
Vlad

1

SOURCE Life as Darwin theory of random
mutation under selective

pressure

SURPRIZE Utilization for circuit design

APPROACH Partition of search space +
target design style +

Information measures

BENEFIT Clever algorithms for circuit
design + massive parallelism

Eyes, hands, brain,.... -
all of which share
characteristics of

species: they are the
products of the

random mutations and
genetic mixing of

evolution

Darwin Theory (1859)

Vlad

2

... idea was to construct a search algorithm
modeled on the concepts of natural selection
in the biological sciences. The result is a direct
random search procedure called genetic
algorithm

Definition. Genetic algorithm is a
stochastic search algorithm basing on
natural evolution process.

PROBLEM

• How can “creativity” be automated?

• Are engineers necessary to new technology?

RESEARCH

• Biologically inspired evolutionary design
process

• Automation of Logic Synthesis and Logic
Minimization

• “Computer Designed Computers”

Artificial Genetic Evolution
Basic Process of:
-Genetic Algorithms
-Genetic Programming

Vlad

3

Fragment of genetic mixing of
evolution in Holland’s interpretation

 Parent 1:Parent 1:Parent 1:Parent 1: Child 1:Child 1:Child 1:Child 1:

1 0 1 0 1 1 1 0 0 1 1 0 1 0 1 1 0 0 1 0

Parent 2:Parent 2:Parent 2:Parent 2: Child 2:Child 2:Child 2:Child 2:

 1 1 0 0 1 1 0 0 1 0 1 1 0 0 1 1 1 0 0 1

• No presumptions
with respect to the
problem space

• Low development
costs, i.e. costs to
adapt to new problem
spaces

• The solutions have
straightforward
interpretation

• Widely applicable,
also in cases where
no (good) problem
specific techniques
are available

• Can be run
interactively (online
parameter
adjustment)

• Parameter turning is
largely based on trial
and error

• No guarantee for
finding optimal
solutions within a finite
amount of time (true for
all global optimization
methods)

• Often
computationally
expensive

• No solid
theoretical
basis (yet)

Vlad

4

Population (set of circuits)

Individual (circuit)

Fitness function (contains all
information about the evolving circuit)

Gene (type of gate, inputs and outputs, etc)

Chromosome (coded circuit)

Probabilistic operators: Crossover,
Mutation and Selection

Initialize population

Evaluate

Select parents

Realize
crossover

Mutate
Evaluate

Select

(Terminate)

Mechanism of genetic algorithm

000000

000000

111011

010111

00 1111

00 1111

001 111

001 111

Population
New

population
000000

111111

010111

111101

000000

111011

010111

111101

Crossover Mutation Selection

Space of
possible circuit

solutions

The improved
space of possible
circuit solutions

Vlad

5

Definition.Definition.Definition.Definition. Fitness function is a kind of

objective, or cost, function which contains
all informationall informationall informationall information**** about the problem.

In biology, fitness is the number of
offsprings that survive to reproduction.

In genetic algorithm, one must map objective

function to a fitness function

* in our case - all information about the evolving logical network

1st generation (Fitness= 0,625)
~x1

~x2

0

x2

~x0

y

MS

MS

MS

3rd generation (Fitness= 0,75)
x0

x2

~x2

x2

y

MS

17th generation (Fitness= 0,875)
~x2

~x1

x1

x2

x0

1

y

MS

MS

31st generation (Fitness= 1)
~x2

~x1

x1

x0

1

y
MS

MS

MS

FitnessFitnessFitnessFitness
evaluationevaluationevaluationevaluation

31st

 generation

 is the correct

circuit

Bad circuit Better circuit

Better Best circuit

Three probabilistic operators,
crossover,

mutation and

selection,

ensure that the best
individuals of population will
survive, and their
information content * is
preserved and combined to
generate even better
offspring

Vlad

6

Simple crossover
The crossover operator aims to
make a better individual by
replacing a part of an individual
with a better part of another
individual, i.e. combining
valuable information of the
individuals (parents)

Mutation
The mutation operator changes
certain bit(s) in an individual.

This operator aims to escape from
search space from which
individuals cannot escape by
means of only crossover operator,
i.e. this operator introduces new
information into the evolutionary
process.

Example.Example.Example.Example. The string 000110 becomes 001110 if
mutation occurs at the third bit

Selection
The selection operator chooses
good individuals in a population
according to their fitness values
and the given selection strategy.

