
Design andDesign and
Implementation ofImplementation of
Signal ProcessingSignal Processing

Systems:Systems:
An IntroductionAn Introduction

2

OutlineOutline
• Course Objectives and Outline, Conduct
• What is signal processing?
• Implementation Options and Design issues:

– General purpose (micro) processor (GPP)
• Multimedia enhanced extension (Native signal processing)

– Programmable digital signal processors (PDSP)
• Multimedia signal processors (MSP)

– Application specific integrated circuit (ASIC)
– Re-configurable signal processors

Issues in DSPIssues in DSP
Architectures and ProjectsArchitectures and Projects

• Provide students with a global view of embedded
micro-architecture implementation options and
design methodologies for multimedia signal
processing.

• The interaction between the algorithm formulation
and the underlying architecture that implements the
algorithm will be focused:
– Formulate algorithm for match architecture.

– Design novel architecture to match algorithm.

Issues to be treated inIssues to be treated in
projectsprojects

• Signal processing computing
algorithms

• Algorithm representations

• Algorithm transformations:
– Retiming, unfolding

– Folding

• Systolic array and design
methodologies

• Mappling algorithms to array
structures

• Low power design

• Native signal processing and
multimedia extension

• Programmable DSPs

• Very Long Instruction Word
(VLIW) Architecture

• Re-configurable computing &
FPGA

• Signal Processing arithmetics:
CORDIC, and distributed
arithmetic.

• Applications: Video, audio,
communication

What is Signal?What is Signal?
• A SIGNAL is a measurement of a physical quantity

of certain medium.

• Examples of signals:
– Visual patterns (written documents, picture, video,

gesture, facial expression)

– Audio patterns (voice, speech, music)

– Change patterns of other physical quantities: temperature,
EM wave, etc.

• Signal contains INFORMATION!

Medium and ModalityMedium and Modality
• Medium:

– Physical materials that carry the signal.

– Examples: paper (visual patterns, handwriting, etc.), Air
(sound pressure, music, voice), various video displays
(CRT, LCD)

• Modality:
– Different modes of signals over the same or different

media.

– Examples: voice, facial expression and gesture.

What is Signal Processing?What is Signal Processing?
• Ways to manipulate

signal in its original
medium or an abstract
representation.

• Signal can be abstracted
as functions of time or
spatial coordinates.

• Types of processing:
– Transformation
– Filtering
– Detection
– Estimation
– Recognition and

classification
– Coding (compression)
– Synthesis and reproduction
– Recording, archiving
– Analyzing, modeling

Signal Processing ApplicationsSignal Processing Applications
• Communications:

– Modulation/Demo
dulation (modem)

– Channel
estimation,
equalization

– Channel coding
– Source coding:

compression

• Imaging:
– Digital camera,
– scanner
– HDTV, DVD

• Audio
– 3D sound,
– surround sound

• Speech
– Coding
– Recognition
– Synthesis
– Translation

• Virtual reality, animation,
• Control

– Hard drive,
– Motor

• Robotics and Intelligent Systems

Digital Signal ProcessingDigital Signal Processing
• Signals generated via

physical phenomenon are
analog in that
– Their amplitudes are defined

over the range of
real/complex numbers

– Their domains are
continuous in time or space.

• Processing analog signal
requires dedicated,special
hardware.

• Digital signal processing
concerns processing
signals using digital
computers.
– A continuous time/space

signal must be sampled to
yield countable signal
samples.

– The real-(complex)
valued samples must be
quantized to fit into
internal word length.

Signal Processing SystemsSignal Processing Systems

The task of digital signal processing (DSP) is to process
sampled signals (from A/D analog to digital converter), and
provide its output to the D/A (digital to analog converter) to
be transformed back to physical signals.

Digital Signal
 Processing

Digital Signal
 ProcessingA/D

D/A

Implementation of DSP SystemsImplementation of DSP Systems

• Platforms:
– Native signal processing

(NSP) with general purpose
processors (GPP)

• Multimedia extension (MMX)
instructions

– Programmable digital signal
processors (PDSP)

• Media processors

– Application-Specific
Integrated Circuits (ASIC)

– Re-configurable computing
with field-programmable gate
array (FPGA)

• Requirements:
– Real time

• Processing must be done
before a pre-specified
deadline.

