
11

c10 c01

c11
c02c20

c00

a10 a00 b00

b10

b11

b02b01

a01

a11

a20

C

0

–pA

qA
pB

qB–

0

Figure 1

10

processing.

§5 Future research

The abstract machine model we have described is as yet little explored. Our present pur-
pose is to use the model as the basis for a programming language with the practical ad-
vantages of EDEN that has a more satisfactory semantics. There are several unresolved
issues at present concerning the design of entities, and the extent to which consistent vari-
able referencing can be guaranteed through their disciplined use. Work is currently in
progress on the design of a CAD system, and of an LSD simulation, to be implemented
with reference to our machine model.

It is of particular interest to consider how our abstract machine model might be used to
solve traditional algorithmic problems with parallelism. An example of an abstract algo-
rithm that incorporates relevant ideas appears in [7]. We are also investigating ways in
which other parallel machine models, such as data-flow machines, can be represented in
our framework.

References

[1] P America A proof theory for a sequential version of POOL, ESPRIT 415A Doc.
#188, Philips Res Lab, 1986
[2] W M Beynon The LSD notation for communicating systems, CS RR#87, Warwick
Univ, 1986
[3] W M Beynon, Y W Yung, Implementing a definitive notation for interactive graphics,
New Trends in Computer Graphics, ed N Magenat-Thalman, D Thalman, Springer-Ver-
lag 1988, 456-68
[4] W M Beynon, A J Cartwright A definitive framework for implementing intelligent
CAD systems, in Proc 2nd Eurographics Workshop on Intelligent CAD Systems 1988 (to
appear)
[5] W M Beynon, M T Norris, M D Slade Definitions for Modelling and Simulation of
Concurrent Systems, in Proc IASTED Applied Simulation and Modelling Conference
1988 (to appear)
[6] C Dwork, P Kanellakis, J Mitchell On the sequential nature of unification, Journal of
Logic Programming (1984) 1, 35-50
[7] A M Gibbons, W Rytter Optimal Parallel Algorithms for Dynamic Expression Eval-
uation and Context-free Recognition, Information and Computation (to appear)
[8] D Gries The Science of Programming, Springer-Verlag,1981
[9] T Maibaum et al A Logic for the Formal Requirements Specification of Real-Time
Embedded Systems, Alvey Project SE 015, Report R3.
[10] C Mead, L Conway Introduction to VLSI Systems , Addison-Wesley, 1980
[11] S Peyton-Jones The implementation of functional programming languages, Pren-
tice-Hall, London 1987
[12] M Y Rafiq, I A McLeod Logic Programming for Technical Design, Workshop on
AI in Civil Engineering, Edinburgh, November 1987

9

consistency, and the maintenance of relationships between objects can be ensured by ap-
propriate message passing. There are several problems in formally interpreting such a
style of programming [1]. There is no explicit expression of the intended relationships be-
tween objects; these relationships are simply determined as consequences of the particu-
lar methods invoked within objects and message passing protocols employed. Effective
use of the OOP paradigm requires discretion on the part of the programmer (e.g. to elim-
inate infinite behaviour in connection with the maintenance of relationships) and perhaps
obscure assumptions about the implementation (e.g. the form of the relationships estab-
lished may depend upon how message passing is synchronised) [1]. Other difficulties
arise in connection with maintaining consistent variable references when objects are dy-
namically invoked and removed, and through the maintenance of relationships by repeat-
ed re-evaluation. As we have explained in §2, many of these problems are no less relevant
within our programming paradigm, but may - we believe - be more effectively addressed
within the context of our abstract machine model. For instance, it becomes important to
distinguish between relationships between variables that can be expressed by an acyclic
system of definitions from those that require auxiliary actions. In this way, programming
for our abstract machine model may be related to guaranteeing appropriate synchronisa-
tion within an OOP model.

