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Abstract
Reversible logic is of growing importance to many future computer technologies. We introduce a regular
structure to realize symmetric functions in binary reversible logic. This structure, called a 2 * 2 Net
Structure, allows for more efficient realization of symmetric functions than the methods shown by previous
authors. Our synthesis method allows to  realize arbitrary symmetric function in a completely regular
structure of reversible gates with smaller  “garbage”. Because every Boolean function is symmetrizable by
repeating input variables, our method is applicable to arbitrary multi-input, multi-output Boolean functions
and realizes such arbitrary function in a circuit with a relatively small number of additional gate outputs. The
method can be also used  in classical logic. Its advantages in terms of  numbers  of gates and inputs/outputs
are especially seen for symmetric or incompletely specified functions with many outputs.

1. Introduction
It is well known that Moore’s Law will stop to function around year 2010 and something dramatic will therefore
have to happen in microelectronics not later than in the middle of our Century [44],[45].
Optimists believe that quantum computers (QCs will be also reversible) will be built and pessimists rely only on
other power-saving scalable technologies at the price of essential slowdown of technological improvements in
speed and number of gates. In any case, whether the “optimists” or the “pessimists” will prove to be right, the role
of  reversible computing can only increase in coming years, because, as proved by Landauer [20],[19], it is a
necessary condition for power not be dissipated in the circuit that the circuit be build from reversible gates
(observe, necessary but not sufficient).  Reversible are circuits (gates) that have the same number of inputs and
outputs  and are one-to-one mappings between vectors of inputs and outputs; thus the vector of input states can be
always uniquely  reconstructed from the vector of  output states. Conservative are circuits that have the same
number of ones in inputs and outputs. Our circuits are both reversible and conservative.  Because truly low-power
circuits cannot be built without the concepts of  reversible logic, various technologies for reversible logic are
recently intensively studied. These technologies include; 1) standard CMOS that can use university-available
foundry, 2) optical technologies that can be realized with the state of the art materials, 3) quantum logic (QL)
technologies, some of which proved to be physically realizable only very recently.

Reversible logic adders [6-12] and complete microprocessors [45] have been built, but using perhaps some “ad
hoc” and not published logic design methods. Surprisingly little has been however published on systematic logic
synthesis and optimization  methods for reversible logic. If something was published, it was usually by people
whose background is physics, mathematics, logic, or theoretical computer science, thus the logic synthesis aspects
are still underdeveloped.  In theory, classical logic synthesis methods can be used, but when adapted to reversible
gates, they create unrealistically high numbers of additional gate output signals, making the circuit  extremely
complex. A good synthesis algorithm for reversible logic (RL) should not create an excessive “garbage” [17] or
“waste of outputs”. Based on our previous research, we found that there is a very good “match” between the
requirements of  reversible logic [2,4,9,11,12,14,17,18,33,43,44] and the opportunities given by the regular
logic/layout structure [46] and Linearly Independent Logic [47,48].



We believe that regular structures are good for reversible logic, because it is easier to re-use in them the additional
outputs of reversible gates, instead of  “wasting” them. In addition, we believe that the Linearly Independent
Logic [46,47,48] with  its reversibility properties  should be useful as well. Observe for example, that the Shannon
and Davio expansions are used for some outputs in fundamental reversible gates of Fredkin and Toffoli, and their
generalizations can be used to create new multivalued and multi-input (more than 3) reversible gates. As just one
example of our general methodology based on these principles, we introduce here a regular structure to realize
symmetric functions in binary reversible logic. This structure, although somehow similar to Lattice Structures
introduced by us previously [50,51] and especially the MOPS structures [52] as well as to realizations from [28],
is new and we call it a 2 * 2 Net  Structure.  By a regular structure we understand a logic circuit  and its physical
layout structure being an array of identical cells regularly connected, or a structure composed of few, regularly
connected, structures of this type, called planes. For instance, a well-known PLA is a regular structure with AND
and OR planes. EXOR PLA is a regular structure with AND and EXOR planes. By regularly connected, we
understand that every cell (except of boundary cells) is connected to its k neighbors. In the proposed structure, the
cell, composed of two gates, has two inputs from neighbors, two outputs to neighbors, and two garbage outputs.