– Streamed numerical data
• Sequential processing
• Fast arithmetic

processing

– High throughput
• Fast data input/output
• Fast manipulation of data

How Fast is Enough for DSP?How Fast is Enough for DSP?

• It depends!

• Real time requirements:
– Example: data capture speed

must match sampling rate.
Otherwise, data will be lost.

– Example: in verbal
conversation, delay of
response can not exceed
50ms end-to-end.

– Processing must be done by
a specific deadline.

– A constraint on throughput.

• Different throughput rates
for processing different
signals
– Throughput ∝ sampling rate.

– CD music: 44.1 kHz

– Speech: 8-22 kHz

– Video (depends on frame
rate, frame size, etc.) range
from 100s kHz to MHz.

Early Signal Processing SystemsEarly Signal Processing Systems

• Implemented with
either main frame
computer or special
purpose computers.

• Batch processing
rather than real time,
streamed data
processing.

• Accelerate processing
speed is of main
concern.

• Key approach:
– Faster hardware

– Faster algorithms

• Faster algorithms
– Reduce the number of

arithmetic operations

– Reduce the number of bits to
represent each data

– Most important example:
Fast Fourier Transform

Computing FourierComputing Fourier
TransformTransform

• To compute the N frequencies

{X(k); 0 ≤ k ≤ N−1}
requires N2 complex
multiplications

• Fast Fourier Transform
– Reduce the computation to

O(N log2 N) complex
multiplications

– Makes it practical to process
large amount of digital data.

– Many computations can be
“Speed-up” using FFT

– Dawn of modern digital
signal processing

∑

∑
−

=

−

=

=

−=

1

0

1

0

]
2

exp[)(
1

)(

]
2

exp[)()(

N

k

N

n

N

nk
kX

N
nx

N

nk
nxkX

π

π

Discrete Fourier Transform

Evolution of Micro-ProcessorEvolution of Micro-Processor

• Micro-processors
implemented a central
processing unit on a
single chip.

• Performance improved
from 1MFLOP (1983)
to 1GFLOP or above

• Word length (# bits for
register, data bus, addr.
Space, etc) increases
from 4 bits to 64 bits
today.

• Clock frequency increases
from 100KHz to 1GHz

• Number of transistors
increases from 1K to 50M

• Power consumption
increases much slower with
the use of lower supply
voltage: 5 V drops to 1.5V

Native Signal ProcessingNative Signal Processing
• Use GPP to perform signal

processing task with no
additional hardware.
– Example: soft-modem, soft DVD

player, soft MPEG player.

• Reduce hardware cost!
• May not be feasible for

extremely high throughput
tasks.

• Interfering with other tasks as
GPP is tied up with NSP tasks.

• MMX (multimedia extension
instructions): special
instructions for accelerating
multimedia tasks.

• May share same data-path with
other instructions, or work on
special hardware modules.

• Make use sub-word parallelism
to improve numerical
calculation speed.

• Implement DSP-specific
arithmetic operations, eg.
Saturation arithmetic ops.

ASIC: Application Specific ICsASIC: Application Specific ICs

• Custom or semi-custom IC
chip or chip sets developed
for specific functions.

• Suitable for high volume,
low cost productions.

• Examples: MPEG codec,
3D graphic chip, etc.

• ASIC becomes popular due
to availability of IC
foundry services.

• Fab-less design houses
turn innovative design into
profitable chip sets using
CAD tools.

•• Design automationDesign automation is a key
enabling technology to
facilitate fast design cycle
and shorter time to market
delay.

Programmable Digital SignalProgrammable Digital Signal
Processors (Processors (PDSPPDSPs)s)

• Micro-processors designed
for signal processing
applications.

• Special hardware support
for:
– Multiply-and-Accumulate

(MAC) ops
– Saturation arithmetic ops
– Zero-overhead loop ops
– Dedicated data I/O ports
– Complex address calculation

and memory access
– Real time clock and other

embedded processing
supports.

