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Abstract 

 
A set of p-valued logic gates (primitives) is called universal if an arbitrary p-valued logic function can 
be realized by a logic circuit built up from a finite number of gates belonging to this set. In the paper, 
we consider the problem of determining the number of universal single-element sets of ternary 
reversible logic gates with two inputs and two outputs. We have established that over 97% of such 
sets are universal. 
 
1. Introduction 
 

The universality (or completeness) of sets of binary and multiple-valued functions and related 
problems have been studied for many years and by many researchers in three areas: propositional 
calculus of logics, universal algebras and logic (switching) circuits ([48] contains 464 references). 
The universality of logic gates (primitives) depends on the technology because it has to take into 
account also some constraints. It may differ from the notion of completeness studied by 
mathematicians and for this reason sometimes is called elemental universality [19]. This area has 
been gradually evolving. Initially, it dealt with delay-less combinational circuits exclusively [37]. 
Later, delays have also been taken into account as well as universality of sequential primitives was 
considered (including asynchronous behavior) [19, 39]. With technological changes new types of 
universality have been developed, e.g. corresponding to double-rail signals [21]. 

Although studies of reversible computing were initiated in the 1960s [31, 6] and a number of 
universal reversible logic gates have been proposed, general problems of universality of such gates 
have attracted the attention of researchers only very recently. Few papers have been devoted so far to 
universality of reversible gates and most of them consider binary gates [51, 14, 26]. In this paper, we 
are concerned entirely with universality of general ternary reversible gates. 

A gate (or a circuit) is called reversible if there is a one-to-one correspondence between its input 
and output assignments, i.e. not only the outputs can be uniquely determined from the inputs, but also 
the inputs can be recovered from the outputs. In other words, a gate is reversible if it is invertible or 
information-lossless. Using reversible logic circuits enables avoiding energy losses in digital devices 
[31, 18, 6, 10, 11, 17]. It is a fast developing area of research due to its increasing importance to future 
computer technologies, especially quantum ones [16] because of possibility to solve some 
exponentially hard problems in polynomial time [7]. For example, during the last three years many 
papers have been written on reversible computing [1-5, 8, 12-15, 20, 22-26, 28-30, 32-36, 40-47, 50, 
53, 54], some of them proposing new multiple-valued gates [47, 41,5, 14, 1-3, 40, 43, 30]. In 
designing circuits built from such gates it is important to know which of the gates have the least cost. 
Solving this practical problem we should first establish how many multiple-valued gates are universal. 

Let us call a gate with n inputs and m outputs an n*m-gate. Some of the binary reversible gates 
considered in the literature have different number of inputs and outputs, e.g. 2*3 “switch gate” and 
2*4 “interaction gate” [18] (also called IB and IIB elements, respectively, in [27, 49]). However, usually 
it is assumed that a reversible gate has the same number of inputs and outputs. In this case, the output 
rows of the truth table of a reversible gate can be obtained by permutation of the input rows. Thus, 
there are equal numbers of all values in the function vector for each output function of a reversible 
gate (such functions are called balanced [9]). 

Universality of reversible gates differs from classical elemental universality because in reversible 
circuits 

(1) usually multi-output gates are considered instead of only one-output gates, 



(2) a constant signal may be applied to an arbitrary number of inputs, 
(3) reversible gates have fan-out of each output equal to 1. 

Thus we have to consider 
(1) universality of sets of functions instead of single functions, 
(2) weak completeness instead of strong completeness, 
(3) the property of replicating input signals at the gate outputs. 
Compositional properties of binary and ternary reversible gates are different. Universal binary 

reversible k*k gates exist only for k > 3 [52] (the set of 2-variable balanced Boolean functions is equal 
to {EXCLUSIVE-OR, EQUIVALENCE} and it is known that this set not weak complete). Over 97% 
of binary reversible 3*3 gates and almost all reversible 4*4 gates are universal [26] in spite of the 
reversibility constraint. However, there exist ternary 2*2 gates that are universal. Moreover, the 
number of ternary reversible 2*2 gates is 9 times greater than the number of binary reversible 3*3 
gates (9! in comparison with 8!). In binary case, for establishing universality of a gate it is sufficient to 
check weak completeness of the set of the gate output functions as it has been proved in [26] that all 
gates with this property are duplicating input signals. This result does not hold for ternary reversible 
2*2 gates. For this reason we have introduced a new property of gates called quasi-replicating. Using 
this notion it was possible to obtain experimental results allowing estimation of the number of 
universal ternary reversible 2*2 gates. Namely, also over 97% of such gates is universal. 