To show the versatility of our machine model, we outline the simulation of a standard sys-
tolic array algorithm. Our example is that of banded matrix multiplication, as described
in [10]. The input to the algorithm consists of two banded n×n matrices A and B, where
A = (aij), B = (bjk), and aij = 0 unless -pA i-j qA, and bjk = 0 unless -pB j-k qB. The output
is the banded matrix C = (cik) where C=A⋅B, and cik = 0 unless -(pA + pB) i-k qA+ qB.
Following [10], we construct a hexagonal array of processors, indexed by pairs (α,β),
where -pA α qA, and -qB β pB, and pipe the entries of the matrices A and B, and the
partially computed entries of the matrix C through the array (see Figure 1). A simple
analysis shows that the processor indexed by (α,β) operates at time t only if t is congruent
to (α+β) modulo 3, when it performs the assignment c := c + a⋅b, where a, b and c are the
current values stored in its three registers. These three values are respectively: the inputs
aij, bjk and the partially computed output cik, where

i ≡ iαβ = (t+2α-β)/3, j ≡ jαβ = (t-α-β)/3 and k ≡ kαβ = (t+2β-α)/3.

To interpret the above construction within our abstract machine model, we must first in-
stantiate a system of variables a[i,j], b[j,k] and c[i,k], subject to the initial conditions:

a[i,j] = aij, b[j,k] = bjk and c[i,k] = 0.
(This corresponds to instantiating a single entity, comprising a system of definitions, with
no associated actions.) Clocking in the systolic array is simulated by a clock entity that
comprises a single variable t together with a single action:

not changed(t) and t 3n+max(min(pA,qB)+min(pB,qA) , pA+qB)+1 → t = t+1.
We can then represent each processor by an entity in the abstract machine model that in-
corporates the definitions of the three indices iαβ, jαβ and kαβ above, together with a sin-
gle action, viz.

changed(t) and t ≡ (α+β) mod 3 → c[|iαβ|, |kαβ|] = | c[|iαβ|, |kαβ|] | +
a[|iαβ|, |jαβ|]⋅b[|jαβ|, |kαβ|].

The use of the construction changed(t) in the guard ensures that incrementing the clock
does not interfere with the evaluation of the indices in the associated assignment. In ef-
fect, successive clock cycles are associated with shifting the data through the array and

8

ented programming is the most sophisticated, and with special-purpose models for paral-
lelism, such as systolic array or data flow architectures.

It has often been argued that functional programming methods are particularly well-suit-
ed for parallel programming, on the basis that multiple function evaluations can be effi-
ciently performed in parallel. In its naive form, this thesis fails to reflect the need in
general for problem-specific knowledge when developing parallel algorithms. Much re-
cent research in the functional programming arena has focussed on the problems of for-
mulating functional programs for efficient parallel evaluation, perhaps using special-
purpose hardware [10].

Parallelism has also had a significant role to play in logic programming. The limitations
of interpreters that perform inferences sequentially - as in standard Prolog implementa-
tions - are well-recognised, and theorem provers that exploit parallel inference are needed
for pure logic programming methods to succeed. The problem of achieving efficient par-
allelisation of unification is a well-known obstacle for resolution-based theorem provers
[6]. It is of interest to observe the close resemblance between the representation of rela-
tionships between variables within logical clauses, as commonly introduced in pragmatic
logic programming, and the use of definitions in our abstract machine framework [12].

A convincing case for declarative methods as a basis for parallel programming has yet to
be made. It is not clear to what extent work on logic and functional programming offers
an insight into the characteristics of algorithmic problems that favour efficient paralleli-
sation. In our approach we implicitly assume that a concept of program state is appropri-
ate where interaction between several processing agents is concerned, and our abstract
machine model is in this respect more akin to a procedural programming model.