This operator aims to increase
better individuals in the
population while maintaining
certain diversity.

Example.Example.Example.Example. The elitism strategy chooses
the restricted set of elite individuals

Vlad

7

Crossover+Mutation+Selection =

Continuous improvement

The genetic algorithm tries to
improve the fitness of the
population by combining
information * contained in high
fitness chromosomes

The biggest difficulty of using genetic
algorithms is the time which may
sometimes be painfully long

Circuit becomes
chromosomeOutput

 Inputs

3 genes for AND
gate coding

1 2 -1

1

2

Code --1

5

6

7

8

9

10

0

1

x 1

x 2

x 1

x 2

11

12

1 2 -1 3 4 -5 11 12

ChromosomeChromosomeChromosomeChromosome

Gate AND Gate OR

Outputs

Constant 0 and 1

Inputs

 Inverted inputs

1

2

3

4

Example Genetic Algorithm
REPRODUCTION - Selection of Parent Strings

B it Strings Population Fitness Tournament N ew G eneration
Selection (W inners)

1 1OO 11 3OO string 4 vs. 2 string 2
2 O OO 11 3OO string 2 vs. 3 string 3
3 111OO 4OO string 1 vs. 5 string 5
4 1OO 1O 2OO string 3 vs. 4 string 3
5 1111O 6OO string 4 vs. 1 string 1

To tal Fitness = 1800
Average Fitness = 360

CROSSOVER - Genetic Recombination forming Offspring

New Generation String Chos en Mate Cros s over Res ulting Fitnes s o f

(Offspring) Population Mate String Bit Site String Res ult

string 2 OOO1O string 3 111OO 4 O11OO 4OO

string 3 111OO string 4 1OO1O 1 111OO 4OO

string 5 1111O string 5 1111O 4 1111O 6OO

string 3 111OO string 4 1OO1O 3 11O1O 2OO

string 1 1OO11 string 4 1OO1O 2 1OO1O 2OO

Total Fitness (after Crossover) = 1800
Average Fitness (after Crossover) = 360

Vlad

8

Example Genetic Algorithm
Crossover Detail:

0 10 0 0

1 01 1 0

0 01 1 0

and

1 10 0 0

Child 1

Child 2

String 2

String 3

Example Genetic Algorithm
MUTATION - Genetic Diversity Factor in Offspring

Cro s s o ve r Re s ult Mutatio n Ge n=1 Fitne s s
Po pulatio n Fitne s s S tring Po pulatio n

O11OO 4OO xxxxx O11OO 4OO
111OO 4OO xxxxx 111OO 4OO
1111O 6OO xxxxx 1111O 6OO
1OO1O 2OO xx1xx 1O11O 6OO
1OO1O 2OO xxxxx 1OO1O 2OO

Total Fitness (after Mutation Operation) = 2200
Average Fitness (after Mutation Operation) = 440

Comparison:
Original Total Fitness = 1800
Original Average Fitness = 360

SCHEMA THEOREM:
Success Theory of GA

Schem ata Propagation in R eproduction
S c h e m a ta P a tte rn B it P opulation S c h e m a ta T ournam ent W inners S c h e m a ta

 Strings Me m b e rs hip Selection Me m b e rs hip

S che m a A 1O*** 1 1O O 11 S che m a A, D string 4 vs. 2 string 2 S che m a B, D

S che m a B OO O** 2 O O O 11 S che m a B, D string 2 vs. 3 string 3 S che m a C, E

S che m a C *11*O 3 111O O S che m a C, E string 1 vs. 5 string 5 S che m a C, E

S che m a D *OO1* 4 1O O 1O S che m a A, D string 3 vs. 4 string 3 S che m a C, E

S che m a E 11*** 5 1111O S che m a C, E string 4 vs. 1 string 1 S che m a A, D

Vlad

9

SCHEMA THEOREM:
Success Theory of GA

Schemata Propagation in Crossover
Ca s e Reproduction S c he ma ta Ma te Cro s s Re s ult S c he ma ta Re s ult