The method presented below allows to realize arbitrary symmetric function in a completely regular structure of
reversible gates with little “garbage”. By a (totally) symmetric function [49] we understand a Boolean function
which is invariant to permuting any of its input variables. Partially symmetric function is invariant only to some
input permutations. As discussed in [50] and the literature cited there, every Boolean function can be made
symmetric, or “is symmetrizable”. Functions are made symmetric by repeating their input variables, for instance a
function F(a,b,c) that is not symmetric becomes symmetric when transformed to (incompletely specified) function
F2(a1,b,a2,c) such that a1 = a2 =a and for every input vector  (a,b,c) F(a,b,c) = F2(a1,b,a2,c). This function has an
output don’t care for every combination of inputs when a1 != a2. Because every (multi-output) Boolean function is
symmetrizable, our method presented here  is applicable to arbitrary multi-input, multi-output Boolean function.
Recently efficient methods for symmetrization have been developed in our group, making application of the
proposed here methods practical for at least some percent of non-symmetrical functions. These methods make use
of more general definitions of symmetry than presented here [52]. We found that for  high percent of practical
function benchmarks the number of variable repetitions is small.

The goal of our Portland Quantum Logic research group is to create efficient logic synthesis methodologies for RL
and QL, based on new gates, new structures (usually regular) and new design algorithms. The technique presented
here is technology independent and can be thus used in association with any known or future reversible technology
(also with different gates used in the structure). We believe, however, that the regularity of our networks will
constitute an additional asset for the forthcoming technologies, especially nano-technologies.

The remaining of the paper is as follows. In section 2 basic principles of creating logic synthesis algorithms for
reversible logic are reviewed to make this paper self-contained. Binary and Multi-Valued Fredkin gates are
introduced in section 3.  MV Fredkin gate is the basic gate of our regular structures. Section 4 introduces our idea
and illustrates it with examples. Section 5 presents future research and concludes the paper. We also provide a
comprehensive literature for our readers to help them in their own research.

2. Principles of creating logic synthesis algorithms for Reversible Logic
Let us recall that:

– Every Boolean function can be build from (binary) Fredkin gates. (FG). Such gate has three inputs A, B, C
and three outputs, P, Q , R. It is specified by the gate equations:

                  P = A
                  Q = if A then C else B
                  R = if A then B else C

– In addition, it is convenient (although not necessary) to use Feynman gates (“controlled NOT” or
“quantum XOR”) gates. Such gates have two inputs, A and B, and two outputs, P and Q. They are called
linear, and are described by the following equations:

                P = A
                Q = A EXOR B

– In reversible logic wires can cross one another, so there is no requirement of circuit’s planarity. But in



Quantum Logic the wires cannot cross [14-16]. Thus structures with no wire crossing will have additional
advantages for realization, especially in truly quantum logic – this advocates developing logic synthesis
methods to synthesize  “planar” circuits (planar circuit is one in which no wires cross).

– In both reversible and Quantum Logic it is not possible to have a fanout of a gate or a primary input larger
than 1. On the other hand, reversible gates have a very high fanout, but of  different output functions. This
makes the synthesis problem quite different from classical logic, because if we want to have fanout on a
“wire” higher than 1 we have to pay for it with special  “fanout gates, and we want to use all output signals
rather than waste them. Usually the Feynman gate is used to implement the fanout gate; it has its input B
set to 0.

– The inputs can be set to constants in reversible gates. The outputs of gates can also be constants. Thus the
constant wires can be laid out  in a regular way (like a snake pattern) through the entire circuit with very
small performance penalty.

– Feedback in gate is not allowed, which limits the number of  ways a gate can be used in a circuit.

A trivial  synthesis method in reversible logic is to build the multi-output function, using any known logic method,
from classical gates CG i and next replace every gate CG i with a reversible gate that includes the function realized
by CG i as one of  the reversible gate outputs. For instance, every circuit can be build from multiplexers, and next
every multiplexer can be extended to Fredkin gate with outputs P and R possibly not used. But with this method a
problem arises: “what to do with the remaining outputs of the reversible gates?”. This method is practically
nonsensical as a general synthesis procedure; it generates the “garbage” - a lot of wires that are congesting the
layout without any use other than the reversibility requirement. This is a very bad approach to synthesis, especially
for future technologies - remember the “curse of wiring” which will dominate future technologies, with most of
chip area occupied by connections, unless cellular-like logic and layouts are used.

Thus, efforts in reversible logic design so far were mostly on designing practical reversible circuits, but there are
some publications that attempt at creating general synthesis methods [9,11,17,18,31-34,39,43,45]. The weaknesses
of these methods fall to one or more of the following categories:

- they assume that all gates are the same
- they assume cascades of gates or two-dimensional circuits based on cascades, which leads often to complex

realizations with large garbage.
- they assume complex gates and set high percent of gate inputs to contacts and sink high percent of gate

outputs to garbage.

