QUERVIEW,

SOURCE Life as Darwin theory of random
mutation under selective
pressure
SURPRIZE Utilization for circuit design
APPROACH Partition of search space +

target design style +
Information measures

BENEFIT Clever algorithms for circuit
design + massive parallelism

Darwin Theory (1859)

Eyes, hands, brain,.... -
all of which share
characteristics of

species: they are the
products of the
random mutations and
genetic mixing of
evolution

J. Holland (1975)

... idea was to construct a search algorithm
modeled on the concepts of natural selection
in the biological sciences. The result is a direct
random search procedure called genetic
algorithm

Definition. Genetic algorithm is a
stochastic search algorithm basing on
natural evolution process.

PROBLEM
* How can “creativity” be automated?
* Are engineers necessary to new technology?

RESEARCH

* Biologically inspired evolutionary design
process

» Automation of Logic Synthesis and Logic
Minimization

* “Computer Designed Computers”

Artificial Genetic Evolution

Basic Process of:
-Genetic Algorithms
-Genetic Programming

Creation of Random Population |

Ewvaluate “fitness" for cach
member of Population
epeat for >
Generations
[Reproduction: Seclect "Parents™ |

[Er B ic AeC ination |

e

F

i

IMu(aliun: Genetic Diversity |

Fragment of genetic mixing of
evolution in Holland’s interpretation

Parent 1: Child 1:
1010111001 10101(10010
Parent 2: Child |2:
10011001 1100111001

Nilaniaues

* No presumptions
with respect to the
problem space

» Widely applicable,
also in cases where
no (good) problem * Low development
specific techniques | costs, i.e. costs to
are available adapt to new problem

spaces
* Can be run P

interactively (online | + The solutions have
parameter straightforward
adjustment) interpretation

- Parameter turning is

* No solid ,
the on etical largely based on trial
and error

T

* No guarantee for
finding optimal

 Often solutions within a finite
computationally .

X amount of time (true for
expensive

all global optimization
methods)

T@[Pmi[ﬂ]@ﬂ@w

Population {set of circuits)
Individual (circuit)

Fitness function (contains all
information about the evolving circuit)

Gene (type of gate, inputs and outputs, etc)
Chromosome (coded circuit)

Probabilistic operators: Crossover,
Mutation and Selection

<€ Evolution jo,,

Initialize population
i

Evaluate
3

Select parents

Se

Mutate

" T Lﬁ,, Evaluate

Mechanism of genetic algorithm

Crossover : Selection New
Population Mutation population

| 00[1111 |\ | 000000 H 000000 ‘YW
001111 X:MMM 111011]
[001f111 |7 [111101 {11101

(=]

=

Sp:lce t_)f , The improved
posssollutei:rlirscw space of possible

circuit solutions

Definition. Fitness function is a kind of
objective, or cost, function which contains
all information* about the problem.

In biology, fitness is the number of
offsprings that survive to reproduction.

In genetic algorithm, one must map objective
function to a fitness function

*in our case - all information about the evolving logical network

@mmﬂ@ Fitness
evaluation
Bad circuit Better circuit

1%t generation (Fitness= 0,625) 3™ generation (Fitness= 0,75)

31st
- Do eneration
is the correct
circuit

Three probabilistic operators,

. crossover,

"~ mutation and

selection,

ensure that the best
individuals of population will
survive, and their
information content * is
preserved and combined to
generate even better
offspring

Simple crossover

The crossover operator aims to
make a better individual by
replacing a part of an individual
with a better part of another
individual, i.e. combining
valuable information of th
individuals (parents)

Mutation

The mutation operator changes
certain bit(s) in an individual.

This operator aims to escape from
. search space from which

* individuals cannot escape by
means of only crossover operator,
i.e. this operator introduces new
information into the evolutionary

= process.

Example. The string 000110 becomes 001110 if
mutation occurs at the third bit

Selection

The selection operator chooses

good individuals in a population
according to their fitness values
-~ and the given selection strategy.

-+ This operator aims to increase
. better individuals in the

: population while maintaining
certain diversity.