The characteristic problems of procedural programming stem from the need to associate
logically related updating actions. Typically, when a procedural action is performed, it is
also necessary to attend to the various side-effects. The purpose of using invariants is to
make explicit the relationships between variables that ensembles of procedural actions
are intended to maintain. The problems of parallel programming within a procedural par-
adigm are connected with the difficulty of ensuring that the states in which interaction
between agents occurs are consistent with respect to these invariants. Although our ab-
stract machine model is non-declarative in that the value assigned to a variable may
change, there can nonetheless be a significant distinction between redefinition of vari-
ables and procedural assignment. Indeed, provided that the defining expression assigned
to variable involves no evaluation, a variable redefinition is radically different from tra-
ditional reassignment. In principle, the idea behind programming in our abstract machine
model is that, in the presence of appropriate definitions, the side-effects of parameter re-
assignments are handled automatically. The identification of functional relationships be-
tween variables referred to above corresponds to the rationalisation of side-effects
through the use of definitions. The successful use of our programming paradigm must
correspond to a disciplined use of procedural programming resembling programming
with invariants in many respects.

The object-oriented programming (OOP) paradigm ostensibly offers an improvement
over traditional procedural programming where parallelism is concerned. Each object in
an OOP environment can readily be programmed in such a way as to maintain internal

7

purpose error monitoring window) to the characteristics of the objects currently defined.
In effect, we must establish a functional relationship between a particular textual window
and the prevailing geometric error conditions. For this purpose, we introduce a definitive
notation in which it is possible to describe the current content of the screen display: ma-
nipulation of the display interface can then be represented through redefinitions and ac-
tions within the abstract machine model.

To maintain constraints in other ways, whether by revoking a user redefinition, or by
more complex constraint management techniques, requires the introduction of agents
other than the user. The simplest form that an agent to impose a constraint might take is
described in §1. For more complex methods of constraint maintenance, more sophisticat-
ed families of interacting agents may be required e.g. to handle value propagation, or im-
plement iterative solution of a constraint. As a trivial illustration, we may implement an
algorithm to find a root by the bisection method by creating an entity comprising a single
definition: X=f(x), together with a single action: x-X > ε → x = |x+X|/2, where |...| is used
to denote expression evaluation. As even this simple example indicates, in using iterative
constraint management techniques of this kind, we must beware infinite behaviour.

A fuller discussion of how the implementation of a sophisticated user-interface to a com-
plex interactive system can in principle be supported by the abstract machine model ap-
pears in [4]. Notice in particular how the natural association of clusters of definitions and
actions motivates the concept of entity. For instance, to a generic object there may corre-
spond the definitions needed to specify its internal structure, and the actions required to
monitor or impose associated constraints upon this structure. Declaring an instance of a
generic object then corresponds to creating an entity instance. There are also indications
that other higher-level abstractions may be helpful in programming the abstract machine:
for instance, it is useful to be able to specify a guard of the form "changed(x)" that has
the value true provided that the value of x was changed on the previous machine transi-
tion.

§4 Alternative models for parallel computation

The abstract machine model we have presented supports parallel computation within the
context of a general purpose "definitive programming paradigm". A proper evaluation of
our approach is premature at this stage, and we are continuing to investigate both its po-
tential applications and its relationship to other parallel programming models. Research
on parallelisation has very clearly indicated the relevance of intrinsic characteristics of
algorithmic problems - as for instance in developing algorithms for systolic array archi-
tectures. In this context, it may be significant that making effective use of our abstract
machine model requires problem-specific programming ingenuity over and above trivial
reformulation of an algorithmic problem, viz the identification of an appropriate family
of functional relationships. The thesis that parallelisation of computation is connected
with the identification of functional relationships is plausible in as much as the mainte-
nance of functional relationships entails synchronised changes in variable values. There
are also connections with procedural programming using invariants [8], and with "intel-
ligent views" as introduced in §1 and [4].

Our approach to parallelism may be contrasted with declarative programming paradigms,
based on functional or logic programming, with procedural methods of which object-ori-

6

tions is assumed. As illustrated in [5], reasoning about the behaviour of an LSD model in
general involves additional assumptions about synchronisation of duration of action that
are beyond the scope of this discussion. Our purpose here is to observe that our machine
model has suitable characteristics to support an LSD simulator. These include: means of
representing derivates directly, mechanisms to support the creation and deletion of defi-
nitions and actions, and a control structure within which agent actions can be pro-
grammed to perform asynchronously.