Heuristics for smart method of synthesis with reversible gates are in our opinion the following:
– Do not create many outputs of  gates and subcircuits,
– Re-use these outputs as inputs to other gates,
– Apply re-usability properties of these common sub-functions - we believe that symmetry introduced here is

only one of such properties and we will find more of them,
– The method must be generally applicable,
– We believe also in the use of  regularity and group/field/linear algebra properties that are so useful in

binary logic.
Below we will illustrate one way how these heuristics can be used.

3. Fredkin Gates and their uses.
Fredkin gate has a very important place in history of  Reversible and Quantum computing and is still the most
often used  3-input, 3-output gate. Several generalizations of this gate have been also proposed, one of which will
be the base of our design here.
3.1. Fredkin Gate
Fredkin Gate (FG) is a fundamental concept in reversible and quantum computing, the base of many both
theoretical and “realization-related” papers. It was introduced by Ed Fredkin and Tomasso Toffoli in 1982 [17].

Fredkin Gate has been realized or proposed to  be realized in various technologies:
– optical:  [5], [37], [31], [33],
– electrical (CMOS):  [5,6,,7,8,10,11,13,26],
– mechanical (nano-technology): [27].
– quantum: [38,42,30,53].



Fredkin gate together with Toffoli and Feynman gates belong to the most often discussed in reversible and
quantum literature, so it is very probably that future realization efforts will concentrate on realizations based on
these gates and  their derivations.
3.2. Multi-Valued Fredkin Gate.
Multi-valued Fredkin Gate (MVFG) was introduced by Picton [33]. He showed how it can be used to build
MIN/MAX based Sum-of-Product kind of circuits realizations in reversible logic. His designs are however often
quite inefficient, especially when applied to quantum logic.

MVFG, see Figure 1, is described by equations:

P = A
Q = B
R = C if A < B else R = D

       S = D if A < B else S = C

Figure 1. Multi-Valued Fredkin Gate
Observe, that the definition of the gate does not specify the type of signals. They can be thus binary, multi-valued,
fuzzy, continuous or complex. The only requirement is that the relation of order (<) can be defined on them.
Below, only the binary case of signals A, B, C and D is discussed. We introduced also other generalizations of
Fredkin gate using multi-valued logic [55] that have additional advantages and are simpler. In fact, the whole
families of such gates exist. It is interesting that a single reversible gate in binary logic has so many reversible
generalizations in multiple-valued  logic.

3.3. Use of Multi-valued Fredkin Gate to create MIN/MAX gate
        Multi-Valued Fredkin gate can be used to create not only many interesting structures, but also many interesting

gates of general use. In particular, as shown by Picton [33], the MIN/MAX gate can be built from two Multi-
Valued Fredkin gates (see Figure 2). In our subsequent papers we will demonstrate various uses of Multi-Valued
Fredkin gates, especially multi-level iterative and regular structures. Here we consider only the special case of
MIN/MAX gate that can be build from two MV Fredkin gates. Observe that in case of binary logic for signals A,
B, C and D, the MIN/MAX gate becomes the AND/OR gate. The reader is invited to analyze the behavior of the
circuit from Figure 2 for A<B and for A>B in order to prove its correctness. This can be done by propagating the
binary values through the circuit according to the equations of each MVFG.

Figure 2. Realization of MIN/MAX gates: (a) Realization of MIN/MAX reversible gate from two MV Fredkin



gates, (b) schematics of MIN/MAX gate, (c)  MAX/MIN gate

4. Regular structure of MAX/MIN and Feynman gates to realize an arbitrary symmetric
function.
4.1. Preliminaries
Let our area of interest be Boolean expressions that are specified as sum-of-products. There is a subset of such
expressions  in which every variable is either negated or not negated, but not both.

Definition 1. The variable that stands non-negated (positive) throughout the expression is called a positive
polarity variable. Variable that stands always in negative (negated) form (as a negated literal) is called a negative
polarity variable.
Note: If function has n variables, and each variable is either positive or negative, there are 2 n different
combinations of polarities of input variables, which are called polarities of the functional expression. If all
variables have positive polarity, the polarity of expression is called positive. If all variables have negative polarity,
the polarity of expression is negative. There are then 2 n various polarities of expressions.

Definition 2. Unate function is a function expressed only using  AND and  OR  operators (for instance Sum-of-
Products) in which every variable has either positive or negative polarity, but not both.

