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1y people to design a robot that
eal environment.

Frby, people have been
a thinking machine.

OW ot to learn from its mistakes is not all that
futuristic. M

*The advances in Artificial Intelligence, Neural Networks, Genetic
Algorithms, Data Mining and Functional Decomposition have
opened the doorway to a multitude of learning strategies.

*Today, these technologies have even found practical applications
In areas as robotics and large data-base mining such as in the health
care field for diagnosing diseases or other medical conditions.



' 1ing techniques are all

*The aforementioned techniques utilize weak
criterion learning.



Constructive Inductior (/8 Xe[s[TeRS)Yaligl{ LNy
a sSimilar method of
n SS but uses a strong
nat the system communicates
S\ ||C form.

'to ask a ANN or Fuzzy Network or
or a!ymbollc reason as to what
'. eal Ed

 This method Is used for , and
that 1s why Is finds its applications in Robotics.
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concep




always a humanoid or
2

>3
1) Learning Phase
2) Acting Phase



'”rw e examine our state and

onstruct and tune our network.

J our newly tuned network to
Ironment. That Is, running the

etinput

e This particular 2-phase process is common to probably
all the intelligence engines.

« Some perform the two phases only once and others
continuously iterate through the two-phases.



ol_earning in Harcdweire 5 G RGERE R

on of learning lends itself to hardware
i&mathematical optimization in hardware is
s such as graph coloring, satisfiability, and

realization where <
performed with techniqu
decomposition.

*Methods which support Occam’s Razor.



| lead us to the
3S a robot) can only learn

in symbolic logic is dealt with

alued logic allow for intelligent

:.

generalizations.



a, we still have the concept of a Don’t

“and logically this generalization
gent reasoning.

(It 1s noted a powerfl'J'I feature of ANN Is their ability to generalize, In
which generalization is more accurate for smaller highly efficient

networks.)
A very simple example of learning from given data and generalizing.






HUEENBENGANIS announced the
SheigiEidinerand Robokoneko
-




CANBERAIN MACHINE (CBM)

INENCAWBSTEIRNVIACHINE (CBM) Is a piece of
SPECIIZEUREVOIVahleshandware” which grows
ANEREVBIVEST CE Hulrlr Altemata based neural
NEWVOIRSCIIEHIL Jules in about a second.

IS JS SENEST w‘Tr now on it will be
nract CalftoNaiIic agtiﬁtlal brains by assembling
tens ofi thousands of these quickly evolved
modules inter humanly architected artificial
brains.

The modules (evolved one at a time by the
CBM) are downloaded into a gigabyte of RAM.




The shape Is supposed to represent a slice of cortex,
and its colors (grey and white) represent the outer
"grey matter” of the cortex (i.e. the neurons) and Its
Inner "white matter” (the interconnecting axons).



WEREIECUBINIENIOENTS are: placed In the grey

progreniieie (and evolvable) chips (Xilinx
264) 01ReC t,ﬁ%achines.

So if youlwant ene, you should get your order

In quickly, because 3 have already been signed
for.



“ESUmerRAsiRCElNechnical Specifications:

— Callufelr Atfiopeiiel UOrJe e Rate (max.): 152 billion
s/secoriel. -

Number of Supperted Neurons (max., per brain):
37, 74EWet:

Neural Module Chromosome Length: 91,008 bits.



Mo eRREICVARELE, Neuronal Level (max.): 12
SNAES/SP - :
pliofneleition Floww Reiie, er ﬂte Level (estimated
VETCUE)SONCINIES/S) _
INeauenN ElIoWARAtE Nt | odular Level (max.):
200)0) Moviies/s. | _
Number ofi g Grs: 72 (Xilinx XC6264BG560).

\ UmbEFeIRERGANRECONfigurable Function Units:
1,179,648. ﬂ-

Phénoty o/Ger c'"v Memory: 1.18 Gbytes.
Power Consumption: 1.5 KWatt (5 V, 300 A).

Computational power (estimated): 10,000 Pentium I
400 MHz computers.




=volvahle Neural Net
SUSEICEONIPULE
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CAWEEIAIINSIDICUIE; | 'ir- Uit Module Images

“TAIMBEUENS of 3D CA (cellular
AULOINE)NCENIS] ; to about 1000

IEUKBNS (_red);

Whitened tapered connections to a neuron are
excitatory neural inputs, i.e. the signal adds to the
neurons' binary counter.



SAEErAIFSIDNCUbE Circuit Module Images

L DEIREHEBNCPEIEEICONMECTIONS Lo a neuron are
]n'r ]'o]"ror/ IEUIRINIIPULS;IEE. the signall subtracts from
NEMEUNONTS o]n?lry clinter.

e(&a threshold value
%mr ires a binary signal into its
“ D cells in a CAM-Brain circuit module

Cube | 3D CA cells in a CAM-Brain circuit module,
zoomed #

Cube3 24*24*24 3D CA cells in a CAM-Brain circuit
module, zoomed again












Romkoneko






. and what
sanout PSU?