The rest of the paper is organized as follows. In Section 2, we define basic notions of reversible 
gates. Section 3 introduces the notion of universality of reversible gates (called r-universality, in 
short). Section 4 presents results of counting the number of r-universal ternary reversible 2*2 gates. 
Finally, in Section 5, conclusions are made. 
 
2. Preliminaries 
 

Let P = {0,1, … , p-1}. A mapping f: Pn → P will be called an n-variable p-valued function. If 
p=3 then the function f is called ternary. To represent a 1-variable ternary function f(x) we use the 
vector of the function values written as a string a0 a1 a2, where ai = f(i). For example, the identity 
function f(x) = x is represented by the vector 012. Similarly, to represent a 2-variable ternary function 
f(x1,x2) the vector a0 a1 a2 a3 a4 a5 a6 a7 a8 will be used, where f(j,k) = a3j+k. For example, the function  
f(x1,x2) = x1+x2 (mod 3) will be represented by the vector 012120201. 

 
Definition 1 A set of p-valued functions F is 
- complete (strong complete, Sheffer) if an arbitrary p-valued function f(x1,…,xn) can be realized 

by a loop-free combinational circuit built up of logic gates realizing functions from F and 
using x1, ... ,xn as primary inputs, 

-  weak complete (complete with constants, pseudo-Sheffer) if an arbitrary p-valued function 
f(x1,…,xn) can be realized by a loop-free combinational circuit built up of logic gates realizing 
functions from F and using 0, 1, … , p-1, x1, ... ,xn as primary inputs. 

 
Definition 2 Let wi(f) denotes the number of input assignments X for which f(X) = i. An n-variable 

p-valued function f  is called balanced if wi(f) = pn-1 for each i, i.e. f is equal to each value belonging to 
the set {0,1, … , p-1} the same number of times. 

 
There are six 1-variable balanced ternary functions. They are represented by the vectors 012, 021, 

102, 120, 201, 210 and corresponds to S3, the symmetric group on three marks. The function f(x1,x2) = 
x1+x2 (mod 3) is one of 1,680 2-variable balanced ternary functions. 

 
Definition 3 A p-valued gate (or a circuit) is reversible if there is a one-to-one correspondence 

between the inputs and the outputs (i.e. if in the truth table of the gate or circuit there is a distinct 
output vector for each input vector). 

 
Note that every output function of a reversible gate is balanced and that the reversibility property 

of gates is preserved under permutations of inputs and/or outputs. We will consider only the gates with 
the same number of inputs and outputs. A gate with k inputs and k outputs will be called a k*k-gate. 
There exist six reversible ternary 1*1 gates. They will be represented in the same manner as 1-variable 
balanced ternary functions (see above). There are 39 =19,683 2-variable ternary functions. The number 
of pairs of balanced ternary functions is equal to 16802 = 2,822,400. However, the number of ternary 



reversible 2*2 gates is smaller: 9! = 362,880 (it is equal to the number of permutations of 9 rows in the 
truth table of a ternary gate) as not every pair of balanced functions may appear in a ternary reversible 
2*2-gate (see Example 1). 

 
Definition 4 Two balanced ternary functions f, g are called r-compatible if for all input 

assignments (a1, … , an) the pairs of their values <f(a1,…,an), g(a1,…,an)> are equal the same number 
of times to each of the pairs <0,0>, <0,1>, <0,2>, <1,0>, <1,1>, <1,2>, <2,0>, <2,1> and <2,2>. 