Example 1: function f1 = ab + b c’  is unate and has polarity: a=positive, b=positive, c=negative. In short, it has
the polarity (a,b,c) = (1,1,0), when positive polarity of variable is denoted by 1 and negative polarity by 0.
Function f2 = a b’ + a’ b is not unate. This is EXOR gate, and it is a linear gate. All functions and gates can be
characterized as: unate, linear and  other. Linear function is an EXOR operator of  literals and constants. Function
majority of three variables: f3 = ab + ac + bc is both symmetric and positive unate.  Functions that are both
positive unate and totally symmetric will be of our interest in this paper.

Definition 3. Totally Symmetric function that has value 1 when exactly k of its n inputs are equal one and exactly
n-k remaining  inputs are equal 0, is called a single-index symmetric function and denoted by
 S k (x 1, x 2, …, x n ). Analogously, by S { i,j,k} we denote the function that is one when I, j, or k of its variables are
equal one. Obviously, this notation can be extended to any number of indices, so every symmetric function can be
written as  S I (x 1, x 2, …, x n ), where I is any subset of the set of indices {0,1, 2,…n}. It can be also easily
checked that:

  S I1 (x 1, x 2, …, x n ) AND S I2 (x 1, x 2, …, x n ) =  S I1 intersection  I2  (x 1, x 2, …, x n )   (1)
 S I1 (x 1, x 2, …, x n ) OR S I2 (x 1, x 2, …, x n ) =  S  I1 union  I2  (x 1, x 2, …, x n )                                    (2)
S  I1 (x 1, x 2, …, x n ) XOR S  I2 (x 1, x 2, …, x n ) =  S  I1 symmetric_difference   I2  (x 1, x 2, …, x n )                (3)
S i (x 1, x 2, …, x n  ) XOR  S j (x 1, x 2, …, x n ) = S i (x 1, x 2, …, x n ) OR  S j (x 1, x 2, …, x n ) =
=  S i,,j (x 1, x 2, …, x n )                                                                                                                           (4)
4.2. The basic idea of  2* 2 Net Structures



Figure 3. Three Plane Regular structure to realize arbitrary multi-input, multi-output Boolean function
using MVL Fredkin gates

Figure 3 presents a regular structure based on three regular planes. The first plane from left is a levelized
triangular structure in which the input variables correspond to the columns (we will call it also the triangular
plane). In contrast to Lattices, however, this structure, when realizing arbitrary multi-output function with
geometrically adjacent output signals does not require variable repetition. (For some multi-output functions such
as “counter of ones in a binary string” the Lattice without repeated variables required to push the output signals by
few spaces apart. Or, these output signals were adjacent but the input variables had to be repeated. This was a
disadvantage of  Lattices for large multi-output symmetric functions, which was next attempted to I
mprove in MOPS circuits [52]). The structure of the first plane is planar, regular and algorithmically created. It
realizes all positive unate symmetric functions of its input variables. The second structure from left is just a pair of
columns of Feynman gates that converts these positive unate symmetric functions to single-index symmetric
functions for which arbitrary symmetric function can be easily created. Finally, the plane from the right is a plane
of Feynman gates that uses their internal EXOR gates to realize every output function as an EXOR of single-index
symmetric functions from plane two. (Formula  (4)  above is used). This plane can be compared in its
functionality to the OR plane in a standard AND/OR PLA that is used to realize a Sum-of-Product (SOP, DNF)
expression. Because the functions on the output of second plane are disjoint as single-index functions, the OR of
them is the same as the EXOR of them (This is  based on Boolean Law: A  OR B = A EXOR B EXOR AB. Thus
when functions A and B are disjoint, AB=0 and A OR B = A EXOR B.)

The whole idea  is thus based on the well known fact that every symmetric function of variables x 1 , x 2, …., x n
can be realized as OR or EXOR of  its single-index symmetric functions S i ( x 1 , x 2, …., x n ). Figure 4 illustrates
how positive polarity unate symmetric functions  can be created systematically in a regular planar arrangement of
MAX/MIN modules. Observe that each output function, from top to bottom, includes the next function and are all
positive polarity and unate. The sets of  indices of the adjacent functions differ by one.

Figure 4. Example of realization of some symmetric functions of three variables in the left plane from
Fig. 3: (a) regular structure from reversible MAX/MIN gates that realizes positive polarity unate
symmetric functions, (b) indices of a symmetric function of variables A,B,C; each cell includes an index
of a symmetric function corresponding to it, for instance, function S 2,3 (A,B,C) will have ones in cells



with indices 2 and 3 and zeros in cells with indices 0 and 1.

