Multiple-Valued Quantum Logic Synthesis

2002 International Symposium on New Paradigm VLSI Computing

December 12, 2002, Sendai, Japan,

Marek A. Perkowski*, Anas Al-Rabadi[^] and Pawel Kerntopf+

- *Department of Electrical Engineering and Computer Science, Korea Advanced Institute of Science and Technology (KAIST), 373-1 Gusong-dong, Yusong-gu, Daejeon 305-701, KOREA, *mperkows@ee.kaist.ac.kr*
- ^ Department of Electrical and Computer Engineering, Portland State University, Portland, Oregon, 97207-0751, 1900 S.W. Fourth Ave. *alrabadi@ee.pdx.edu*
- +Institute of Computer Science, Warsaw University of Technology, Nowowiejska 15/19, 00-665 Warsaw, POLAND, *pke@ii.pw.edu.pl*

What size of (binary) Quantum Computers can be build in year 2002?

Is logic synthesis for quantum computers a practical research subject?

Yes, it is a useful technique for physicists who are mapping logic operations to NMR computers. **CAD for physicists**.

5 qubit 215 Hz Q. Processor

(Vandersypen, Steffen, Breyta Yannoni, Cleve, and Chuang, 2000)

The molecule

Pulse Sequence

Results: Spectra

Problem

- We would like to assume that any two quantum wires can interact, but we are limited by the realization constraints
- Structure of atomic bonds in the molecule determines neighborhoods in the circuit.
- This is similar to restricted routing in FPGA layout - <u>link between logic and layout synthesis</u> known from CMOS design now appears in quantum.
- Below we are interested only in the so-called *"permutation circuits"* - their unitary quantum matrices are permutation matrices

Quantum wires A and C are not neighbors

A schematics with two binary Toffoli gates

This is a result of our ESOP minimizer program, but this is not realizable in NMR for the above molecule

But this costs me two swap gates

Costs 3 Feynmans

Solution

- One solution to connection problem in VLSI has been to increase the number of values in wires.
- Have a **"quantum wire"** have **more than two** eigenstates.
- Increase from <u>superpositions of 2ⁿ</u> to superpositions of 3ⁿ
- Basic gate in quantum logic is a 2*2 (2-qubit gate). We have to build from such gates.

Can we build multiple-valued Quantum Computers in year 2002?

• In principle, yes

Has one tried?

No.

Gates, yes

Qudits not qubits

- In ternary logic, the notation for the superposition is $\alpha |0\rangle + \beta |1\rangle + \gamma |2\rangle$.
- These intermediate states cannot be distinguished, rather a measurement will yield that the qudit is in one of the basis states, |0>, |1> or |2>.
- The probability that a measurement of a qudit yields state |0> is |α|², the probability is |β|² for state |1> and |γ|² for state γ. The sum of these probabilites is one. The absolute values are required, since in general, α β and γ are

The concept of Multiple-Valued Quantum Logic

What is known?

- Mattle 1996 *Trit* |0>, |1>, |2>
- Chau 1997 qudit, error correcting quantum codes
- Ashikhmin and Knill 1999, *MV codes*.
- Gottesman, Aharonov and Ben-Or 1999 *MV fault tolerant gates*.
- Burlakov 1999 *correlated photon realization of ternary qubit*.
- Muthukrishnan and Stroud 2000 *multi-valued universal quantum logic for linear ion trapped devices*.
- Picton 2000 *Multi-valued reversible PLA*.
- Perkowski, Al-Rabadi, Kerntopf and Portland Quantum Logic Group 2001 - Galois Field quantum logic synthesis

What is known?

- Al-Rabadi, 2002 ternary EPR and Chrestenson Gate
- De Vos 2002 Two ternary 1*1 gates and two ternary 2*2 gates for reversible logic.
- Zilic and Radecka 2002 Super-Fast Fourier Transform
- Bartlett et al, 2002 *Quantum Encoding in Spin Systems*
- Brassard, Braunstein and Cleve, 2002 Teleportation
- Rungta, Munro et al *Qudit Entanglement*.

Ternary Galois Field (GF3) operations.

+	0	1	2
0	0	1	2
1	1	2	0
2	2	0	1

•	0	1	2
0	0	0	0
1	0	1	2
2	0	2	1

(a) Addition

(b) Multiplication

Reversible ternary shift operations.

Ope	rator Name	Buffer	Single-Shift	Dual-Shift	Self-Shift	Self-Single-Shift	Self-Dual-Shift
Ope & ea	rator symbol quation	A	A' = A + 1	A'' = A + 2	A''' = A + A = 2A	$A^{\#} = 2A + 1$	$A^{^{\wedge}} = 2A + 2$
Gate	e symbol	->-	-			-#>	-
	0	0	1	2	0	1	2
A	1	1	2	0	2	0	1
	2	2	0	1	1	2	0

Conversion of one shift form to another shift form using ternary shift gates

	Output					
Input	A	Α'	<i>A</i> ″	A‴	$A^{{}^{\#}}$	$A^{}$
A		-		-	-#	
A'			-	-#>		
A"	-				-	-#
A‴		-#			-	
$A^{\#}$	-#		-			-
$A^{}$			-#-	-		

Quantum realization of ternary shift gates.

