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ABSTRACT 
In contrast to conventional gates, reversible logic gates have the same number of inputs and ouputs, 
each of their output function is equal to 1 for exactly half its input assignments and their fanout is 
always equal to 1. It is interesting to compare compositional properties of reversible and 
conventional gates.  We present such a comparison based on an exhaustive study of logic circuits. 
 
INTRODUCTION 
Reversible computing was founded when on the basis of thermodynamics of information processing 
it was shown that conventional irreversible circuits unavoidably generate heat because of  losses of 
information during the computation (see, e.g. [1]). It was also indicated that different physical 
phenomena can be exploited to construct reversible circuits avoiding the above mentioned energy 
losses. One of the most attractive new perspectives opened in this way is the possibility to build 
almost energy lossless ultra-small and ultra-fast quantum computers.  
 
A circuit is said to be reversible if there is a one-to-one correspondence between the inputs and the 
outputs (i.e. if there is a distinct output assignment for each distinct input assignment). Thus, the 
number of outputs in a reversible gate or circuit has to be the same as the number of inputs. Output 
functions of binary reversible logic gates equal to 1 for exactly half their input assignments (such 
functions are called balanced. Logic design of reversible circuits is quite different from designing 
conventional irreversible logic circuits. In reversible circuits we have to use at least one gate to 
duplicate a signal. Moreover, for realization of nonbalanced Boolean functions by a reversible 
circuit it is necessary to apply constant signals to some inputs of the circuit (in conventional circuits 
with complex gates using constant signals is useful but not  necessary). Let us call a gate (circuit) 
with n inputs and m outputs (n,m)-gate (-circuit). It was shown [9] that a universal reversible gate 
should have at  least three inputs and outputs and several such gates were proposed [2-10,13-14]. 
However, it would be interesting to know which (3,3)-gates are most efficient, as well as to consider 
relative efficiency of reversible (3,3)-gates in comparison with (3,1)-gates. In the paper the results 
of an exhaustive study of using reversible gates to design (n,n)-circuits implementing Boolean 
functions are described. The number of functions realizable in such circuits is used to evaluate 
approximate efficiency of gates. 
 
BASIC NOTIONS 
Definition 1. A Boolean function f(x1,x2,...,xn) is a subfunction (also the terms cofactor, restriction 
and reduced function are used) of a function g(x1,x2,...,xn) if there exists such a replacement of 
some variables of  g by constants 0 or 1  that  f=g after this replacement. 
 
Definition 2. Two Boolean functions f(x1,x2,...,xn) and g(x1,x2,...,xn) are permutationally-equivalent 
(in short: p-equivalent) if there exists a permutation p of x1,x2,...,xn  such that 

f(p(x1), p(x2),..., p(xn)) = p(x1,x2,...,xn). 
The above defined relation is an equivalence relation and we shall call its equivalence classes by p-
classes. For example, the functions x1+x2, x1+x3, x2+x3 belong to the same p-class. 
 
Below we will use a short notation of Boolean functions and gates. As we are going to present only 
results concerning 3-variable functions the notation is defined for this case. Let 0≤i≤7, ai,bi∈ {0,1}, 
i=4b1+2b2,+b3  and ai=f(b1,b2,b3). Then a function f(x1,x2,x3)  is represented uniquely by an 8-bit 
binary number a7 a6 a5 a4  a3  a2 a1 a0.. To obtain a shorter notation the halves of this sequence, 



namely a7 a6 a5 a4  and a3  a2 a1 a0, are treated as hexadecimal digits in the following way: 0000=0, 
0001=1, ... , 1001=9, 1010=A, 1011=B, 1100=C, 1101=D, 1110=E, 1111=F (2-variable 
subfunctions are represented by single hexagonal digits). Thus, the 3-variable function AND will 
be denoted as 80 and the 3-variable function OR as FE. Similarly, (3,3)-gates will be denoted as 6-
digit hexagonal numbers, where the first, the second and the third pair of digits will describe 
respectively the first, the second and the third output function. 
 
Example 1. The truth table below define a reversible  (3,3)-gate (note that there are 8!=43200 such 
gates corresponding to all permutations of 8 assignments). Capital letters A, B and C denote input 
signals and P, Q and R denote output signals. The short  notation of this gate is  4759CA. 
 

 A   B   C  P   Q   R 
 0    0    0 
 0    0    1 
 0    1    0 
 0    1    1 
 1    0    0 
 1    0    1 
 1    1    0 
 1    1    1 

 1    1    0 
 1    0    1 
 1    0    0 
 0    1    1 
 0    1    0 
 0    0    0 
 1    1    1 
 0    0    1 

 
Definition 3. A subfunction set count SG of a reversible (3,3)-gate G is the cardinality of the set of 
all subfunction p-classes of its three output functions, where only replacements of exactly one 
variable are considereded and the constant subfunction p-classes 0 and F are not taken into 
account. 
 
The notion of a subfunction set is important from the practical point of view because a gate can 
implement all functions belonging to its subfunction p-classes. We do not count the constant 
functions as we assume that to obtain constant signals no gate is needed. On the other hand, 
implementation of 1-variable functions can be useful because fanout is not possible in reversible 
circuits without using a gate. 
 