Figure 5. Realization of all single-index symmetric function using only reversible gates as
EXORs

Let us observe that positive unate symmetric functions generated on the outputs of the triangular plane have a very
nice property, the EXOR of the neighbor functions creates a single-index symmetric function. This is illustrated in
Figure 5. However, because the EXOR gate is not reversible, we have to complete it to Feynman gate by repeating
one of its inputs to the output. Because our structure is regular, this does not complicate the structure. In result, we
obtain a structure such as shown in Figure 5 (this function has four variables for better illustration). As we see, in
this regular structure, we obtain not only the single-index symmetric functions, but also some interval symmetric
functions whose parameters are highly correlated to the neighboring single-index functions. We have also to add
fan-out gates to the plane 2 (as illustrated in Figure 5).

4.3. Complexity of proposed realization
Theorem 1: Every positive unate symmetric function of n variables can be realized in
     1+2+.. n-1 = n(n-1)/2 MAX/MIN gates
Proof. Every positive unate (symmetric ) function of 2 variables can be realized in 1 gate.Every positive unate
function of 3 variables can be realized in 1+2 gates. Every positive unate function of 4 variables can be realized in
1+2+3 gates, etc.
Theorem 2: Every single index totally symmetric function of n variables can be realized in
    n(n-1)/2 MAX/MIN gates, n-2 fan-out gates and n-1 Feynman gates.
Theorem 3: Every single-output totally symmetric function of n variables can be realized with n(n-1)/2
MAX/MIN gates, n-2 fan-out gates, n-1 Feynman gates in 2nd plane  and at most n-1 Feynman gates in the third
plane.
Theorem 4: Every m-output totally symmetric function of n variables can be realized in   n(n-1)/2 MAX/MIN
gates, n-2 fan-out gates, n-1 Feynman gates in 2nd plane and at most m * (n-1) gates in the third plane.

Observe that these are upper bounds, since EXORing the single-index functions is a wasteful method of creating
symmetric functions.

5. Conclusion.
Symmetric functions belong to the most difficult to be realized in reversible logic. Although our circuits may look
excessive at the first glance to people unfamiliar with reversible logic, their comparisons with  realizations
obtained using other methods [6-12,17,31-33] illustrate the true advantages of using regular structures. The known



methods create truly excessive numbers of “garbage” outputs for larger benchmarks.  Moreover, the circuits
shown by us can be significantly further improved, we have no space here to present these improvements. The
improvements are in the following directions: (1) for binary logic simpler cells for the first plane can be designed:
they  have AND, OR, A and A’ outputs and use 4*4 binary Fredkin gates, or use AND, OR, and A’ outputs, and
use  3*3 Kerntopf gates [18];  (2) the circuit can be generalized to take into account  more powerful definitions of
symmetry ( for instance, the definition of symmetric function with 2  n polarities), and also generalized  to non-
symmetric functions[52];  (3)Because the output functions are linear combinations of single-index functions, the
middle plane can be totally eliminated and the number of Feynman gates in the output plane can be significantly
reduced; (4) it can be generalized for multi-valued logic;  (5) General-Purpose regular structures for
asymptotically garbageless realizations of arbitrary functions have been designed;  (6) Reversible Logic FPGAs
(RLFPGAs) have been conceptually designed, in which these structures, among many others, can be embedded;
(7) the methods can be extended to Quantum Logic.
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	Abstract
	
	Reversible logic is of growing importance to many future computer technologies. We introduce a regular structure to realize symmetric functions in binary reversible logic. This structure, called a 2 * 2 Net  Structure, allows for more efficient realizati

	1. Introduction
	It is well known that Moore’s Law will stop to function around year 2010 and something dramatic will therefore have to happen in microelectronics not later than in the middle of our Century [44],[45].
	Optimists believe that quantum computers (QCs will be also reversible) will be built and pessimists rely only on other power-saving scalable technologies at the price of essential slowdown of technological improvements in speed and number of gates. In an
	Reversible logic adders [6-12] and complete microprocessors [45] have been built, but using perhaps some “ad hoc” and not published logic design methods. Surprisingly little has been however published on systematic logic synthesis and optimization  metho
	The method presented below allows to realize arbitrary symmetric function in a completely regular structure of reversible gates with little “garbage”. By a (totally) symmetric function [49] we understand a Boolean function which is invariant to permuting