 Population Me mbe rs hip S tring S ite S tring Me mbe rs hip Fitne s s

1 OOO11 Sche ma A, D 111OO 4 O11OO Sche ma C 4OO

2 111OO Sche ma C, E 1OO1O 1 111OO Sche ma C, E 4OO

3 1111O Sche ma C, E 1111O 4 1111O Sche ma C, E 6OO

4 111OO Sche ma C, E 1OO1O 3 11O1O Sche ma E 2OO

5 1OO11 Sche ma A, D 1OO1O 2 1OO1O Sche ma A, D 2OO

Schemata Propagation in Mutation
Ca s e Cro s s o ve r S c he ma ta Re s ult Muta tio n Ge n=1 S c he ma ta Fitne s s
 Po pula tio n Me mbe rs hip Fitne s s S tring Po pula tio n Me mbe rs hip

1 O11OO Sche ma C 4OO xxxxx O11OO Sche ma C 4OO
2 111OO Sche ma C, E 4OO xxxxx 111OO Sche ma C, E 4OO
3 1111O Sche ma C, E 6OO xxxxx 1111O Sche ma C, E 6OO

How Genetic Algorithms Work...

Schema (patterns) contain information about solutions!!

Through the genetic operators, the population’s schemata
collection changes and becomes more refined toward better
solutions.

Goldberg: “Short, low-order, and highly fit schemata are sampled,
recombined, and resampled to form strings of potentially higher
fitness”… “Building Blocks”

Summary of GA Basic Mechanics
Applies an artificial evolutionary process to evolving problem

parameters directly

Parameters are represented by a “flat” bit string, which is a direct
encode/decode of variable fields

Uses standard Genetic Operators of Reproduction, Crossover, and
Mutation

0 1 0 0 00 0 0 0 01 1 1 1 1 1

A

B

C

D

Vlad

10

Genetic Programming (GP)
Extension of GA

•Data Structures (software)
•Functions (mathematical & logical operators)
•Variables (terminals)
•Develops New Algorithms Automatically

Standard Genetic Operators: Reproduction,
Crossover, & Mutation

Bit Strings represent “Trees” (data structures) of
different sizes

Most GP research develops new LISP Code

Other Research
in Evolutionary Logic Design...

•Evolutionary Algorithms for Computer Aided Design of Integrated Circuits

•“Evolvable Hardware” (EHW) = Evolutionary Computation + Software-
Reconfigurable Device (FPGA, etc.)

--Online vs. Offline evolution of design
--Bottom-up design approach vs. conventional top-down design

Other Research
in Evolutionary Logic Design...

•Motivation: Gate-count, Complexity, Time-to-Market, Manpower,
$$, …

•CAD Applications: Synthesis, Placement & Routing, Testing
--2-level AND-OR logic synthesis with <90 variables, now well
solved with conventional CAD Packages/Techniques/Tools

•Performance Evaluation: Quality and Speed

Vlad

11

Other Research in Evolutionary Logic Design...

Technology
Mapping

Logic
Synthesis

Specification
(Truth Table)

Testing

IC Design

Evolutionary Methods:
GA/GP, EA, CA, NN

FPGA, PLD, (VHDL),
Placement/Routing,
Partitioning, Logic

Minimization

Test Pattern
Generation, Built-in-

Self-Test

Current Research in
Evolutionary Logic Design...

• JAPAN
--Robotic Control/Navigation: T. Higuchi, et al., ETL
--Pattern Recognition Systems; Data Compression: M. Iwata, et al., ETL
--Hardware Evolution at Function Level; Adaptive Equalization of Digital
Communication Channels; On-line Adaptive Neural Networks: M. Murakawa, et
al., U. of Tokyo
--ATM Cell Scheduling by Function Level EHW: W. Liu, et al., NEDO
--Adaptive Architecture Methodology with Hardware Description Language: H.
Hemmi, et al., ATR
--CAM (Artificial) BRAIN (evolve NN w/GA): H. de Garis, et al., ATR

• U.K.
--Robotic Control; Tone Discriminator: A. Thompson, et al., U. of Sussex
--Evolving Robot Morphology: H. Lund, U. of Edinburgh

Current Research in Evolutionary Logic Design...
• SWITZERLAND

-- Self-Reproduction & Repair of Hardware: D. Mange, et al., Swiss
Federal Institute of Technology, Lausanne
--Phylogenetic, Ontogenetic and Epigenetic (POE) Model; “Firefly
Machine” for on-line CA: M. Sipper, et al., Swiss Federal Institute
of Technology, Lausanne
-- “Bio-dule” (Artificial Cell) Embryonic Electronics, Self-
structuring VLSI, Fault Tolerant Hardware: P. Marchal, et al.,
Centre Suisse d’Electronique et de Microtechnique

• GERMANY
--Test Pattern Generation; Learning Heuristics; FPRM Logic Logic
Minimization: R. Drechsler, et al., U. of Freiburg
--VLSI Routing: N. Gockel, et al., U. of Freiburg

• U.S.A.
--Analog Circuit Design: J. Koza, et al., Stanford University

Vlad

12

Growing Digital Circuits

In the Pacific Northwest (Portland,
Oregon, USA), we live in the “Silicon
Forest” and now we can grow a “forest”
in the silicon.