Example 2. For the gate defined in the example 1 the table below gives possible replacements of 
variables by constants leading to obtaining representatives of all 14 p-classes of nonconstant 2-
variable functions.  
 

p-class Output function Replacement 
1 P= C=1 
2 Q C=1 
3 P B=0 
4 P A=1 
5 P B=1 
6 Q B=1 
7 P A=0 
8 R C=0 
9 Q A=0 
A R A=0 
B P C=0 
C R A=1 
D Q C=0 
E R B=1 



 
An interesting approach to using complex gates in logic circuits consists in construction of the so-
called universal logic modules (although for a long time this field had had no direct impact on 
practice it was revived recently in the context of constructing area efficient FPGAs). A (m,1)-gate 
is universal in n arguments (is ULM-n) if every Boolean function f(x1,x2,...,xn) belongs to one of 
the gate subfunction p-classes. We have established that there are 408 ULM-2 reversible (3,3)-
gates (68 p-classes). One of them was given in Example 1. 
 
EFFICIENCY OF LOGIC GATES 
In the advent of using integrated circuits, it was established that the (3,1)-building block WOS 
implementing  the  function 
 

fWOS = 1⊕ x1⊕ x3 ⊕ x1x2 
 
where ⊕  denote XOR operation (it belongs to the p-class containing 2D, 39, 4B, 59, 63, 65), can be 
used to realize any function of 3 variables with no more than three gates  [12] and with no more 
than two levels [11] (in the lattter case sometimes four gates are needed). 
 
Recently two papers [15,16] were published on studies of cascade connections of reversible (3,3)-
gates. As the number of arbitrary two-gate circuits is much greater than the number of cascade 
circuits and cascades implement only  balanced functions we think that considering arbitrary two-
gate circuits is a better way to measure efficiency of gates. Although magnetic, Josephson junction, 
optic, optoelectronic and quantum reversible gates was considered in many papers the only 
practical circuits built so far are electronic ones. This is why we made a different assumption 
concerning interconnection of gates than the authors of the above mentioned papers: we allow 
permutation of wires (not allowed in quantum gates) but we do not allow inversions (e.g. permitted 
when double wires are used). 
 
The following relatively simple reversible (3,3)-gates have been proposed in the literature (they are 
listed in the chronological order): 
 
G1 – Fredkin gate F0CAAC [9,17] 
G2 – Feynman gate F0CC6A [8] 
G3 – Peres gate 66CC78 [13] 
G4 – Margolus gate CAB8E4 [10] 
G5, G6, G7, G8, G9 – De Vos gates, respectively 714D2B,  8EB2D4, B4C69A  D29CA6, 
ACE2D8 [2-6]. 
 
EXPERIMENTAL RESULTS 
We have ran a program constructing all two-gate circuits made of identical reversible (3,3)-gates: 
- (3,3)-circuits, 
- (4,4)-circuits with one additional input to which only one specific constant signal was applied, 
- (5,5)-circuit with two additional inputs to which two identical constant signals were applied, 
- as in the previous case but with different constant signals. 
Maximal numbers of realizable 3-variable functions realized in the above described cases are 60, 
237, 252 and 256, respectively. As the last case is more interesting than the others (because all 3-
variable functions are realizable) the results presented below correspond to this case. After 
checking all 8! = 40320 (3,3)-gates we have found that most of (3,3)-gates realize all or almost all 
3-variable functions in two-gate circuits. In the table below the first column gives an interval of the 
numbers of the realized functions and the second column gives the number of gates capable to 
realize these numbers of functions: 
 



Number of functions Number of gates 
1-16 1344 
17-32 0 
33-48 0 
49-64 36 
65-80 0 
81-96 372 
97-112 324 
113-128 360 
129-144 48 
145-160 744 
161-176 1128 
177-192 1764 
193-208 4014 
209-224 5418 
225-240 9252 
241-256 15516 

 Total = 40,320 
 
A gate is two-level universal in n arguments if using this gate it is possible to implement every 
function of n variables with a two-level circuit. Among reversible (3,3)-gates there are 288 two-
level universal in 3 arguments. Below we give the list of the representatives of 24 out of 48 p-
classes with the single function score equal to 256 and with the best scores for pairs and triples. 
Note that in all of the below listed gates one output function belongs to the p-class containing fWOS. 
 

Gate Single functions Function pairs Function triples 
2E63A9 256 6580 44841 
5972E1 256 6561 44499 
2D6AA3 256 6527 45513 
2D5CC9 256 6523 46035 
3A4BA9 256 6517 44370 
6378D1 256 6508 44406 
3974E1 256 6505 44163 
596C8D 256 6458 45807 
396A8B 256 6458 44988 
6578B1 256 6440 44070 
4B6CC5 256 6365 42741 
4E65C9 256 6292 41583 
1E5972 256 6374 43758 
2D365C 256 6341 44397 
364E65 256 6311 42981 
2E5663 256 6310 43701 
3A4B56 256 6271 43278 
1E3974 256 6167 42678 
2D95A3 256 6135 42819 
6387D1 256 6114 43095 
4B93C5 256 6114 42384 
598D93 256 6084 43710 
6587B1 256 6057 42744 
398B95 256 5922 42027 



 
For comparison we present below the numbers of functions realized by the gates G1-G9: 
 

G1 G2 G3 G4 G5 G6 G7 G8 G9 
152 61 88 152 82 93 168 168 152

 
As we can see using any of the 24 gates listed in the previous table would lead in most cases to 
smaller circuits. 
 
Now let us compare the average gate count when realizing all 256 3-variable functions with the 
following building blocks: 

 
(3,1)-NAND (or NOR)          4.41 
(3,1)-WOS                             2.04 
best reversible (3,3)-gate        1.75. 

 
Thus, the efficiency of the most flexible reversible (3,3)-gates is better than the best convential 
(3,1)-gates despite of the additional constraints imposed on them such as restriction on their output 
functions to belong to the class of balanced functions and the fanout equal to 1. 
 
Similar calculations  for irreversible (3,3)-gates and for broader class of circuits are in progress and 
will be finished soon (their results can be reported at the IWLS’2000). 
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