Example. The elitism strategy chooses
the restricted set of elite individuals

Crossover+Mutation+Selection =
Continuous improvement

N The genetic algorithm tries to
?33 improve the fitness of the
~Z/ { population by combining

774 information * contained in high
fitness chromosomes

The biggest difficulty of using genetic
algorithms is the time which may
sometimes be painfully long

3 genes for AND

1 Code --1 Circuit becomes
Inputs Output ChOI;nosome
J Constant 0 and 1 @— v—;i:>\

2
E - Inputs

gate coding Inverted inputs

Chromosome * (I)utputs
(2001 [3]04] (1]

Gate AND Gate OR

Example Genetic Algsorithm

REPRODUCTION - Selection of Parent Stri

Bit Strings |Population |Fitness |Tournament [New Generation
Selection [(Winners)

1 10011 300 string 4 vs. 2 [string 2

B 00011 300 string 2 vs. 3 [string 3

3 11100 400 string 1 vs. 5 |string 5

l4 10010 200 string 3 vs. 4 [string 3

5 11110 600 string 4 vs. 1 [string 1

Total Fitness - 1800
Average Fitness = 360

CROSSOVER - Genetic Recombination forming Offspring

[New Generation |String Chosen |Mate Crossover|Resulting [Fitness of
(Offspring) [Population |Mate Sting [BitSite [String |Result
string 2 00010 string 3 11100 |4 01100 400
string 3 11100 string 4 10010 |! 11100 400
string 5 11110 string 5 1110 |4 11110 600
string 3 11100 string 4 10010 3 11010 200
string 1 10011 string 4 10010 |2 10010 200

Total Fitness (after Crossover) = 1800
Average Fitness (after Crossover) = 360

Example Genetic Algorithm
Crossover Detail:

String 2 (oo o 1 o]
String 3 (11 1 0 o]
Child 1 (o 1 1 0 o]

and
Child 2 10|

Example Genetic Algorithm

MUTATION - Genetic Diversity Factor in Offspring

Crossover Result Mutation |Gen=1 Fitness
Population Fitness |String Population

01100 400 XXXXX 01100 400
11100 400 XXXXX 11100 400
11110 600 XXXXX 11110 600
10010 200 xx1xx 10110 600
10010 200 XXXXX 10010 200

Total Fitness (after Mutation Operation) = 2200
Average Fitness (after Mutation Operation) = 440

Comparison:
Original Total Fitness = 1800
Original Average Fitness = 360

SCHEMA THEOREM:
Success Theory of GA

Schemata Propagation in Reproduction

Schemata [Pattern |Bijt Population|Schemata Tournament |Winners |S¢
Strings [Selection M
A 1o 1 10011 string 4 vs. 2 |string 2 |S
B [000% |2 00011 string 2 vs. 3 |string 3
3 [ETE) 3 11100 string 1 vs. 5 |string 5 |Sche
3 aD [001 4 10010 string 3 vs. 4 |[string 3 |Sche
Schema B [11% 5 11110 string 4 vs. 1 |string 1

SCHEMA THEOREM:
Success Theory of GA

Schemata Propagation in Crossover

Case [Reproduction [Schemata Ma te Cross [Result Schemata Result
Population [VMembership [String Site S tring Membership [Fitmess

1 00011 Schema A, D 11100 |4 01100 Schema C 400

2 11100 Schema C, E 10010 |1 11100 Schema C,E _ |[400

3 11110 Schema C.E 11110 |4 11110 Schema C,E _ [600

4 11100 Schema C,E 10010 |3 11010 Schema E 200

g 10011 Schema AD 10010 |2 10010 Schema A.D _[200

Schemata Propagation in Mutation

[Case [Crossover Schemata Result |Mutation |Gen=1 Schemata Fitness
Population [Membership |Fimess [Sting |Population |Membership

1 01100 Schema C 400 oo 01100 Schema C 200

B 11100 Schema C.E___|400 oo 11100 Schema C.E__[400

3 11110 Schema C,E___[600 oo 11110 Schema C.E___[600

How Genetic Algorithms Work...

Schema (patterns) contain information about solutions!!

Through the genetic operators, the population’s schemata
collection changes and becomes more refined toward better
solutions.