The second application concerns the development of an appropriate software tool for the
implementation of definitive notations. A prototype interpreter - EDEN ("an evaluator for
definitive notations") has already been implemented and successfully used to support fur-
ther software development. The EDEN interpreter includes built-in support for defini-
tions resembling that provided by the definition store D in our abstract machine model,
but relies primarily upon traditional procedural methods for the specification of actions.
For example, it is easy to specify that a particular screen location in a spreadsheet is to be
updated whenever the corresponding variable value is changed. In effect, EDEN provides
a practical programming tool that makes it readily possible to link complex procedural
actions and intricate systems of definitions: a mixed programming paradigm that has
proved to be potentially very powerful but can also be difficult to use and analyse. Our
abstract machine model is intended as a framework within which to realise the capabili-
ties of such an interpreter without compromising clarity.

It will be helpful to first examine the philosophical issues associated with representing
programs in terms of definitions. By way of illustration, consider how a simple definitive
notation for interactive graphics might be implemented in the abstract machine model
(c.f. [3]). In using such a definitive notation, the user typically constructs an abstract de-
scription of a geometrical object in terms of the data types of the underlying algebra. In
EDEN, changes to the internal structure of this object trigger procedural actions that are
interpreted as changes to the screen display. To describe this updating process satisfacto-
rily in the abstract machine model would require that the screen display itself behaved as
a variable, whose value was at all times defined implicitly in terms of the internal repre-
sentations of the geometrical objects currently on display. Though in principle we could
express the relationship between the state of the screen and that of the internal data struc-
tures used to construct the display entirely through definitions, we shall in practice prefer
to arbitrarily decide what is the appropriate level of abstraction at which to define the
screen display and ignore the low-level definitions required for physical realisation.

There is no difficulty in interpreting the definitions that establish the geometric relation-
ships between objects - these can form a part of the definition store D. We shall typically
need to handle constraints that cannot be expressed as definitions however: to express the
fact that the total area of an object is too large, for instance. In such a case, there are sev-
eral appropriate responses. It might be that we wish to monitor the violation of such a con-
straint, displaying an error message whilst it pertains. We might wish to prevent any
violation, and revoke a user redefinition leading to such a violation. A more complex so-
lution would be to invoke an appropriate constraint management routine to eliminate the
error automatically.

To support constraint monitoring in our abstract machine model, it is necessary to intro-
duce definitions into D that link the content of the screen display (e.g. the text in a special-

5

requires that the variable is currently extant. The motivation behind the entity is that it
provides a means of associating variables and actions sharing a common extent in time,
thereby alleviating some of the problems of maintaining consistency. It is of interest to
contrast the use of entities with the organisation of variables and actions by common se-
quentially acting agent as in the notation LSD outlined in §3. It is also instructive to com-
pare the problems of formally analysing variable references within an object-oriented
programming paradigm (c.f. [1]). Notice in particular that the use of implicit variable def-
initions has advantages over procedural methods for maintaining functional relationships
based upon repeated re-evaluation. In effect, the recipe that defines the value of a variable
may be recorded even when evaluation is at present impossible, so that the problems of
maintaining consistent variable referencing are potentially less critical.

§3 Applying the machine model

The motivation for developing our abstract machine model is twofold, and derives from
divergent strands of research generalising the use of definitive notations for interaction.

The first application is concerned with modelling and simulating the behaviour of con-
current systems, and with the techniques that can be used to describe the parallel actions
of processes participating in loosely synchronised system. An appropriate notation for
modelling the interaction between agents in a concurrent system using definitive princi-
ples (LSD) was first described in [2], and we hope that our abstract machine model can
provide a more satisfactory basis for its operational semantics.