 
Example 1 Let the capital letters A, B denote inputs, and P, Q denote outputs of a ternary 

reversible 2*2 gate. Table 1 shows an example of a pair of balanced functions that is not r-compatible. 
Namely, in the output rows of Table 1 each of the pairs <0,0>, <1,2> and <2,1> appears twice, while 
the combinations <0,2>, <1,1> and <2,0> are missing. 
 

TABLE 1 
PAIR OF TERNARY BALANCED FUNCTIONS THAT IS NOT r-COMPATIBLE 

 
A     B P     Q 
 0     0 
 0     1 
 0     2 
 1     0 
 1     1 
 1     2 
 2     0 
 2     1 
 2     2 

   0     0 
   1     2 
   1     0 
   0     1 
   1     2 
   0     0 
   2     1 
   2     1 
   2     2 

 
Lemma 1 Each pair of functions belonging to the set of output functions of a p-valued reversible 

gate is r-compatible. 
Proof. All pn output rows in the truth table of a reversible n*n gate are distinct. Thus for each pair 

of output functions f, g all pairs of values of these functions <f(a1,…,an), g(a1,…,an)> appear in the 
output part of the gate the same number of times. Hence the pair f, g is r-compatible. 

 
Lemma 2 All output functions of every p-valued reversible gate are distinct. 
Proof. Let us assume that there exists a p-valued reversible gate with two identical output 

functions. In a pair of identical output columns only the following pairs of values appear: <0,0>, 
<1,1>, ... , <p-1,p-1>. Such a pair of functions is not r-compatible. By Lemma 1 we obtain a 
contradiction. Hence, Lemma 2 holds. 
 
3. Universality of ternary reversible 2*2 gates 
 

Definition 5 A p-valued reversible n*n gate (circuit) has duplicating property (D-property, in 
short) if there exist a sequence of n-1 constants a1, … ,ai-1, ai+1, ... ,an and two output functions of the 
gate (circuit) fj(x1,x2,...,xn) and fk(x1,x2,...,xn) such that  

fj(a1,…,ai-1,xi,ai+1,...,an) = fk(a1,…,ai-1,xi,ai+1,...,an) = xi. 
 

Example 2 Table 2 shows the truth table of a ternary reversible 2*2 gate (circuit) having D-
property. It is easy to notice that for A = 0 we always obtain the same value at both gate output P and 
Q as at the input B: 

P = B Q = B. 
TABLE 2 

TERNARY REVERSIBLE 2*2 GATE HAVING D-PROPERTY 
 

A     B P     Q 
 0     0 
 0     1 
 0     2 

   0     0 
   1     1 
   2     2 



 1     0 
 1     1 
 1     2 
 2     0 
 2     1 
 2     2 

   0     1 
   1     2 
   0     2 
   2     1 
   1     0 
   2     0 

 
Definition 6 A p-valued reversible n*n gate (circuit) has quasi-duplicating property (qD-property, 

in short) if it is has not D-property and there exist a sequence of n-1 constants a1, … , ai-1, ai+1, ... , an 
and two output functions of this gate fj(x1,x2,...,xn) and fk(x1,x2,...,xn) such that each of the functions 

fj(a1,…,ai-1,xi,ai+1,...,an)     and      fk(a1,…,ai-1,xi,ai+1,...,an) 
takes all values 0,1, ... , p-1. 
 

Example 3 Table 3 shows the truth table of a ternary reversible 2*2 gate (circuit) having qD-
property. It is easy to notice that for B = 0 the output functions P and Q have the representations 012 
and 201, respectively. 
 

TABLE 3 
TERNARY REVERSIBLE 2*2 GATE HAVING qD-PROPERTY 

 
A     B P     Q 
 0     0 
 0     1 
 0     2 
 1     0 
 1     1 
 1     2 
 2     0 
 2     1 
 2     2 

   0     2 
   0     0 
   0     1 
   1     0 
   1     1 
   2     0 
   2     1 
   1     2 
   2     2 