GP Logic Synthesis
This research applies GP to Logic Synthesis

O u tp u t
|
|

O R
/ \

X O R A N D
/ \ / \

N O R N O R B C
/\ /\

B C A B

(O R (X O R (N O R B C)(N O R A B)) (A N D B C)) o r [!(B + C) ⊕ !(A + B)] + (B C)

Given: Truth table

Problem: Evolve a logic expression which specifies or
“covers” the i/o’s of the truth table

Genetic Programming Code

Public Domain

General Evolutionary Workhorse

Reproduction, Crossover, & Mutation
Originally written for “Artificial Ant” and Lawnmower Problems

Extensive Modification/Customization for Logic Synthesis Problem

Allows Other Researchers to Duplicate Results

Available via anonymous ftp to: ftp.cc.utexas.edu in the pub/genetic-
programming/code directory

Written by: Adam Fraser, Ph.D. Student, Dept. of Electronic & Electrical
Engineering, Cybernetics Research Institute, University of Salford, Salford,
U.K.

Vlad

13

Comparison Example:
Conventional Vs. GP Synthesized Logic

Conventional Logic - SOP Form
f(a,b,c,d) = ΣΣΣΣ (0,4,5,7,8,9,13,15)

K-map for f(a,b,c,d) = Σ(0,4,5,7,8,9,13,15)

AB
CD

00

01

11

10

00 01 11 10

1

11

11

1

1

1

F = a'c'd' + bd + ab'c'

Conventional Logic Design - SOP Form

Tree diagram
f(a,b,c,d) = E(0,4,5,7,8,9,13,15)

OR

AND

D

NOTAND

OR

ANDAND

DBAAND NOT NOT

CA
NOT NOT

CB

Schematic diagram (2-input gates)

D

C

A

A
C

B
D

B

f(a,b,c,d) =
E(0,4,5,7,8,9,13,15)

GP Synthesized Logic
f(a,b,c,d) = Σ(0,4,5,7,8,9,13,15)

Synthesized Equation:
((or (and term_D term_B) (nor (and (xor term_A term_D) (xor (nand term_B
term_B) (not term_D))) term_C)))
Fitness : 1584
Structural Complexity : 16

Tree diagram

f(a,b,c,d) = E(0,4,5,7,8,9,13,15)

OR

NOR

AND

XOR XOR

NAND

AND

NOT

A D

B B D

C D B

Vlad

14

GP Synthesized Logic

f(a,b,c,d) = Σ(0,4,5,7,8,9,13,15)

Synthesized Equation:
((or (and term_D term_B) (nor (and (xor term_A term_D) (xor (nand term_B
term_B) (not term_D))) term_C)))
Fitness : 1584
Structural Complexity : 16

GP Synthesized Logic

Unconventional Design = unusual choice of gates

Schematic diagram
B

D
C

A

D

B

B

D

f(a,b,c,d) =
E(0,4,5,7,8,9,13,15)

Logic Synthesis Experiments
Types of Logic Gates
Population Sizes
Mutation Probability Rates

Objective: To determine optimum general parameters for GP-Logic Synthesis
problems.

Terminal Set: 4 Variables: A,B,C,D; 5 Variables: A,B,C,D,E; 6 Variables: A,B,C,D,E,F; 7
Variables: A,B,C,D,E,F,G

Population Size: 1000-5000
Mutation Prob. Rate: 0, 1/10000,

1/1000, 1/100,
1/10, 1

Function Set: Case 1: and, or, not
(all are 2-input
gates,

Case 2: nand, not

except the 1-input Case 3: and, or, not, nand
NOT gate) Case 4: and, or, not, nand, nor

Case 5: and, nor
Case 6: and, or, not, xor
Case 7: and, or, not, xor, nand, nor
Case 8: nand