A full description of LSD is beyond the scope of this paper, but the principal concepts
will be outlined. (Note that, as in [5], we prefer to substitute the term "agent" for the orig-
inal LSD term "process" imported from SDL.) The basic framework for an LSD model
of a concurrent system is similar to the interaction of agents as described in §1. In setting
up an LSD model, certain templates for agents are first abstractly declared, and certain
specific agent instances are initially instantiated. Each agent has a view of the system in
which we distinguish three types of variable: derivates, whose value is implicitly defined
by a formula (e.g. the speed of the engine in our illustrative example), states, whose value
is explicitly known and conditionally under the agent's control (e.g. the extent to which
the accelerator is depressed), and oracles, whose value is explicitly known, but in general
subject to change via an external agent (e.g. how far the choke is out). The role that each
agent plays is specified by its protocol; this takes the form of a set of guarded commands,
each consisting of a sequence of actions enabled by an appropriate boolean precondition
expressed in terms of variables known to the process. Each action is either redefines a
state variable, or leads to the instantiation or removal of an agent.

The interpretation of an LSD model differs from our abstract machine model in signifi-
cant respects. Though the prior specification and subsequent instantiation of entities is su-
perficially similar to that of agents, the organisation of actions within entities and agents
serves an entirely different function. Whilst several actions in an entity may be performed
simultaneously in a transition of the abstract machine, an LSD agent operates sequential-
ly, and at any time is either in a waiting mode, pending commitment to action, or in the
process of executing a particular enabled sequence of actions specified in its protocol.
The guarded commands in a protocol are intended to capture the framework of permis-
sions within which an agent acts, and an asynchronous mode of execution of agent ac-

4

depending upon the application. At all times, the system of functional dependencies be-
tween the variables in D is acyclic, and the value of each variable is consistent with its
definition. An action takes the form of a guarded sequence of instructions, each of which
either redefines a variable, or invokes the introduction or deletion of a block of new def-
initions and actions into the stores D and A through the instantiation or elimination of an
entity.

A computation consists of a sequence of parallel executions of appropriate actions. In a
single computational step, the guards of all actions in the action store are evaluated, and
the actions associated with true guards executed in parallel. This in general has the effect
of changing the contents of the store D by modifying the definitions of variables (possibly
including those whose value is implicitly defined by a formula), and may also lead to the
introduction or deletion of blocks of definitions and actions. To admit redefinitions in-
volving the evaluation of implicitly defined variables (as is appropriate for instance when
referring to the current exchange rate for the purposes of a financial transaction), there is
a mechanism for the evaluation of specified expressions in the same context in which the
evaluation of guards is carried out.

The full implications of programming within this abstract machine model have yet to be
examined in detail. In this paper, our main emphasis is upon outlining the practical appli-
cations for our abstract machine model that we are currently pursuing, and that have so
far informed its design. Some general issues deserve closer consideration however.

It is clear that the use of a definitive framework for actions lends itself to parallel execu-
tion resembling parallel updating of a spreadsheet. In many respects, the identification of
potential interference between parallel actions appears to be simpler than in conventional
programming paradigms. There is a very important distinction between supplying a def-
inition for a variable, and assigning a current value based upon the evaluation of a given
expression, as is typical of procedural methods. This is indicated by the fact that a system
of definitions that involves no expression evaluation can be interpreted non-sequentially.
In as much as definitions within our programming model may involve the evaluation of
variables, we must of course address the traditional issues of read/write interference. In
our abstract machine, the elimination of such interference on evaluation corresponds to
eliminating evaluation during machine transitions. A fundamental question is the extent
to which general algorithmic problems can be expressed in such a way as to take advan-
tage of our machine model; in particular, whether they can be formulated in terms of the
implicit definitions of variables that are required to differentiate between our model and
purely procedural models for concurrent computation that are notoriously difficult to
analyse.

Other issues of interference are peculiar to our machine model. As we illustrated in §1,
the avoidance of cyclic dependency in definition is closely connected with ensuring com-
patibility between the definitive views of the agents acting in any transition. At present,
it is not clear how to identify potential interference of this nature in an abstract machine
program, but it is in general easier to ensure in the context of a specific application (c.f.
§3).