• PDSPs were developed
to fill a market segment
between GPP and ASIC:
– GPP flexible, but slow
– ASIC fast, but inflexible

• As VLSI technology
improves, role of PDSP
changed over time.
– Cost: design, sales,

maintenance/upgrade
– Performance

Multimedia Signal ProcessorsMultimedia Signal Processors

• Specialized PDSPs
designed for multimedia
applications

•• Features:Features:
– Multi-processing system

with a GPP core plus
multiple function modules

– VLIW-like instructions to
promote instruction level
parallelism (ILP)

– Dedicated I/O and memory
management units.

• Main applications:
– Video signal processing,

MPEG, H.324, H.263,
etc.

– 3D surround sound

– Graphic engine for 3D
rendering

Re-configurableRe-configurable
Computing using FPGAComputing using FPGA

• FPGA (Field programmable
gate array) is a derivative of
PLD (programmable logic
devices).

• They are hardware
configurable to behave
differently for different
configurations.

• Slower than ASIC, but faster
than PDSP.

• Once configured, it behaves like
an ASIC module.

• Use of FPGA
– Rapid prototyping: run

fractional ASIC speed
without fab delay.

– Hardware accelerator: using
the same hardware to realize
different function modules
to save hardware

– Low quantity system
deployment

Characteristics and Impact of VLSICharacteristics and Impact of VLSI

• Characteristics
– High density:

• Reduced feature size:
0.25µm -> 0.16 µm

• % of wire/routing area
increases

– Low power/high speed:
• Decreased operating voltage:

1.8V -> 1V
• Increased clock frequency:

500 MHz-> 1GH.

– High complexity:
• Increased transistor count:

10M transistors and higher
• Shortened time-to-market

delay: 6-12 months

• The term VLSI (Very Large
Scale Integration) is coined in
late 1970s.

• Usage of VLSI:
– Micro-processor

• General purpose
• Programmable DSP
• Embedded µ-controller

– Application-specific ICs
– Field-Programmable Gate

Array (FPGA)

• Impacts:
– Design methodology
– Performance
– Power

Design IssuesDesign Issues
• Given a DSP application,

which implementation
option should be chosen?

• For a particular
implementation option,
how to achieve optimal
design? Optimal in terms
of what criteria?

• Software design:
– NSP/MMX, PDSP/MSP
– Algorithms are implemented as

programs.
– Often still require

programming in assembly level
manually

• Hardware design:
– ASIC, FPGA
– Algorithms are directly

implemented in hardware
modules.

• S/H Co-design: System level
design methodology.

Design Process ModelDesign Process Model
• Design is the process that

links algorithm to
implementation

• Algorithm
– Operations

– Dependency between
operations determines a
partial ordering of execution

– Can be specified as a
dependence graph

• Implementation
– Assignment: Each operation

can be realized with
• One or more instructions

(software)

• One or more function modules
(hardware)

– Scheduling: Dependence
relations and resource
constraints leads to a
schedule.

A Design Example …A Design Example …
Consider the algorithm:

Program:
y(0) = 0

For k = 1 to n Do

 y(k) = y(k-1)+ a(k)*x(k)

End

y = y(n)

• Operations:
– Multiplication

– Addition

• Dependency
– y(k) depends on y(k-1)

– Dependence Graph:

∑
=

=
n

k

kxkay
1

)()(

*

+

a(1) x(1)

*

+

a(2) x(2)

*

+

a(n) x(n)

y(0) y(n)

Design Example cont’d …Design Example cont’d …
• Software

Implementation:
– Map each * op. to a MUL

instruction, and each + op. to a
ADD instruction.

– Allocate memory space for
{a(k)}, {x(k)}, and {y(k)}

– Schedule the operation by
sequentially execute
y(1)=a(1)*x(1), y(2)=y(1) +
a(2)*x(2), etc.

– Note that each instruction is
still to be implemented in
hardware.

• Hardware Implementation:
– Map each * op. to a multiplier,

and each + op. to an adder.