Fitness Measure: +100 points for each correct truth-table output,
 -1 point for each logic gate and terminal in solution (for optimization of size)

Criterion: Goal: to achieve fitness as close as possible to 2^n
Perfect fitness is (2^n) - number of gates or terminals,
(where n is the number of input variables)

Termination: 50 generations

Vlad

15

Empirical Experimental Results

4 Variable Functions
Test 1: f(a,b,c,d) = Σ(0,4,5,7,8,9,13,15)
Test 2: f(a,b,c,d) = Σ(4,6,7,15)

5 Variable Functions
Test 3: f(a,b,c,d,e) = Σ(5,6,9,10)
Test 4: f(a,b,c,d,e) = Σ(1,2,6,7,9,13,14,15,17,22,23,25,29,30,31)

6 Variable Functions
Test 5: f(a,b,c,d,e,f) = Σ(1,7,11,21,30)
Test 6: f(a,b,c,d,e,f) = Σ(10,12,14,20,21,22,25,33,36,45,55)

7 Variable Functions
Test 7: f(a,b,c,d,e,f,g) = Σ(20,28,52,60)
Test 8: f(a,b,c,d,e,f,g) = Σ(20,28,38,39,52,60,102,103,127)

Empirical Experimental Results

Population Size: 1000
Mutation Prob.
Rate:

1/1000

Function Set: Case 1: and, or, not
(all are 2-input Case 2: nand, not
 gates, except the Case 3: and, or, not, nand
1-input NOT) Case 4: and, or, not, nand, nor

Case 5: and, nor
Case 6: and, or, not, xor
Case 7: and, or, not, xor, nand, nor
Case 8: nand

Fitness Measure: +100 for each correct minterm
 -1 for each logic gate/terminal

Criterion: Fitness is ((2̂ n) - gates/terminals)*100
Where n is the number of input variables

Termination: 50 generations

Types of Logic Gates
Test Correct/ Cover Gates/Terms in Function

Total Logic Gates Case:
Minterms 1 2 3 4 5 6 7 8

1 16/16 100.0% X X X 19 19 29 16 X
2 16/16 100.0% 11 18 12 15 13 10 10 19
3 32/32 100.0% 27 X 29 X X 18 9 X

4 31/32 96.9% X 17 17 20 X 14 13 X
5 62/64 96.9% X X X X X X *16 87
6 58/64 90.6% X X 23 X X 26 X X
7 128/128 100.0% X X 10 X X X 13 X
8 126/128 98.4% X X X X X X X 63

*61/64 minterms correct
X = Only best function coverage results listed in table.

Non-
Convergence
 of GP

“My design
works most
of the
time…”

Empirical Experimental Results
Population Size

Non-
Convergence
 of GP

Population Size: 1000,
2000,
3000,
4000,
5000

Mutation Prob.
Rate:

1/1000

Function Set: and, or, not, xor, nand, nor
(all are 2-input
 gates, except the
1-input NOT)
Fitness Measure: +100 for each correct minterm

 -1 for each logic gate/terminal
Criterion: Fitness is ((2̂ n) - gates/terminals)*100

Where n is the number of input variables
Termination: 50 generations

“Future improvement
is possible…”

Test Correct/ Cover Population Sizes:
Total
Minterms 1000 2000 3000 4000 5000

4 32/32 100.0% X X 31 30 13
5 62/64 96.9% X X 18 19 X
6 59/64 92.2% X X X X 27
8 124/128 96.9% X X X X 21

X = Only best coverage results listed in table

Vlad

16

More Logic Synthesis Experiments...

Experiments:
1. 9Sym*
2. Majority*
3. 6 Variable Function,
Test 6: f(a,b,c,d,e,f) =
Σ(10,12,14,20,21,22,25,33,
36,45,55)

Objective: To investigate the training set size necessary for function learning.
This characterizes the learning method's immunity to noise.

Population Size: 1000

Mutation
Probability

1/1000

Rate

Function Set: AND, OR, NOT, XOR NAND, NOR
(all 2-input gates,
except the 1-input
NOT gate)

Fitness Measure: +100 points for each correct truth-table output,
 -1 point for each logic gate and terminal in synthesized equation
(for optimization of structural complexity)

Criterion: Fitness is ((2̂ n) - number of gates/terminals)
(where n is the number of input variables)

Test Conditions: Training Sets (portions of original function) from 0-100% of total
truth table, in 5% increments

Termination: 100 Generations

Don’t Cares vs. Function Coverage

Empirical Experimental Results

Results: Generally, while missing ~80% of the data for a
training set, the GP-Logic Synthesis achieved synthesis of ~80%
(correct) total function coverage. In other words, given a very
small portion of a data file, the GP-Logic Synthesis can
synthesize the logic with about an 80% accuracy.