Goldberg: “Short, low-order, and highly fit schemata are sampled,
recombined, and resampled to form strings of potentially higher
fitness”... “Building Blocks”

Summary of GA Basic Mechanics

Applies an artificial evolutionary process to evolving problem
parameters directly

Parameters are represented by a “flat” bit string, which is a direct
encode/decode of variable fields

[010011100110 100 0]
L | L |

[o
A \ c \
B D

Uses standard Genetic Operators of Reproduction, Crossover, and
Mutation

@

Genetic Programming (GP)

Extension of GA
*Data Structures (software)
*Functions (mathematical & logical operators)
*Variables (terminals)
*Develops New Algorithms Automatically

Standard Genetic Operators: Reproduction,
Crossover, & Mutation

Bit Strings represent “Trees” (data structures) of
different sizes

Most GP research develops new LISP Code

Other Research
in Evolutionary Logic Design...

*Evolutionary Algorithms for Computer Aided Design of Integrated Circuits

«“Evolvable Hardware” (EHW) = Evolutionary Computation + Software-
Reconfigurable Device (FPGA, etc.)
--Online vs. Offline evolution of design
--Bottom-up design approach vs. conventional top-down design

NS

Other Research
in Evolutionary Logic Design...

*Motivation: Gate-count, Complexity, Time-to-Market, Manpower,

$S, ...

*CAD Applications: Synthesis, Placement & Routing, Testing
--2-level AND-OR logic synthesis with <90 variables, now well
solved with conventional CAD Packages/Techniques/Tools

<

*Performance Evaluation: Quality and Speed

Other Research in Evolutionary Logic Design...

Specification
(Truth Table)

Logic Evolutionary Methods:
Synthesis GA/GP, EA, CA, NN

Technology FPGA, PLD, (VHDL),

Mapping Placement/Routing,
Partitioning, Logic
Minimization
. Test Pattern
Testing Generation, Built-in-
Self-Test
IC Design

Current Research in
Evolutionary Logic Design...

*JAPAN
--Robotic Control/Navigation: T. Higuchi, et al., ETL
--Pattern Recognition Systems; Data Compression: M. Iwata, et al., ETL
--Hardware Evolution at Function Level; Adaptive Equalization of Digital
Communication Channels; On-line Adaptive Neural Networks: M. Murakawa, et
al., U. of Tokyo
--ATM Cell Scheduling by Function Level EHW: W. Liu, et al., NEDO
--Adaptive Architecture Methodology with Hardware Description Language: H.
Hemmi, et al., ATR
--CAM (Attificial) BRAIN (evolve NN w/GA): H. de Garis, et al., ATR
UK.
--Robotic Control; Tone Discriminator: A. Thompson, et al., U. of Sussex
--Evolving Robot Morphology: H. Lund, U. of Edinburgh

Current Research in Evolutionary Logic Design...

+ SWITZERLAND
-- Self-Reproduction & Repair of Hardware: D. Mange, et al., Swiss
Federal Institute of Technology, Lausanne
--Phylogenetic, Ontogenetic and Epigenetic (POE) Model; “Firefly
Machine” for on-line CA: M. Sipper, et al., Swiss Federal Institute
of Technology, Lausanne
-- “Bio-dule” (Artificial Cell) Embryonic Electronics, Self-
structuring VLSI, Fault Tolerant Hardware: P. Marchal, et al.,
Centre Suisse d’Electronique et de Microtechnique

* GERMANY
--Test Pattern Generation; Learning Heuristics; FPRM Logic Logic
Minimization: R. Drechsler, et al., U. of Freiburg
--VLSI Routing: N. Gockel, et al., U. of Freiburg

* US.A.
--Analog Circuit Design: J. Koza, et al., Stanford University

Growing Digital Circuits

A PP

p \¥/ N
25

2|

7
et prd

7

In the Pacific Northwest (Portland,
Oregon, USA), we live in the “Silicon
Forest” and now we can grow a “forest”
in the silicon.

GP Logic Synthesis

This research applies GP to Logic Synthesis

Given: Truth table

Problem: Evolve a logic expression which specifies or
“covers” the i/0’s of the truth table

Output
|
|
OR
/ \
XOR AND
/
NORNOR B C
Al Al
BC A B
(OR (XOR (NOR B C)(NOR A B))(AND B C)) or [I(B +C)® (A +B)] + (BC)

Genetic Programming Code

Public Domain

General Evolutionary Workhorse

Reproduction, Crossover, & Mutation

Originally written for “Artificial Ant” and Lawnmower Problems

Extensive Modification/Customization for Logic Synthesis Problem

Allows Other Researchers to Duplicate Results

Available via anonymous ftp to: ftp.cc.utexas.edu in the pub/genetic-
programming/code directory

‘Written by: Adam Fraser, Ph.D. Student, Dept. of Electronic & Electrical

Engineering, Cybernetics Research Institute, University of Salford, Salford,

UK.