– Interconnect them according to
the dependence graph:

*

+

a(1) x(1)

*

+

a(2) x(2)

*

+

a(n) x(n)

y(0) y(n)

ObservationsObservations
• Eventually, an

implementation is
realized with hardware.

• However, by using the
same hardware to
realize different
operations at different
time (scheduling), we
have a software
program!

• Bottom line –
Hardware/ software co-
design. There is a
continuation between
hardware and software
implementation.

• A design must explore
both simultaneously to
achieve best
performance/cost trade-
off.

A ThemeA Theme
• Matching hardware to

algorithm
– Hardware architecture must

match the characteristics of
the algorithm.

– Example: ASIC architecture
is designed to implement a
specific algorithm, and
hence can achieve superior
performance.

• Formulate algorithm to
match hardware
– Algorithm must be formulated so

that they can best exploit the
potential of architecture.

– Example: GPP, PDSP
architectures are fixed. One must
formulate the algorithm properly
to achieve best performance. Eg.
To minimize number of
operations.

Algorithm ReformulationAlgorithm Reformulation
• Matching algorithm to architectural features

– Similar to optimizing assembly code

– Exploiting equivalence between different operations

• Reformulation methods
– Equivalent ordering of execution:

• (a+b)+c = a+(b+c)

– Equivalent operation with a particular representation:
• a*2 is the same as left-shift a by 1 bit in binary representation

– Algorithmic level equivalence
• Different filter structures implementing the same specification!

Algorithm Reformulation (2)Algorithm Reformulation (2)

• Exploiting parallelism
– Regular iterative algorithms and loop

reformulation
• Well studied in parallel compiler technology

– Signal flow/Data flow representation
• Suitable for specification of pipelined parallelism

15

Mapping Algorithm to ArchitectureMapping Algorithm to Architecture

• Scheduling and Assignment Problem
– Resources: hardware modules, and time slots

– Demands: operations (algorithm), and throughput

• Constrained optimization problem
– Minimize resources (objective function) to meet demands

(constraints)

• For regular iterative algorithms and regular
processor arrays --> --> algebraic mapping.

Mapping Algorithms toMapping Algorithms to
ArchitecturesArchitectures

• Irregular multi-processor architecture:
– linear programming

– Heuristic methods

– Algorithm reformulation for recursions.

• Instruction level parallelism
– MMX instruction programming

– Related to optimizing compilation.

14

ArithmeticArithmetic
• CORDIC

– Compute elementary functions

• Distributed arithmetic
– ROM based implementation

• Redundant representation
– eliminate carry propagation

• Residue number system

Low Power DesignLow Power Design

• Device level low power design

• Logic level low power design

• Architectural level low power design

• Algorithmic level low power design

What is an LFSR &What is an LFSR &
MISR circuit?MISR circuit?

• LFSR & MISR (Linear Feedback Shift Register &
Multiple Input Signature Register) circuits are two
types of a specially connected series of flip flops
with some form of XOR/XNOR feedback.

• They are used in many applications for the
generation or detection of Pseudo Random
Sequences.

LFSR Block DiagramLFSR Block Diagram

D1 Q1 D2 Q2 D3 Q3 D4 Q4

Clk

In

Feedback

Out

Generic LFSR

LFSR Block Diagram (LFSR Block Diagram (contcont.).)

Clk

In

Feedback

Out

Maximal Length LFSR (n = 4)

By Changing the Feedback path to “tap” only certain FF’s,
a Maximal Length Sequence can be produced.

D1 Q1 D2 Q2 D3 Q3 D4 Q4

Polynomial: 1 + x3
 + x4

Maximal Length: (2n
 - 1) = (24 - 1) = (16 - 1) = 15

Problems with this type of LFSRProblems with this type of LFSR

D1 Q1 D2 Q2 D3 Q3 D4 Q4

Clk

In

Feedback

Out

Generic LFSR

• Setup Time - Feedback for D1 has to go through N XORs before
arriving. N Logic delays slows down circuit performance (may need
to run “at speed”). Solution is to have many-input XOR feeding D1

input (1 logic level).

• State 000 is illegal. When FFs power up, they must be initialized
with valid data. Solution is to use XNORs instead. Still produces a
PRBS but all zeros is a valid state.

