matrix and vector in any processor's memory at each stage.
- ^o The value received from the top and the value received from the left is multiplied and added to the value kept in the memory.
- ^o The value received from the top is passed to the bottom and the value received from the left is passed to the right.
- ° The total time complexity is 2n-1

9/20/99

for $1 \le i \le n$ do in parallel {initialize *Prod*} $\mathbf{P}_i: Prod := 0$ end in parallel {Phase 1} for j := 1 to n do for P_i , $1 \le i \le j$ do in parallel if i < j then $\mathbf{P}_{i+1}: X \Leftarrow \mathbf{P}_i: X$ {propagate X right} endif **read**($P_1: X$) { $P_1: X = x_j$ } **read**($\mathbf{P}_i: A$) { $\mathbf{P}_i: A = a_{i,j-i+1}$ } Prod := Prod + A * Xend in parallel endfor {Phase 2} for j := 2 to n do for P_i , $j - 1 \le i \le n - 1$ do in parallel $\mathbf{P}_{i+1}: X \leftarrow \mathbf{P}_i: X$ {propagate X right} $read(\mathbf{P}_i:A)$ {input $a_{i,n+j-i}$ to $\mathbf{P}_i:A$ } Prod := Prod + A * Xend in parallel endfor

end MatVecProd1DMesh

Parallel Matrix-Vector Product : 2-D Mesh and MOT

^o Matrix and Vector values are initially distributed.

° 2-D Mesh Algorithm

- Broadcast the dot vector to rows.
- Each processor multiplies.
- Sum at the leftmost processor by shifting the values to left.

° 2-D Mesh of Trees Algorithm

- See the architecture
- Broadcast the dot vector to rows.
- Each processor multiplies.
- Sum at the tree by summing the children's values

(a) Initial values of distributed variable A and X

(b) Broadcast values of X in first row to rows 2 and 3.

(c) for $P_{i,j}$, $1 \le i,j \le q$ do in parallel X := A * Xend in parallel

(d) Add third column's X values to those in second column, then add second column's X values to first column. Dot product resides in first column's X.

Lec4.18

CSE621/JKim

procedure MatVecProd2DMesh(A,n,X) Model: two-dimensional mesh $M_{n,n}$ with $p = n^2$ processors **Input:** A ($\mathbf{P}_{i,i}$: A contains a_{ij}), range: $P_{i,j}$, $1 \le i, j \le n$ X ($\mathbf{P}_{1,j}$: X contains x_i), range: $P_{1,j}$, $1 \le j \le n$ **Output:** X ($\mathbf{P}_{i,1}$: X contains $a_{i1}x_1 + a_{i2}x_2 + \cdots + a_{in}x_n$), range: $P_{i,1}$, $1 \le i \le n$ for i := 1 to n - 1 do {broadcast X from *i*th row to (i + 1)st row} for $P_{i,j}$, $1 \le j \le n$ do in parallel $\mathbf{P}_{i+1,i}: X \leftarrow \mathbf{P}_{i,i}: X \quad \{\text{propagate } X \text{ down}\}$ end in parallel endfor {compute $a_{ij}x_j$ in parallel} for $P_{i,i}$, $1 \le i,j \le n$ do in parallel X := A * Xend in parallel {sum across rows in parallel} for j := n down to 2 do for $P_{i,i}$, $1 \le i \le n$ do in parallel $\mathbf{P}_{i,j-1}: Temp \Leftarrow \mathbf{P}_{i,j}: X \quad \{\text{communicate left from } X \text{ to } Temp \}$ X := X + Tempend in parallel endfor

end MatVecProd2DMesh

Parallel Matrix Multiplication

- ° Extension of Parallel Matrix Vector Product
- ° Assume square matrices A and B
- ° PRAM Algorithm
 - n**3 processors
 - Parallel extension of DotProduct
 - Time : log n

Parallel Matrix Multiplication : 2-D Mesh

- ° Systolic Algorithm : Matrices are supplied as input
- ° Inputing sequence is different
- ^o Each processor holds one value of the matrices in any processor's memory at each stage.
- ^o The value received from the top and the value received from the left is multiplied and added to the value kept in the memory.
- [°] The value received from the top is passed to the bottom and the value received from the left is passed to the right.
- ° The total time complexity is 3n-1

Parallel Matrix Multiplication : 3-D MOT

° Extension of Parallel Matrix Vector Product on 2-D MOT

° Algorithm

- Phase 1: Input aij and bij to the roots of Tij and Tji, respectively
- Phase 2: Broadcast input values to the leaves, so that the leaves of Tij all have the value aij, and the leaves of Tji all have the vaue bij
- Phase 3: After phase 2 is completed, the leaf processor Ljik has both the value aik and the value bkj. In a single parallel step, compute the product aikbkj
- Phase 4: Sum the leaves of tree Tji so that resultant sum is stored in the root of Tji
- ° Time : log n steps

Summary

° Parallel Prefix Computations

- PRAM, Tree, 1-D, 2-D algorithms
- Carry-Lookahead Addition Application

° Parallel Matrix-Vector Product

• PRAM, 1-D, 2-D MOT algorithms

° Parallel Matrix Multiplication

• PRAM, 2-D, 3-D MOT algorithms