Another important issue is that of guaranteeing the consistency of variable references in
definitions and actions. An action that involves the evaluation or redefinition of a variable

3

able (e.g. too small a profit) is revoked. In such a context, there is effectively an agent
other than the user whose role is to undo the user definition subject to an appropriate
guard being true. By implication, there is also a complementary guard to constrain the us-
er's actions, for further interaction with the spreadsheet is suspended until the violated
condition is first restored.

Within the above framework, it is only possible to capture agent actions in terms of "per-
missions" rather than "obligations" (c.f. [9]). If we elaborate our illustrative example fur-
ther, we may suppose that the choke and accelerator linkages become so enmeshed that
it is impossible to effect any change in the values of a and c without cooperative action
between agents. To model this, it becomes necessary to insist that the action of assigning
the value v to the variable a is precisely synchronised with that of assigning G(v) to c.
Our abstract machine model enables synchronisation of this kind to be specified, but can
also be programmed to support asynchronous activity (c.f. §3).

The four sections of the paper comprise: an account of the abstract machine model; a dis-
cussion of the specific applications to which we hope to apply our model; a brief compar-
ison with previous work on parallelism within the functional, logic and object-oriented
programming paradigms; a concluding section indicating outstanding issues, and some
directions for further research.

§2 The abstract machine model

The illustrative example above motivates an abstract machine model whose operation is
described in terms of a dynamically changing system of variable definitions together with
a system of associated actions in the form of guarded commands. The state of the ma-
chine execution at any time is determined by the definitions and actions that are extant.
(This may be compared and contrasted with a snapshot of the execution of a procedural
program.) Each transition from state to state is effected by redefinition of variables, and
creation or deletion of variables and actions, generally comprising many such operations
performed in parallel. The underlying algebra over which definitions are framed will de-
pend upon the semantics of the application - in fact, as illustrated in §3, there will in gen-
eral be definitions in many different semantic categories.

To provide effective support for dynamic reconfiguration of definitions and actions, it is
important to be able to associate groups of definitions and actions that interact. For in-
stance, in an application, it may be appropriate to introduce a new variable together with
an action designed to maintain a constraint upon its value. More generally, the definition
of a variable will make reference to other variables whose instantiation must be correlated
in time. Creation and deletion of variables and actions is accordingly achieved by intro-
ducing and deleting entities, each of which comprises a family of variable declarations or
definitions together with a set of associated actions.

Formally, our abstract machine model consists of three components: a program store P,
comprising a set of entities, a store D of variable definitions, and a store A of actions.
Each entity comprises an abstractly specified block of definitions and actions, perhaps
parametrised, that is superficially analogous to the declaration of a procedure in a con-
ventional procedural language, or of an object in an object-oriented language. The vari-
ables whose definitions appear in D can have values of a variety of different types,

2

describe in this paper is intended to provide a common fundamental basis for two super-
ficially unrelated subsequent developments of work on "definitive notations for interac-
tion":

(a) the application of definitive programming principles to the modelling and sim-
ulation of concurrent systems, as described in [2,5],

(b) the specification of special purpose software tools to support the implementa-
tion of definitive notations, as described in [3,4].

In extending the framework for user-computer interaction provided by a definitive nota-
tion to accommodate several agents, the key idea is to regard the user as a generic agent.
To make this generalisation, it is necessary to examine the role of the user more carefully.
When more than one agent is involved, it also becomes important to consider when and
how each agent is privileged to act. Our discussion of these issues bears directly upon the
design of the abstract machine model to be described in §2.

When considering a single user-computer interaction, it may be reasonable to refer to a
family of definitions as an effective way of representing "the state of the interaction", but
this is a simplification. The conceptual advantages of a definitive interface stem from the
fact that it makes explicit both the parameters that the user can change and the conse-
quences of such changes. In effect, a family of definitions expresses a particular user-
view, incorporating knowledge not only of the present state but of latent transitions (c.f.
[4]). This is particularly relevant in a multi-agent system, when it is simplistic to speak
of the state of the interaction, and it becomes necessary to think rather of representing the
views of the participating agents.