Maximal Length SequenceMaximal Length Sequence

Clk

In

Feedback

Out

D1 Q1 D2 Q2 D3 Q3 D4 Q4

State FF 1 FF 2 FF 3 FF 4
S0 0 0 0 1
S1 1 0 0 0
S2 0 1 0 0
S3 0 0 1 0
S4 1 0 0 1
S5 1 1 0 0
S6 0 1 1 0
S7 1 0 1 1
S8 0 1 0 1
S9 1 0 1 0

S10 1 1 0 1
S11 1 1 1 0
S12 1 1 1 1
S13 0 1 1 1
S14 0 0 1 1

S15=S0 0 0 0 1
S16=S1 1 0 0 0

Output Sequence:
100010011010111,10001...

MISR Block DiagramMISR Block Diagram

D1 Q1 D2 Q2 D3 Q3 D4 Q4

Feedback

Out

Generic MISR

D1 D2 D3 D4

Multiple Inputs (4-bit wide): {D1,D2,D3,D4}

LFSR & MISR Applications:LFSR & MISR Applications:

• BIST (Built-in Self Test) of logic devices.

• Cyclic Encoding/Decoding (Cyclic Redundancy
Check)

• Pseudo Noise Generator

• Pseudo Random Binary Sequence Generator

• Spread Spectrum (CDMA) applications

Built-In Self Test (BIST)Built-In Self Test (BIST)

• Devices can be self-tested (at speed) by
incorporating LFSR and MISR circuits into the
design. Testing can occur while the device is
operating or while in an idle mode.

• An LFSR generates a Pseudo-Random Test Pattern.
A small LFSR with the appropriate feedback can
generate very long sequences of apparently random
data.

Built-In Self Test (BIST) (Built-In Self Test (BIST) (contcont.).)

• The Pseudo-Random pattern that is generated by the
LFSR is feed through the logic under test then into
the MISR.
– The MISR will essentially compare the result with a

known “good” signature.

– If the result is the same, then there were no errors in the
logic.

• Refer to Dr. Perkowski’s Built-In Self Test
Presentation in Test Class for more information.

Spread Spectrum PRBSSpread Spectrum PRBS
• Because PN signals have good auto-correlation, they

are used in Code Division Multiple Access Spread
Spectrum Communication Systems.

• Pseudo Random Noise Sequences are used to
effectively “spread” the overall bandwidth of a CDMA
signal.

• For every data bit that is to be transmitted, a PRNS is
substituted. The Information rate remains the same,
but the new bit rate is dramatically increased.

1 -> 100010011010111…
0 -> 011101100101000…

Spread Spectrum PRBS (Spread Spectrum PRBS (contcont.).)
• Below is a diagram showing an efficient arbitrary PRBS generator.

• By modifying Tap_config[0:3] and selecting the proper output, this
circuit can generate many different Pseudo Random Binary Sequences.

D1 Q1 D2 Q2 D3 Q3 D4 Q4

Clk

Out

Tap_config[0:3]

Out_sel[0:1] 0 1 2 3

Practical LFSR and MISRPractical LFSR and MISR
circuitscircuits

• LFSR and MISR circuits are used in many applications.

• As technology continues to advance, more and more devices
will be developed that will utilize the unique properties of
these powerful circuits.

• Built-In Self Test and Spread Spectrum (CDMA)
applications are but a few of the many places where LFSR
and MISR circuits are used.

PracticalPractical
CombinationalCombinational

MultipliersMultipliers

What is a What is a combinationalcombinational
multiplier?multiplier?

• A combinational multiplier circuit is comprised of
multiple shift registers, an adder, and some control
logic.

• A multiply is performed by addition and shifting.

• Typical generic multipliers are slow, often taking
multiple clock cycles to computer a product.

• Computers without dedicated multipliers must
perform a multiply using this method.