	2. Principles of creating logic synthesis algorithms for Reversible Logic
	Let us recall that:
	Every Boolean function can be build from (binary) Fredkin gates. (FG). Such gate has three inputs A, B, C and three outputs, P, Q , R. It is specified by the gate equations:
	In addition, it is convenient (although not necessary) to use Feynman gates (“controlled NOT” or “quantum XOR”) gates. Such gates have two inputs, A and B, and two outputs, P and Q. They are called linear, and are described by the following equations:
	In reversible logic wires can cross one another, so there is no requirement of circuit’s planarity. But in Quantum Logic the wires cannot cross [14-16]. Thus structures with no wire crossing will have additional advantages for realization, especially in
	In both reversible and Quantum Logic it is not possible to have a fanout of a gate or a primary input larger than 1. On the other hand, reversible gates have a very high fanout, but of  different output functions. This makes the synthesis problem quite d
	The inputs can be set to constants in reversible gates. The outputs of gates can also be constants. Thus the constant wires can be laid out  in a regular way (like a snake pattern) through the entire circuit with very small performance penalty.
	Feedback in gate is not allowed, which limits the number of  ways a gate can be used in a circuit.
	A trivial  synthesis method in reversible logic is to build the multi-output function, using any known logic method, from classical gates CG i and next replace every gate CG i with a reversible gate that includes the function realized by CG i as one of
	Thus, efforts in reversible logic design so far were mostly on designing practical reversible circuits, but there are some publications that attempt at creating general synthesis methods [9,11,17,18,31-34,39,43,45]. The weaknesses of these methods fall t

	Heuristics for smart method of synthesis with reversible gates are in our opinion the following:
	Do not create many outputs of  gates and subcircuits,
	Re-use these outputs as inputs to other gates,
	Apply re-usability properties of these common sub-functions - we believe that symmetry introduced here is only one of such properties and we will find more of them,
	The method must be generally applicable,
	We believe also in the use of  regularity and group/field/linear algebra properties that are so useful in binary logic.


	3. Fredkin Gates and their uses.
	3.1. Fredkin Gate
	Fredkin Gate (FG) is a fundamental concept in reversible and quantum computing, the base of many both theoretical and “realization-related” papers. It was introduced by Ed Fredkin and Tomasso Toffoli in 1982 [17].
	Fredkin Gate has been realized or proposed to  be realized in various technologies:
	optical:  [5], [37], [31], [33],
	electrical (CMOS):  [5,6,,7,8,10,11,13,26],
	mechanical (nano-technology): [27].
	quantum: [38,42,30,53].


	Fredkin gate together with Toffoli and Feynman gates belong to the most often discussed in reversible and quantum literature, so it is very probably that future realization efforts will concentrate on realizations based on these gates and  their derivati
	Multi-valued Fredkin Gate (MVFG) was introduced by Picton [33]. He showed how it can be used to build MIN/MAX based Sum-of-Product kind of circuits realizations in reversible logic. His designs are however often quite inefficient, especially when applied
	
	MVFG, see Figure 1, is described by equations:
	P = A
	Q = B
	R = C if A < B else R = D

	S = D if A < B else S = C
	Figure 1. Multi-Valued Fredkin Gate
	3.3. Use of Multi-valued Fredkin Gate to create MIN/MAX gate


	Multi-Valued Fredkin gate can be used to create not only many interesting structures, but also many interesting gates of general use. In particular, as shown by Picton [33], the MIN/MAX gate can be built from two Multi-Valued Fredkin gates (see Figure 2)
	Figure 2. Realization of MIN/MAX gates: (a) Realization of MIN/MAX reversible gate from two MV Fredkin gates, (b) schematics of MIN/MAX gate, (c)  MAX/MIN gate
	Figure 4. Example of realization of some symmetric functions of three variables in the left plane from Fig. 3: (a) regular structure from reversible MAX/MIN gates that realizes positive polarity unate symmetric functions, (b) indices of a symmetric funct
	Figure 5. Realization of all single-index symmetric function using only reversible gates as EXORs
	Let us observe that positive unate symmetric functions generated on the outputs of the triangular plane have a very nice property, the EXOR of the neighbor functions creates a single-index symmetric function. This is illustrated in Figure 5. However, bec
	
	
	
	
	
	
	4.3. Complexity of proposed realization







	5. Conclusion.
	Symmetric functions belong to the most difficult to be realized in reversible logic. Although our circuits may look  excessive at the first glance to people unfamiliar with reversible logic, their comparisons with  realizations obtained using other metho
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