A simple - if fanciful - illustration will help to indicate the type of activity that our abstract
machine model must support. Imagine that the choke and the accelerator of a car engine
are under the independent control of two agents. The speed of the engine (s) may be de-
fined by a functional relationship in terms of how far the choke piston is out (c) and how
far the accelerator pedal is depressed (a), so that s=F(c,a). Notice that the values of a and
c can be changed simultaneously without interference. Suppose now that a fault develops
in the choke linkage, so that the degree of choke is independent of c. The functional rela-
tionship defining s then takes the form s=F(k,a),where k is a constant, and the value of c
is no longer significant. A more serious fault may now develop, whereby the choke and
accelerator linkages become intertwined in such a way that the positions of the choke pis-
ton and the accelerator pedal are interdependent. In such a case, there may be a constrain-
ing relationship between a and c such that a=G(c) and c=G-1(a). Now the agents
controlling a and c can each act independently in accordance with a perceived definitive
context, but they will in general interfere if they act simultaneously. This is reflected in
the cyclic nature of the dependencies if both definitions a=G(c) and c=G-1(a) are present.

Our illustration indicates the need in general to maintain a system of variables definitions
that must change dynamically. It also shows that such a system can remain free from cy-
clic dependency only if agent actions are restricted. Interference between agents is gen-
erally associated with the co-existence of two incompatible views - to prevent this we
shall need to place guards upon agent actions, specifying the preconditions that must per-
tain before variables can be redefined. As a very simple illustration of how the use of
guards can provide a framework for constraining actions, consider a spreadsheet that is
set up in such a way that a user redefinition leading to a critical value for a particular vari-

1

Parallel computation in definitive models
Meurig Beynon, Mike Slade, Yun Wai Yung
Department of Computer Science, University of Warwick, Coventry CV4 7AL

Abstract

This paper describes an abstract machine model for parallel computation that exploits
a programming paradigm based upon definitions. Proposed applications to the imple-
mentation of CAD systems, and to the modelling and simulation of concurrent systems
are outlined. A brief comparison with alternative approaches to parallel computation
is included.

§1 Introduction

The capability for parallel action exhibited by the spreadsheet has often been remarked.
It may be interpreted as a particular illustration of a general principle: given a family of
formulae defined in terms of a set of free parameters, the global effect upon the values of
these formulae when new values are assigned to a distinct subset of the free parameters
is independent of the order in which these assignments are made. Our purpose in this pa-
per is

(1) to describe an abstract machine model for parallel computation that exploits
this principle,

(2) to indicate its potential applications to the implementation of novel CAD sys-
tems [3,4], and to the simulation of concurrent systems [2,5].

Our model for parallel computation is based upon generalising spreadsheet principles in
two respects. We need to extend the concept of "defining families of formulae" to richer
semantic domains. We must also consider the implications of allowing several agents to
act concurrently within the context of such a family of formulae.

The issues involved in generalising spreadsheet principles to richer domains have been
dealt with extensively in previous work [4]. The approach we adopt is to choose an un-
derlying algebra of data types and operators, and to introduce variables whose values lie
in the underlying algebra and are in general defined in terms of other variables and con-
stants by means of algebraic expressions using the operators. For the traditional spread-
sheet, the underlying algebra is scalar arithmetic, and the variables are associated with the
cells of the display. In a typical interaction, the user either declares a new variable, or
(re)defines the value of a variable by supplying an appropriate formula for its value. The
only restriction upon such definitions is that they should be free of cyclic reference - the
value of a variable cannot be defined in terms of itself. At any stage, the current state of
the interaction is then represented by a system of interrelated variable definitions that es-
tablishes an acyclic system of dependencies between variable values. The term "defini-
tive", meaning "definition-based", has been adopted for programming notations based
upon these principles.

Several examples of definitive notations have already been developed. By judiciously
choosing the underlying algebra of variable values it is possible to address a wide variety
of applications; our present repertoire includes notations for interactive graphics [3], for
geometric modelling [4] and for screen layout in textual windows. The research we shall