Comparison Example:
Conventional Vs. GP Synthesized Logic

Conventional Logic - SOP Form
f(a,b,c,d) = 2(0,4,5,7,8,9,13,15)

)
<~ K-map for f(a,b,c,d) = £(0,4,5,7.8.9,13,15)

CD 00 01 1M1 10

O
wan
LA

10 1 1

F=a'c'd'+ bd + ab'c'

Conventional Logic Design - SOP Form

Tree diagram

[f(a,b,c.d) = E(0,4,5,7,8,9,13,15)]

f(ab,c.d) =
£(04,57,89,13,15)

GP Synthesized Logic

f(a,b,c,d) = £(0,4,5,7,8,9,13,15)

Synthesized Equation:

term B) (not term D))) term C)))
Fitness
Structural Complexity : 16

| ((or (and term_D term B) (nor (and (xor term_A term_D) (xor (nand term_B

Tree diagram

‘ f(ab.c.d) = E(0,4,5,7,8,9,13,15) ‘

GP Synthesized Logic

f(a,b,c,d) = £(0,4,5,7,8,9,13,15)

Synthesized Equation:

((or (and term_D term_B)) (nor (and (xor term_A term_D) (xor (nand term_B
term_B) (not term_D))) term C)))

Fitness 11584

Structural Complexity : 16

GP Synthesized Logic

Schematic diagram

| f(ab,cd)=
A E(0,4,5,7,8,9,13,15)
D C
D
B
B

Unconventional Design = unusual choice of gates

Logic Synthesis Experiments
Types of Logic Gates
Population Sizes
Mutation Probability Rates

[Objective: To determine optimum general parameters for GP-Logic Synthesis
roblems.
Terminal Set: 4 Variables: A,B.C.D; 5 Variables: A,B.C,D.E; 6 Variables: A,B.C.D,E.F; 7
Variables: A,B.C.D.E.F.G
Population Size: 1000-5000

Mutation Prob. Rate: [0, 1/10000,
1/1000, 1/100,

1/10, 1
Function Set: Case 1: and, or, not
(all are 2-input (Case 2: nand, not
gates,
[except the 1-input [Case 3: and, or, not, nand
NOT gate) Case 4: and, or, not, nand, nor
Case 5: and, nor
(Case 6: and, or, not, xor
Case 7: and, or, not, xor, nand, nor
Case 8: nand
Fitness Measure: +100 points for each correct truth-table output,
-1 point for each logic gate and terminal in solution (for optimization of size)
[Criterion: Goal: to achieve fitness as close as possible to 2”n

Perfect fitness is (2*n) - number of gates or terminals,
(where n is the number of input variables)
[Termination: 50 generations

Empirical Experimental Results

4 Variable Functions
Test 1: f(a,b,c,d) = X(0,4,5,7,8,9,13,15)
Test 2: f(a,b,c,d) = X(4,6,7,15)

5 Variable Functions
Test 3: f(a,b,c,d,e) = X(5,6,9,10)
Test 4: f(a,b,c,d,e) =X(1,2,6,7,9,13,14,15,17,22,23,25,29,30,31)

6 Variable Functions
Test 5: fla,b,c,d,e,d) = 2(1,7,11,21,30)
Test 6: f(a,b,c,d,e,f) =2(10,12,14,20,21,22,25,33,36,45,55)

7 Variable Functions
Test 7: f(a,b,c,d,e,f,g) = £(20,28,52,60)
Test 8: f(a,b,c,d,e,f,g) = £(20,28,38,39,52,60,102,103,127)

Empirical Experimental Results

Types of Logic Gates

[Population Size: |1000 [Test[Correct/ [Cover |Gates/Terms in Function
Mmmmh V1000 Total %ogzm (;alis csasz. .
1 [16/16 _ |100.0% [X |X [X [19]19]29]16 |X |
F”‘"’J‘“S“ Case I: and, ar, nt 216716 [100.0%[11]18[12[15[13[10[10 [19
(all are 2-input | Case 2: nand, not 3 (32732 [100.0% [27|X [29]X |X [18]9 |X
gates, exaept the [Case 3: and, e, not, nand 4 [31732 [96.9% |X [17[17]20]X [14[13 [X
Linput NOT) [Case 4: and er, not, nand, nor 5 [62/64 [96.9% [X X |X |X [X |X ['16]87
Case 5t and, ner 6 [58/64 [90.6% |X |X [23]X |X [26]X X