Test Coverage of Complete Benchmark

Percent don't cares
0 10 20 30 40 50 60 70 80 90 100

9sym 87% 89% 86% 85% 84% 84% 86% 85% 81% 69% 50%
Maj. 97% 97% 91% 88% 88% 81% 81% 81% 81% 81% 41%
Test 6 86% 84% 81% 81% 81% 81% 69% 44% 44% 47% 55%

Don’t Cares vs. Function Coverage

Empirical Experimental Results
9sym: Training Set Size vs. Complete Function Coverage

Missing Portion of Complete Training Set

Coverage of Complete

Benchmark

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Coverage of Complete Benchmark

M a j o r i t y : T r a i n i n g S e t S i z e v s . C o m p l e t e F u n c t i o n C o v e r a g e

M i s s i n g P o r t i o n o f C o m p l e t e T r a i n i n g S e t

C
ov

er
ag

e
of

 C
om

p
le

te

B
en

ch
m

ar
k

0
0 . 1
0 . 2
0 . 3
0 . 4
0 . 5
0 . 6
0 . 7
0 . 8
0 . 9

1

0% 5% 10
%

15
%

20
%

25
%

30
%

35
%

40
%

45
%

50
%

55
%

60
%

65
%

70
%

75
%

80
%

85
%

90
%

10
0%

C o v e r a g e o f C o m p l e t e B e n c h m a r k

Vlad

17

Empirical Experimental Results
f(a,b,c,d,e,f) = E(10,12,14,20,21,22,25,33,36,45,55): Training Set Size vs.

Complete Function Coverage

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0
%

1
0

%

2
0

%

3
0

%

4
0

%

5
0

%

6
0

%

7
0

%

8
0

%

9
0

%

1
0

0
%

Missing Portion of Complete Training Set

C
o

ve
ra

g
e

o
f

C
o

m
p

le
t

B
en

ch
m

ar
k

 (
%

)

Coverage of Complete Benchmark

Result Summary
Types of Logic Gates:
•Large Gate Selection (AND, OR, NOT, XOR, NAND, NOR)
•The universal gate NAND (alone), sometimes showed good results

Population Sizes:
•Improved coverage with larger populations
•Theorized that larger populations increase the total pool of genetic diversity,
increasing available traits and characteristics
•But, larger populations slow the rate of evolution, by increasing necessary
computations

Mutation Rates:
•Small mutation rates usually introduce an appropriate amount of diversity not
already available in the population
•Mutation Rates must be moderate:

-Too small: no diversity available as the evolutionary process converges
-Too big: unbounded diversity creates a chaotic environment

Result Summary
Don’t Cares versus Function Coverage:
•Observed that only small training sets are necessary for function recognition

Experimental Results: All tests conducted showed >80% function
coverage achieved with training sets missing <80%, 90%, and 55% of
their complete truth tables (9Sym, Majority, and “Test 6” 6-variable
function).

•Results may be biased by the amount of “pattern-ness” present in the test
functions, but natural functions usually contain a high degree of pattern.
•Need more experimental data.

Gate-Level Synthesis - Scalability
•Necessary to understand and perfect research in early stage, with small circuit
designs, i.e. GP non-convergence problem
•Larger circuit designs will naturally require “gate modules”,
 i.e. (Adder, Multiplexor, etc.)

Vlad

18

Future GP-Logic Synthesis Research...
Use Circuit Modules (Adders, Comparators,

Multiplexors, etc.) as “functions”, (Automatically
Defined Functions)

Create Custom Gate Modules
Apply research to larger functions/designs and

Standard Benchmarks
System Design - Computer Architectures
Reduce Synthesis Error!
Goal: 100% Synthesized Function Design Coverage
Future Design Tool

New
approach

The search time depends
considerably on the size of the
hypothesis space.

A large hypothesis space makes it
difficult to find the optimal circuit
in a reasonable time (Sometimes
run time for evolving simple
network requires dozens of hours)

Task formulation
 Synthesize a logical network in a given design
style without no special software to implement a
design style.