 
Theorem 1 If G is a ternary reversible n*n gate with qD-property then a circuit with D-property 

can be built using exclusively gates G. 
Proof Let f be a 1-variable ternary function and denote f2(x) = f(f(x)), f3 (x) = f(f2(x)). Note that f2=f 

for f belonging to S1={021, 102, 210}, and f3=f for f belonging to S2={120, 201}. 
Assume that a ternary reversible n*n gate G has qD-property. Then there exists a sequence of n-1 

constants a1, … , ai-1, ai+1, ... , an and two output functions of this gate fj(x1,x2,...,xn) and fk(x1,x2,...,xn) 
such that each of the functions fj(a1,…,ai-1,xi,ai+1,...,an) and fk(a1,…,ai-1,xi,ai+1,...,an) takes all three 
values 0,1,2. First, we will consider an example. Let the representation of fj(a1,…,ai-1,xi,ai+1,...,an) 
belongs to S1 and the representation of fk(a1,…,ai-1,xi,ai+1,...,an) belongs to S2.. Fig. 1 shows a circuit 
with D-property built using exclusively gates G. 

In a similar manner it is possible to construct a circuit with D-property for any assignment of 
representations of the functions fj(a1,…,ai-1,xi,ai+1,...,an) and fk(a1,…,ai-1,xi,ai+1,...,an) to elements of S1 
and S2. Thus the Theorem 1 holds. 

 
Theorem 1 can be extended to p-valued reversible gates and the proof for the extended version can 

be similar to the above presented (we are not presenting it only because the lack of space). 
 
 



 
 

Fig. 1 Example of a circuit with D-property built using gates G with qD-property 
 
It is possible to build a circuit with qD-property using gates not having qD-property as shown in 

the example below. 
 
Example 4 Table 4 shows the truth table of a ternary reversible 2*2 gate not having qD-property. 

Fig. 2 presents such a circuit with qD-property built using such gates. Thus it is also possible to built 
a circuit with D-property using circuits from Fig. 2. 
 

TABLE 4 
TERNARY REVERSIBLE 2*2 GATE NOT HAVING qD-PROPERTY 

 
A     B P     Q 
 0     0 
 0     1 
 0     2 
 1     0 
 1     1 
 1     2 
 2     0 
 2     1 
 2     2 

   0     2 
   0     0 
   0     1 
   1     1 
   1     0 
   2     0 
   2     1 
   1     2 
   2     2 

 
 

 
Fig. 2 Circuit with qD-property built using gates not having qD-property 

 
 
Definition 7 A reversible ternary gate G is r-universal if an arbitrary ternary function f(x1,…,xn) 

can be realized by a loop-free combinational circuit built up of a finite number of copies of the gate G 
using constants an arbitrary number of times and at most once each signal  x1, ... ,xn as primary inputs. 

 
Theorem 2 A reversible ternary gate G having qD-property and weak complete set of its output 

functions is r-universal. 
Proof. Proofs of universality in classical case (see e.g. [37]) are based on the assumption that each 

input signal may be used an arbitrary number of times. Then from a canonical form of a function it 



follows that a circuit realizing the function can be built. Thus it is sufficient to follow these arguments 
to prove Theorem 2 as the gate G has qD-property (by Theorem 1 it is possible to build a circuit with 
D-property using gates G what is equivalent to the assumption that each signal may be used any 
number of times). 
 
4. Experimental results 
 

First we have run a program based on the procedure from [38] to find all ternary reversible ternary 
2*2 gates that are weak complete. Then for each such gate we were constructing cascade circuits of 
width 3 up to length 12 to check the gates for having qD-property. 

Then on the basis of Theorem 2 we were able to established that among 362,880 ternary reversible 
2*2 gates 

360,946 (97.34%) are weak complete and have D-property (132,140) or qD-property (228,806), 
thus by Theorem 2 are r-universal, 

1,934 (0,53%) are not weak complete, thus are not r-universal, 
7732 (2.13%) are weak complete, but it is not known whether they have qD-property. 
 

5. Conclusions 
 

By exhaustive calculations we have established that over 97% of all ternary reversible 2*2 gates 
are r-universal. Theorem 1 gives a sufficient condition for r-universality. However, we do not know 
whether it is also a necessary condition. It is an interesting open problem. 
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