Case 6 ancl r, ot ser 7 [128/128 [100.0%[X [X [T0]X |X |X [13 |X
iy S 8 [126/128 [98.4% |X [X X [X [X [X [X |63

[Case 7: and, ar, not, xor, nand, nor
Case 8: nand

[Fitness Measure: [-+100 for each correct minterm

-1 for each logic gatefterminal
Criterion: Fitness is ((2'n) - gates/terminals)*100
Wheren is the nunber of input variables
Termination: 50 generations

*61/64 minterms correct
X = Only best function coverage results listed in table.

Empirical Experimental Results

Population Size

[Population Size:] 1000, [Test[Cormrectl [Cover [Population Sizes:
2000, Total
3000, i 1000 2000 3000 4000 5000

32/32 1000% X__[X__[31_[30_[13

T 969% X _|X_[18_[19 X

M“’“"" 11000 6 59/64 @22% XX X _|X_|27

l.mmm [T P e ——— 8 [124/128 |96.9% X X X |21
X= Only best coverage resuls listed in able

£
“I

x

(all are 2-input

gates, except the

T-input NOT)

Fitness Measure: | +100 for each correct minterm “Future 1mpmvemem
-1 for each logic gate/terminal

Criterion: [Fitness is ((2'n) - gates/terminals) *100

Wheren is the number of input variables
[Termination: |50 generations

-

More Logic Synthesis Experiments...

Don’t Cares vs. Function Coverage

[Experiments:

1. 9Sym*

2. Majority*

3. 6 Variable Function,
Test 6: f(a,b,c,d,e,f) =
%(10,12,14,20,21,22,25,33,
36,45,55)

(Objective: I To investigate the training set size necessary for function leaming
[This characterizes the learming rethods immurity (o roise.

[Population Size: 1000

(Mitation 1/1000

Protebility

Rate:

[Function Set: /AND, OR, NOT, XORNAND, NOR

(al 21t grtes,

lexcept the 1-input

INOT gite)

[Fitross Mo 7100 poits for each oormedt ruthabie ot
-1 point for each logi d terminal i thesized
(for optirrization of structural conplexity)

| Criterion: (Fitness is ((2'n) - number of gates/tenminals)
|(where niis the number of input variables)

Test Conditions: | Training Sets (portions of original function) from0-100%/60f total
truth table, in S%oincrenents

(Termination: 100 Generatiors.

Empirical Experimental Results

Don’t Cares vs. Function Coverage

Test

Coverage of Complete Benchmark

0

[Percent don't cares

10 20 30 40 50 60 70 80 90

100

Osym [87%0|89%0| 86%0| 85%0| 84%6|84%0[86%0(85%0| 81%0J69%| 50%

[Maj. [97%]97%|91%|88%0|88%|81%(81%|81%|81%|81%]41%

Test 6[86%0|84%o| 81%0| 81%|81%|81%069%0|44%0|44%0|47%0| 55%

Results: Generally, while missing ~80% of the data for a
training set, the GP-Logic Synthesis achieved synthesis of ~80%

(correct) total function coverage. In other words, given a very
small portion of a data file, the GP-Logic Synthesis can
synthesize the logic with about an 80% accuracy.

Empirical Experimental Results

Coverage of Complete

Benchmark

9cym: Training Set Sze v. Complete Function Coverage

100002

P S = i = SRR ST S

000%

H000%

000%

Missing Portion of Complete Trining Set

——8— Coverage of Complete Benchmark

& SetSize ve. Complete Fune

Empirical Experimental Results

fabye.die.d) = E(10,12,14,2021,22,25,33,36,45,55): Training Sct Size vs.
Complete Function Coverage

z_09
28 o t—t=s ——
£ 07 BN
S % o6 N R
SEos S e
%% o4
£% 03
Z%2 02
S
0 |
< > 2

Result Summary

Types of Logic Gates: _'
«Large Gate Selection (AND, OR, NOT, XOR, NAND, NOR)
*The universal gate NAND (alone), sometimes showed good results

Population Sizes: g
«Improved coverage with larger populations
*Theorized that larger populations increase the total pool of genetic diversity,
increasing available traits and characteristics

*But, larger populations slow the rate of evolution, by increasing necessary
computations

Mutation Rates:
*Small mutation rates usually introduce an appropriate amount of diversity not
already available in the population
*Mutation Rates must be moderate:
-Too small: no diversity available as the evolutionary process converges
-Too big: unbounded diversity creates a chaotic environment

Result Summary

Don’t Cares versus Function Coverage:

*Observed that only small training sets are necessary for function recognition
Experimental Results: All tests conducted showed >80% function
coverage achieved with training sets missing <80%, 90%, and 55% of
their complete truth tables (9Sym, Majority, and “Test 6” 6-variable
function).