(a) Single-Shift

(b) Dual-Shift

(e) Self-Dual-Shift

Optimal Solution to Ternary Miller Function

Check ternary maps

2-qubit quantum realization of Miller Gate

Design a Ternary Toffoli Gate from 2-qubit quantum primitives

Principle of creating arbitrary reversible gates

Complete ternary systems

- System 1. Post literal, min, max
- System 2. Power of variable, shifts of variable (two of them for ternary these are optional), Galois ADD, Galois MUL
- System 3. Post Literals, MIN, MODSUM.
- These three are most popular, but there are many other.

Are they good for quantum?

Ternary Operator Kmaps

В

0

1

2

1

2

0

Galois Multiplication. Also has latin square for non-zero columns and rows MODSUM/which for primary number 3 is the same as Galois Addition. Observe latin square property, very important

2

0

1

Example : Ternary Kmaps of ternary adder

Step1: write from Kmap the formula for mv minterms

2 This is modsum3 by inspection, so $S = A +_{3}B$. But you can also calculate is with much formula writing the same as I show for C

S

Step 2. Algebraic Simplifications using rules of ternary Galois Field Algebra

 $C = {}^{1}A * {}^{2}B + {}^{2}A * {}^{1}B + {}^{2}A * {}^{2}B = (2A^{2}+2A) * (2B^{2}+B) + (2A^{2}+A) * (2B^{2}+B) + (2A^{2}+A) * (2B^{2}+B)$

 $=2(A^{2}+A) *(2B^{2}+B) +2*2A^{2}B^{2}+2*2A^{2}B+2AB^{2}+2AB$

Example of Post literal, it has value 1 for argument value 1 and 0 otherwise Here Post literals are next replaced by tautological polynomials in Galois Field

Ternary

Quantum

Gates

Ternary Fredkin Gate build from Ternary Toffoli and Ternary Feynman gates

Generalized Ternary Feynman Gate

Ρ

If f1 is reversible, gate is correct, what about nonreversible f1, please check if the gate is still reversible

Generalized Ternary 3*3 Toffoli Gate P A Do the same exercise as in R previous slide, this will help you get intuition in MV logic. f_2 R C \oplus

Generalized Ternary n*n Toffoli Gate

Do the same exercise as in previous slide, this will help you get intuition in MV logic.

Is this a realizable quantum gate? -yes

Generalized Ternary n*n Fredkin Gate

Generalized Ternary 4*4 Kerntopf Gate

Do the same exercise as in previous slide, this will help you get intuition in MV logic.

Ternary GFSOP Cascade (non-optimal)

All operations are Galois

 $B \oplus A (AB \oplus C) = B \oplus AB \oplus AC = A'B \oplus AC$

Notation for EACH gate:

Inputs: A,B,C

Outputs: P,Q,R

How to realize ternary swap gate?

In any case, this is very costly!

General Ternary Cascade of Kerntopf, Toffoli and Fredkin Family Gates

Example of multi-output FPRM-like GFSOP cascade of Toffoli family gates

Example of ternary multi-output GFSOP cascade of Toffoli family gates $\psi_1 = 1 \oplus C \oplus ABC \oplus A' B$ This is notation for This is notation for single shift $\psi_2 = 0 \oplus C \oplus A' B$ dual shift A A В B C * * C * Ψ_1 \oplus \oplus \oplus Ψ_2 \oplus \oplus

The general pattern of a cascade to implement any ternary function using ternary Toffoli gates

Simplified GFSOP array when powers are not used for some variables. Function of four variables

Macrogeneration introduces many Feynman gates that originate from swaps

 $F = AC \oplus AD'' \oplus B'C \oplus B'D'' \oplus CD \oplus A'B''$

(b) Realization of single-output GFSOP

MV Quantum Design Structures and Approaches

- 1. GFSOP
- 2. Multiple-Valued Reed-Muller
- 3. Canonical Forms over Galois Logic (equivalents of PPRM, FPRM, GRM, etc)
- 4. Multiple-Valued Maitra Cascades and Wave Cascades.
- 5. Other cascades of specific type of elements
- 6. Cascades of general gates

Design Issues

- 1. Local mirroring
- 2. Variable ordering versus gate ordering
- 3. Return to zero and folding
- 4. Realization of complex multiple-valued reversible gates (permutation gates) using directly 1-qubit and 2-qubit quantum primitives

Molecule - Driven Layout and Logic Synthesis

Allowed gate neighborhood for 2 qubit gates

Using Local Mirrors and Return-to-zero factorization Mirrors

a e (h 🕀 cd 🕀 f)

System for mixed quantum logic NMR

Open Problems

- 1. How to select the best gates for permutation circuit synthesis.
- 2. <u>Simplest practical realization of a ternary Toffoli-like gate</u>

3. Best realization, in quantum circuit sense (simplicity and ease of realization), of other Galois gates and non-Galois standard MV operators such as minimum, maximum, truncated sum and others.

- 4. <u>Synthesis algorithms for MV reversible circuit families:</u>
 - GFSOP ,
 - nets,
 - lattices,
 - PLAs
 - MV counterparts of Maitra cascades and wave cascades
 - other reversible cascades

Conclusion

- Practical algorithms for MV quantum circuits. Quantum permutation circuits design (for NMR) is <u>not</u> the same as standard reversible logic.
- **CAD Tools** for quantum physicists: *link levels of design*.
- Evolutionary Approaches versus GFSOP-like approaches
- MV Quantum Simulation
- MV Quantum Circuits Verification
- Designing MV counterparts of Deutch, Shorr, Grover and other original MV quantum algorithms
- •Generalization to MV Of efficient Garbage-less quantum gates by Barenco, DiVincenzo, etc.
- NMR realization of ternary logic.
- MV Quantum Computational Intelligence