EVEIVIRG er LLearning in
Serdware?

| most general system

truction paradigm as

We propose Le%mg Hardware as any learning
algorithm PLUS reconfigurable hardware

Learning algorithm can be realized in software or in
hardware.



Universal Logic Machine

— SVyritnesis cpld DedisiogNeie) @ms reduced to NP-hard
COIMIBINEWBIEINGRIEMS |

combinationall  proklems _1r'e'duced to simple
comwNatenall prekliems: suchi as graph coloring, set
COVErNO Noate  covering,  cligue partitioning,
satisfigdility, . o multi-valued  relation/function
- Manipuletorn v

e ﬂws of MV literals).

= First variant uses two FPGA 3090 chips and second

the DEC-PERLE-1 board with 23 chips

2 General Special-Purpose computer for Cube Calculus



UnRiversaltiL gic Machine

— Priase of |2eialire) (Gopsill] tBn synthesis)

5 PhasERoiRacting (function evaluation, state machine
OPENCION) - s
YOURCENNGE rECEsignistandard computer hardware
WiHERNEBCENIIEL solve' o probg'n correctly.
IENEEamIne Hardware redesigns itself using new
Jealr rJJfJ:J Sxeifiples givenrto It

> Michie: makes distinction between black-box and
knowledge-c rlentgd learning systems

- Concepts of “weak” and “strong” criteria

> “The system satisfies a weak criterium If it uses data
to generate an updated basis for Improved
performance on subsequent data” (Neural, Genetic)



MMest Important in robotics?

= Speed of
processing data Our algorithms proved to
in real time be useful and give very

good quality solutions in

= Understanding
what is going on, | -— FPGAsynthesis
rather than using § --- Data Mining
black boxes

= Building model ot g . .. us try the

the world around challenge of ROBOTICS




Wiay/AWwe do not like the
GENEtcHAIgorithm?

S OurGHtiGIsm is about using GA for digital circuits

Practically, it 1 n.ponvergent
It is difficult to control

We do not know of any “real” success story of using GA
In digital design



JnIversaltllogic Machine

Synthesis and Decision groglesree/ife=leMieRNIzE
nard compoinational proolers

SACuInnatonall S prekliems.  reduced to simple
cOIMIgEeREl orooamy S rm as graph coloring, set
uvermg, ginater  covering, cligue partitioning,

SAtiSHiIlitys or  multi- valued  relation/function
- manipulation

‘ -

Cube achine (CCM) operates on multiple-valued
cubes (terms of MV literals).

First variant uses twosFPGA™ 3090 chips and second the
DEC-PERLE-1 board with 23 chips

General Special-Purpose computer for Cube Calculus







myl=Estation
EnRcthe
WPEC PERLE
_ Mheard



positional technigues In
FEeigng; Davas Miningl and Knowledge
GIEES \)\/615;,,@_" by several

als),Bohanec, Bratko/Zupan,

JOZWIGKGRIEIE 9@Jdman Axtel.
SmallNEamIngreniors. Natural problem representation

We compared t sam-eL problems using several methods:
decomp‘ition,:ﬁefision trees, neural nets, and genetic
algorithms

Decomposition is clearly the winner but it is slow because the
NP-complete problem of graph creation and coloring is
repeated very many times.
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‘Decomposition of Relations



Who GetiEaaEmy

Good guys



WTERALEL 16 D000 DTV

Good guys

Mlzir i< D‘F’Uﬁ

Bad guys

Robert

A - size ofi hailr B - size of nose

C - size of beard D - color of eyes



Good guys

ACSCID) A BCEY

A - size of hair

B - size of nose

C - size of beard

D - color of eyes




Alan

I&
Robert

Y B’C’D

Bad guys

A - size of hair

B - size of nose

C - size of beard

D - color of eyes



Beile] guys Wiiel ggzircls EifE good

7 |
—
L

 alfe. no good

%

A - size of hair

B - size of nose

C - size of beard

D - color of eyes




Formulas from
Examples




“SVulitEValuedimulti-eutput (combinational) relation in

Input 1 input2  gupputy  OUPULZ



gravigts iy r"- relation output. X1 and X2
WitireUtpUL ( 1y ani (eriented) relation. Relation
be S erJ ro SApres fel S - this color is red or white but

oNIceVErmore M“one value for attributes, so they
A row caﬁ)e thought of as a record from a data
Or a collection of image features after image

~ base, thelr '
preprocessing.