*Results may be biased by the amount of “pattern-ness” present in the test

functions, but natural functions usually contain a high degree of pattern.

*Need more experimental data.

ate-Level Synthesis - Scalal
*Necessary to understand and perfect research in early stage, with small circuit
designs, i.e. GP non-convergence problem
«Larger circuit designs will naturally require “gate modules”,
i.e. (Adder, Multiplexor, etc.) "

\

Future GP-Logic Synthesis Research...

Use Circuit Modules (Adders, Comparators,
Multiplexors, etc.) as “functions”, (Automatically
Defined Functions)

Create Custom Gate Modules

Apply research to larger functions/designs and
Standard Benchmarks

System Design - Computer Architectures

Reduce Synthesis Error!

Goal: 100% Synthesized Function Design Coverage
Future Design Tool

[X _4

New
approach

The search time depends
@] considerably on the size of the
@ hypothesis space.

difficult to find the optimal circuit
in a reasonable time (Sometimes
run time for evolving simple
network requires dozens of hours)

ﬁ W@ﬁi@ﬂﬂ A large hypothesis space makes it
ol

Task formulation

Synthesize a logical network in a given design
style without no special software to implement a
design style.

circuit search space
and seek circuit solutie

Decomposed 2-bit adder

Good news: Style

We can
partition circuit
search space

2-bit adder was evolved independently as two
sub-circuits C, and C, .To merge these “pieces”
we need a multiplexer - MUX

o
@@D@ of scanning window

Scanning window
over given design
style

The space of

possible
circuit solutions

MxN

—Number of \
levels ~Number of

Example. G, over the library of cells ™"
L={AND,OR} can be considered as “a guide” to
design M-level, M €{2,3,4,5}, networks under
different scenarios

ol

Scenario 1

Style G,,,
| ., (invalid
. D7 }Dﬁ?f circutt,

Scenario of
evolutionary design

(good

Style Gs,, |

solution)

B] o Style G, X1 X;YoYy
o :%f (non optimal| 3114
ore, | circuit) 1o1o
vorx, | | 1101
M :%D—% Over library
={AND, NOT}
m@ﬂﬁﬂ , .
@gﬂ EvoDesign against SIS
@ﬁ[@ (gate/time)

Test EvoDesign SIS [Berkeley,1994]
sao2 165/ 120 sec 203/0.15 sec
rd53 16 / 57sec 34/0.1 sec
life 34 /41 sec 138/0.2 sec
misex1 61/49 sec 155/0.4 sec
Total 276/ 267 sec 530/ 0.85 sec

)

Run time is EFFECT 2

terrible !!! times

Generalization for 3-valued
2-digit multiplier

sub-circuits - 7
gates - 73
#MUX - 3

Run time: 249 min

EvoDesign for synthesis ternary
and quaternary 2-digit multipliers

Test Gate Time

2mult-3 73 gates +3 MUXs 249 min
2mult-4 220 gates+5 MUXs 148 min

Observation. When parallel and independent
processing of network space, the different target
design styles can be used for each subspace

@@@gi Quaternary circuits

(gate/time)
Test Direct Parallel
monks1tr 6 /3 hours 710.3 hours
monks1te 5/4 hours 711,6 hours
monks3tr - 18 /6,1 hours

The maximal time for
processing of one subspace

E@ﬁ
@@E@@?f target design style

J Library of cells L={AND,OR, EXOR,
NOT, NAND, NOR}

J Number of levels

] Permissible interconnections
between cells,

J Types of gate in each level

Design style:

END-OR-EXOR 3-level
network with a single-
output EXOR-gate

EvoDesign against
Sasao method

Sasao method @
EvoDesign algorithm

(I) Population size - 60 (ii) i ber of g i -10¢

(iii) Crossover - 0.7 (iv) Level back - 3 (v) Tournament selection and
- discriminator is 2 and 90%