Vlad

19

Let us try to partition
circuit search space

 and seek circuit solution
in each subspace

SpaceSpaceSpaceSpace

Sub-space

GM2xN2

a1
a0
b1
b0

a1
a0
 b1
 b0

Style
GM1xN1

 C0

 C1

 MUX
Bad news:

We need
multiplexer

Good news:

We can
partition circuit
search space

Decomposed 2-bit adder

2-bit adder was evolved independently as two
sub-circuits C0 and C1 .To merge these “pieces”
we need a multiplexer - MUX

of scanning window

The space ofThe space ofThe space ofThe space of
possiblepossiblepossiblepossible

circuit solutionscircuit solutionscircuit solutionscircuit solutions

Scanning window
over given design

style
GMxN

Example. G5××××4 over the library of cells
L={AND,OR} can be considered as “a guide” to
design M-level, M ∈{2,3,4,5}, networks under
different scenarios

–Number of
levels –Number of

rows

Vlad

20

Scenario of
 evolutionary design

Y0

Y1

NOTx1

 x2

x1

NOTx2

Scenario 1Scenario 1Scenario 1Scenario 1

NOTx1

x2

 x1

NOTx2

Y0

Y1

Scenario 2Scenario 2Scenario 2Scenario 2

Y0

Y1
NOTx1

NOTx2

x1
x2

NOTx1
x2

x1

NOTx2

x1 x2Y0Y1
0 0 0 1
0 1 1 0
1 0 1 0
1 1 0 1

Over library
 �={AND, NOT}

Style G4x2

(invalid
circuit)

Style G5x2

(good
solution)

Style G4x4

(non optimal
 circuit)

EvoDesign against SIS
 (gate/time)

sao2 165 / 120 sec 203 / 0.15 sec

rd53 16 / 57sec 34 / 0.1 sec

life 34 / 41 sec 138 / 0.2 sec

misex1 61 / 49 sec 155 / 0.4 sec

EFFECT 2
times

 Test EvoDesign SIS [Berkeley,1994]

Total 276 / 267 sec 530 / 0.85 sec

Run time is

 terrible !!!

Generalization for 3-valued
2-digit multiplier

sub-circuits - 7

gates - 73

MUX - 3

Run time: 249 min

carry y0 y1

C0 C12C11C10 C20 C22C21

Vlad

21

EvoDesign for synthesis ternary
and quaternary 2-digit multipliers

2mult-3 73 gates +3 MUXs 249 min

2mult-4 220 gates+5 MUXs 148 min

Test Test Test Test Gate TimeGate TimeGate TimeGate Time

Observation. When parallel and independent
processing of network space, the different target
design styles can be used for each subspace

Quaternary circuits
 (gate/time)

monks1tr 6 / 3 hours 7 / 0.3 hours

monks1te 5 / 4 hours 7 / 1,6 hours

monks3tr - 18 / 6,1 hours

 Test Direct Parallel

The maximal time for

processing of one subspace

of target design style

 Library of cells L={AND,OR, EXOR,
NOT, NAND, NOR}

 Number of levels

 Permissible interconnections
between cells,

 Types of gate in each level

Vlad

22

EvoDesign against
Sasao method

(I) Population size - 60 (ii) Maximal number of generations - 104

 (iii) Crossover - 0.7 (iv) Level back - 3 (v) Tournament selection and
- discriminator is 2 and 90%

Design style:
END-OR-EXOR 3-level
network with a single-

output EXOR-gate

Sasao method
EvoDesign algorithm

massively
parallel circuit design

Design
style

Evolved circuit

 3

 2

Parallel 1
GA

 3

 2

 1
Subspace

Initial
logic
 unction

GM3xN3

GM2xN2

GM1xN1

Partitioning of the circuit space

Combining subcircuits

Assumption.Assumption.Assumption.Assumption.
Each subspace

R of network
solutions can

be searched
independently

and
simultaneously
with a different
windows G MixNi

and target
design style

Benefit: massive parallelismBenefit: massive parallelismBenefit: massive parallelismBenefit: massive parallelism

If genetic information
processing is to extract
valuable information from

 genetic information, let us use
Shannon information theory
to measure evolutionary
process of circuit design

Vlad

23

Evolutionary circuit designEvolutionary circuit designEvolutionary circuit designEvolutionary circuit design
and information streamsand information streamsand information streamsand information streams

f

H(f) Correct
circuit
solution

H(f|Net0)