Example: 4-bit MultiplyExample: 4-bit Multiply

 1101
 x 0111
 1101

 1101
 1101

 0000

 01011011

2's Complement

HA

FA

FA

FAHA

FA

HA HA

FAFAHA

a0b1a0b3 a0b0a0b2

a1b0a1b1

a2b0a2b1a2b2

a3b0

a1b2

a3b1

a1b3

a3b2

a2b3a3b3

Product Terms
c0c1c2c3c4c5c6c7

HA

FA= Full Add
HA=Half Add

Generic Serial Multiplier Block DiagramGeneric Serial Multiplier Block Diagram

Digital Systems Principals and Applications, Ronald J. Tocci, Prentice Hall
1995, pg 280

So what’s wrong with thisSo what’s wrong with this
type of multiplier?type of multiplier?

• For an N x N generic Multiplier, it takes N clock
cycles to get a product. That’s too slow!

• Inefficient use of hardware.

Types of MultipliersTypes of Multipliers
• Standard Binary Multiplier (ones complement, twos

complement, universal, etc...)

• Re-coded Multipliers (Canonical Signed Digit, Booth, etc…)

• Serial / Parallel Multipliers

• Iterative Cellular Array Multipliers (Wallace, Pezaris,

Baugh-Wooley, etc…)

• ROM based Multiplication Networks (Constant

Coefficient Multipliers, Logarithmic, etc...)

Multiplier ApplicationsMultiplier Applications
• General Purpose Computing

• Digital Signal Processing
– Finite Impulse Response Filters

– Convolution

ROM BasedROM Based
Constant Coefficient MultiplierConstant Coefficient Multiplier

• With some DSP applications, such as FIR filter
generation and convolution, where the coefficients
remain unchanged and high speed is a requirement,
using a look-up table approach to multiplication is quite
common.

• Using the known coefficients, every possible product is
calculated and programmed into a look-up table. (ROM
or RAM)

• The unknown multiplicand (input data) is used as an
address to “look up” the product.

• This method results in very high speed multiplies,
however it requires large amounts of storage space.

ROM BasedROM Based
Constant Coefficient MultiplierConstant Coefficient Multiplier

((contcont.).)
• Uses ROM to generate partial product

• Sum all partial product ROM outputs

ROM
Look - Up Table

0
1k
2k
3k
.
.

15k

ROM
Look - Up Table

0
1k
2k
3k
.
.

15k

A
D
D

16

12

12

0000

0000
16

16

Y[15:0]

4

4

8

x[7:0]

Constant Coefficient Multiplier (KCM)

Practical Combinatorial MultipliersPractical Combinatorial Multipliers

• Generic Shift/Add type multipliers are SLOW!

• People will always be searching for methods of
performing faster multiplies.

• Multipliers are used in many areas.

• General purpose math for PCs and DSP (FIR
filters, Convolution, etc…) applications are just
a few of the places were multipliers are utilized.

ReferencesReferences
• Digital Systems Principals and Applications, Ronald J. Tocci, Prentice

Hall 1995, pg 278-282

• Xilinx Application Note (XAPP 054). Constant Coefficient
Multipliers for XC4000E. http://www.xilinx.com/xapp/xapp054.pdf

• Altera Application Note (AN 82). Highly Optimized 2-D convolvers
in FLEX Devices. http://www.altera.com/document/an/an082_01.pdf

• Computer Arithmetic Principles, Architecture, and Design, Kai
Hwang, John Wiley & Sons, Inc. 1979, pg129-212

ReferencesReferences
• Dr. Perkowski. Design for Testability Techniques (Built-In Self-Test)

presentation.
http://www.ee.pdx.edu/~mperkows/CLASS_TEST_99/BIST.PDF

• Digital Communications Fundamentals and Applications, Bernard
Sklar, Prentice Hall 1988, Pg 290-296, Pg 546-555

• Xilinx Application Note (XAPP 052). Efficient Shift Registers, LFSR
Counters, and Long Pseudo-Random Sequence Generators.
http://www.xilinx.com/xapp/xapp052.pdf

• Sun Microsystems’ sponsored EDAcafe.com website. Chapter 14 -
Test. http://www.dacafe.com/Book/CH14/CH14.htm

SourcesSources
•Yu Hen Hu

•Andrew Iverson, ECE 572