' . Mmassively

2 @Pparallel circuit design
do Assumption.
I Each subspace
Initial R of network

logic
unction

solutions can
be searched
independently
and
simultaneously
<« with a different

Partitioning of the circuit space

Guzns

l Parallel 1
[——— Guins Windows G i
Evolved circuit Design aqd target
style design style
Combin sub

uits
Benefit: massive parallelism

If genetic information
processing is fo extract
valuable information from

genetic information, let us use
Shannon information theory
to measure evolutionary
process of circuit design

Evolutionary circuit

Target Correct
design circuit

H(f|Net,) H(fiNey=0

}tyle::.a‘ - solution

and information streams

Cmssoverpmbabiliy

Mutation pwbability

Size ofpopulation

given current function Net
Po1°10g; (Po1/ P1) - Py1-10G; (P11/ Py)

Example 2-digit ternary adder:

12610th generation H(fiNet,,5,0)

Entropy of fitness function

Definition. Entropy based fitness function is
the conditional entropy of a target function f

H(fINet) = - py,°10g; (Poo/ Po) - P1o°109; (P1o/ Po) -

0th generation H(f|Net;) = 1.585;
380th generation H(flNet;5;) = 0.853;

=0;

10 7100

e of 21119971
Miller et al.[1997]|

Comparison

a0 si0

Num berofgeneration

§voDesign

Z

Fimess fom alized)
:

aporitm M ers7] - {= =EVODesin

—L _BVODesbn2

<

»

< — | <
Invalid circuits Correct

. L
circuits

Information capacity
of scanning window

Circuit level
1 2

Information | Information

OUT:

—

Information from the Informat'iorf Inform.ati'on Evolved circuit
space of possible capacity: | capacity: in target
circuit solutions Gate 3 Gate 4 design style

| Seed ot
& Seanning 2

scanning

conclufing RENTanks

* An extension of the evolutionary multi-level network
synthesis due to parallel (and flexible) window-based
scanning of the subspaces of possible network
solutions with target design style

Evolutionary network design becomes more
attractive, if the concept of a given design style is
realized.

— In this case designer really becomes an expert and needs no
special software.

+ B-decomposition of the network search space is
more preferable, because it does not require any
multiplexers to merge a network from subnetworks.

NON ES@DW@@] @E@@U@m

— Can evolutionary
computation be of practical
interest for CAD Community?

— In which applications
evolutionary computation can
be an efficient support of
traditional techniques?

References

Dill, Karen M. Growing Digital Circuits: Logic Synthesis and Minimization with Genetic
Operators. Master of Science Thesis. Department of Electrical and Computer Engineering,
Oregon State University, June 1997.

Drechsler, Rolf. “Evolutionary Algorithms for Computer-Aided Design of Integrated Circuits
Tutorial”. Genetic Programming 1997 Conference, Stanford University, Sunday, July 13,
1997 -- 1:00-3:15 PM.

Goldberg, David. E. Genetic Algorithms in Search, Optimization, & Machine Learning. New
York: Addison-Wesley Publishing Company, Inc. 1989.

Higuchi, Tetsuya. “Evolvable Hardware Tutorial”. Genetic Programming 1997 Conference,
Stanford University, Sunday, July 13, 1997 -- 9:15-11:30 AM.

Koza, John. Genetic Programming: On the Programming of Computers by Means of Natural
Selection. Cambridge, Masachusetts: The MIT Press, 1992.

Koza, John. Genetic Programming I1: A ic Discovery of Programs. Cambridge,
Massachusetts: The MIT Press, 1994.

Sipper, Moshe, Eduardo Sanchez, Daniel Mange, Marco Tomassini, Andres Perez-Uribe, and
Andre Stauffer. “A P ic, O ic, and Epi ic View of Bio-Inspired
Hardware Systems”. IEEE Tr i on E it y Ci i Vol. 1, Number 1
(April 1997), pp. 83-97.

Sources

Karen M. Dill
James H. Herzog
Marek A. Perkowski

T.Luba*, S.Yanushkevich, M.Opoka,
C.Moraga#, V.Shmerko

*Warsaw University of Technology, Warsaw, Poland
'Dortmund University, Germany
Technical University, Szczecin, Poland