H(f|Net1)

H(f|Net)=0

Target
design
 style

0

0,2

0,4

0,6

0,8

1

0,1 0,3 0,5 0,8 1

Crossover probability

0

0,5

1

1,5

0,001 0,01 0,025 0,05 0,1

M utation probability

0

0,5

1

1,5

10 30 50 60 80 100 120

Size of population

Entropy of fitness functionEntropy of fitness functionEntropy of fitness functionEntropy of fitness function
Definition.Definition.Definition.Definition. Entropy based fitness function is

the conditional entropy of a target function f

given current function Net
H(f|Net) = - p00 ∙log2 (p00 / p0) - p10 ∙log2 (p10 / p0) -

p01 ∙log2 (p01 / p1) - p11 ∙log2 (p11 / p1)

ExampleExampleExampleExample 2-digit ternary adder:

0th generation H(f|Net0) = 1.585;

380th generation H(f|Net380) = 0.853;

12610th generation H(f|Net12610) = 0;

����
��������������
�����

��
���

���

0,01

0,1

1

10

100 1100 2100 3100 4100 5100 6100 7100 8100 9100

Num ber of generation

F
it
n
e
ss
 (
n
o
rm

al
iz
ed
)

��������
algorithm [M iller 97] EVODesign-1 EVODesign2

ComparisonComparisonComparisonComparison

EvoDesign

Invalid circuits Correct circuits

Miller et al.[1997]

Vlad

24

IN: OUT:

Information
capacity:

Gate 1

Circuit level
1 2

Information
capacity:

Gate 3

Information
capacity:

Gate 2

Information
capacity:

Gate 4

Information from the

space of possible
circuit solutions

Evolved circuit
in target

design style

Scanning

MIN

MIN

MAX

MAX

–f–1

–f–2

2 x 2

scanning

window

Information capacityInformation capacityInformation capacityInformation capacity
of scanning windowof scanning windowof scanning windowof scanning window

• An extension of the evolutionary multi-level network
synthesis due to parallel (and flexible) window-based
scanning of the subspaces of possible network
solutions with target design style

• Evolutionary network design becomes more
attractive, if the concept of a given design style is
realized.

– In this case designer really becomes an expert and needs no
special software.

• B-decomposition of the network search space is
more preferable, because it does not require any
multiplexers to merge a network from subnetworks.

– Can evolutionary
computation be of practical
interest for CAD Community?

– In which applications
evolutionary computation can
be an efficient support of
traditional techniques?

Vlad

25

References

Dill, Karen M. Growing Digital Circuits: Logic Synthesis and Minimization with Genetic
Operators. Master of Science Thesis. Department of Electrical and Computer Engineering,
Oregon State University, June 1997.

Drechsler, Rolf. “Evolutionary Algorithms for Computer-Aided Design of Integrated Circuits
Tutorial”. Genetic Programming 1997 Conference, Stanford University, Sunday, July 13,
1997 -- 1:00-3:15 PM.

Goldberg, David. E. Genetic Algorithms in Search, Optimization, & Machine Learning. New
York: Addison-Wesley Publishing Company, Inc. 1989.

Higuchi, Tetsuya. “Evolvable Hardware Tutorial”. Genetic Programming 1997 Conference,
Stanford University, Sunday, July 13, 1997 -- 9:15-11:30 AM.

Koza, John. Genetic Programming: On the Programming of Computers by Means of Natural
Selection. Cambridge, Masachusetts: The MIT Press, 1992.

Koza, John. Genetic Programming II: Automatic Discovery of Reusable Programs. Cambridge,
Massachusetts: The MIT Press, 1994.

Sipper, Moshe, Eduardo Sanchez, Daniel Mange, Marco Tomassini, Andres Perez-Uribe, and
Andre Stauffer. “A Phylogenetic, Ontogenetic, and Epigenetic View of Bio-Inspired
Hardware Systems”. IEEE Transactions on Evolutionary Computation. Vol. 1, Number 1
(April 1997), pp. 83-97.

T.Luba*, S.Yanushkevich, M.Opoka,
C.Moraga#, V.Shmerko

*Warsaw University of Technology, Warsaw, Poland
#Dortmund University, Germany

Technical University, Szczecin, Poland

Sources
Karen M. Dill
James H. Herzog
Marek A. Perkowski