Observe, however that altheugh such language Is quiet powerful
for ML, DM, and KD from data bases applications, it cannot
specify time, it Is thus too poor to describe state machines,
regular expressions, petri nets, path expressions, sequential
netlists, grammars and other models, tha t are used in speech



oin Temporal
LogiIcC
Constraints




d girlfriends and bad
y their four attributes.



0oL -"nof good and bad
Jcode e their characteristics as states
en a 4 bit code. The first bit is her Eye Color
ond Is Hair Length (0O=short, 1=long), the

Wl - Height ort, 1=tall), and the fourth is Weight
(0=skinny, 1=healthy). So, for example:

1111

J)=q¢

Would represent a girl with light eyes, long hair, tall, and of
a healthy weight. Now we can finally go to our data base example:



Girlfriend Database:

IS.
Al

| WN
e \‘éﬁ

ﬁoom 0010

Ao gAD > girlfriends
=
)
= o

0100 1100 0110 1100




y previous girlfriends that were

0, let’s construct a K-Map
\D=0". And the inputs are
2ctive girlfriend.

|

10 JX v 1 X t/“GOOD”:l




ained an expression for the GOOD
 performing logic minimization with

= nﬂt& Where b = Hair Length

So, good girlfriends are ones with short hair. And

therefore, BAD girlfriends can be generalized to not(GOOD)
or BAD = b, or girls with long hair.

Now your robot can tell you if your date tonight is good or
bad for you :).



ple example, but
at similar.

‘representation and
‘and we have a solid



1t of Learning Hardware
structive Induction).

s Of engineering experience

solvable techniques in which
It the resulting network can

d.nt, and perplexing.
[

It is this random behavior that interest some people, but
for Hardware Learning, we are not interested in evolving
a circuit that uses 100 gates to perform the simple
operation of A EXOR B.




Lype mv. 0 110 10) i S R .type my. . .type mv
Q9 1000 - - i3 i3
1 00-0gd LA~ ¢ ' .01 .01l
01-0101-- ilb 0 i1 i2 ilb i3 i4 i5
110-020 - - .0b s2.0 .0b s2.1
-ob 00 KIS 1 OGRS imv 222 imv222
imv222222222 : 1 7T oy 4
.omy 2 4 i p8 p8
.p 156 —0 TENoRT 1 QL 1 RENER 1
ONOROERL = (= 0 0Nl 1 1] 0110 TRING" O
011 0/ 0ESIEE . - - DN RIN—] 110 0 1 2
RO = - - R ) ) 111 2 100 1
0'1 00 -nimEE .end 100 1 i gutl (1)
1 0 0 G iREE. TIORIN .end

.end

Relation

. .type mv
i3

.01

.ilb i3 i4 i5
.0b s2.1
dmv 222
.omv 4

.p 8
010 1
1100
111 2
100 1
101 0
.end



fattice diagrams realize
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E/JIJ"r—Jr‘\ 2n Logic Synthesis
upmicren echnologles

, EJjzle)geipfls J-Gf feralization of
DJfJf'f/ DEC JJorJgflg'p and Kronecker
DIagieiis p - |

“Nevwrdaterstiticture: for layout

MiRImIZaten -

Optimization of area, speed and power

Predicts results of many levels of
synthesis

Ildeal for future technologies
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MUVAL
ArchItecture

Irnage Processing

vl

Irnage Accluisitiorn)

-

camera

FPGA progreafrrnirig

Sensors
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Selitvvare Architecture 1

Behavior 2 Behavior 4

S

Behavior 1

Dalanzinr 2 5
senhavior o Behavior 5



litecture 2

b Behavior 2 \avior £
-l

Behavior l \
Behavior 3

Behavior 5



SelitWware Architecture 3

learning

.. s
. Behavior 2 Behavior 4

Behavior 5



SEHVare Architecture 4

Waorld
rriocle]




PRI (4110 \

2 Ay ek =
0.72, 4 variables -

The delay of CLB of 3090 is 4.5 nS, the delay for CLB of
4085XL 1s 1.2 nS.

4085 has array 56 * 56 and 448 user 1/O pins.



=’§_=—-=‘ 2\ 115188

b 4 %f/’/?”él Ivan N :

cCM will run 4 TIMES TasSter than software approach



Jhdergraduate Projects

AL INX
- ALTER

Group Learning behaviors



Jhdergraduate Projects

AL INX
- ALTER



SpIdERIFcontrol - phase one

Srerrg



SpIGERIFcontrol - phase two

Srerrg



Gelffi= fel

Srerrg



|der | control
- phase five:
. sua ércomputer

: Universal
o4 L_ogic Machine

Cdllelrad




VieWES eir®peration

egramme 0] (_r.

er, society of robots,
human-robot interaction)



