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• It has long been the dream of many people to design a robot that
learns from its own mistakes in a real environment.

• From Asimov’s “I, ROBOT” to Furby, people have been
enthralled with the concept of a thinking machine.

• However, getting a robot to learn from its mistakes is not all that
futuristic.

•The advances in Artificial Intelligence, Neural Networks, Genetic
Algorithms, Data Mining and Functional Decomposition have
opened the doorway to a multitude of learning strategies.

•Today, these technologies have even found practical applications
in areas as robotics and large data-base mining such as in the health
care field for diagnosing diseases or other medical conditions.



•The aforementioned learning techniques are all
very similar in some way.

•They update their parameters by an error or
approximation method from sampled data and/or
from some type of cost function.

•This is the general method of any learning
system, but a distinction is made between weak
and strong criteria.

•The aforementioned techniques utilize weak
criterion learning.



• Constructive InductionConstructive Induction (or Logic Synthesis in
design automation) uses a similar method of
evaluating its cost or fitness but uses a strong
criterion which means that the system communicates
concepts learning in symbolic form.

• This is difficult to ask a ANN or Fuzzy Network or
Genetic Program for a symbolic reason as to what
concepts it learned.

• This method is used for Learning Hardware, and
that is why is finds its applications in Robotics.



•    Don’t assume that this is always a humanoid or
an android of Star Trek

• The Robot  will
• function in his/her/its environment,

• learning from its mistakes.

•  The learning procedure is fairly basic and consists
of two stages:

• 1) Learning Phase1) Learning Phase

•• 2) Acting Phase2) Acting Phase



•  Phase 1Phase 1 is the phase where we examine our state and
determine how we should construct and tune our network.

• Phase 2Phase 2 involves using our newly tuned network to
interact with the environment. That is, running the
network on a data set input.

• This particular 2-phase process is common to probably
all the intelligence engines.

• Some perform the two phases only once and others
continuously iterate through the two-phases.



••Learning in HardwareLearning in Hardware is not all that dissimilar to how
human intelligence works.

•Logic algorithms derived from human knowledge tend to be highly
accurate, very sophisticated, and very high quality.

• However, implementing these concepts into software becomes very
inefficient.

• Learning Hardware uses the concept that human thought consists
of abstract use of symbols.

• A symbolic representation of learning lends itself to hardware
realization where symbolic mathematical optimization in hardware is
performed with techniques such as graph coloring, satisfiability, and
decomposition.

•Methods which support Occam’s Occam’s Razor.Razor.



This symbolic approach shouldn’t lead us to the
conclusion that a system (such as a robot) can only learn
what data is fed to it.

That is, the power of generalizing is lost.

This is not true.

The concept of generalizing in symbolic logic is dealt with
by relations.

Relations and multi-valued logic allow for intelligent
generalizations.



Even in the case of a single bit data, we still have the concept of a Don’t
Care (X).

During the logic synthesis stages from learnt data, logic is created in
hardware.

This logic must provide an output for all possible inputs, even those it
did not have access to during learning (i.e., data it was not trained on).

That output is now a  generalization, and logically this generalization
will hopefully show some intelligent reasoning.

Also, since the hardware is synthesized via minimization techniques, the
generalization might also satisfy Occam’s Razor.

(It is noted a powerful feature of ANN is their ability to generalize, in
which generalization is more accurate for smaller highly efficient
networks.)

A very simple example of learning from given data and generalizing.





Hugo De Hugo De Garis Garis announced theannounced the
BrainBuilding BrainBuilding and and RobokonekoRobokoneko



CAM-BRAIN MACHINE (CBM)CAM-BRAIN MACHINE (CBM)
■■ The CAM-Brain Machine (CBM) is a piece ofThe CAM-Brain Machine (CBM) is a piece of

specialized "specialized "evolvableevolvable hardware" which grows hardware" which grows
and evolves cellular automata based neuraland evolves cellular automata based neural
network circuit modules in about a second.network circuit modules in about a second.

■■ This is so fast that from now on it will beThis is so fast that from now on it will be
practical to build artificial brains by assemblingpractical to build artificial brains by assembling
tens of thousands of these quickly evolvedtens of thousands of these quickly evolved
modules into humanlymodules into humanly architected architected artificial artificial
brains.brains.

■■  The modules (evolved one at a time by the The modules (evolved one at a time by the
CBM) are downloaded into a gigabyte of RAM.CBM) are downloaded into a gigabyte of RAM.



■■ The CBM can then update the 3D cellularThe CBM can then update the 3D cellular
automata cells in the RAM at a rate of 150 Billionautomata cells in the RAM at a rate of 150 Billion
a second, updating an artificial brain consistinga second, updating an artificial brain consisting
of 32000 modules (40 million neurons) at a rateof 32000 modules (40 million neurons) at a rate
of 300 times a second, fast enough for real timeof 300 times a second, fast enough for real time
control of our life sized kitten robotcontrol of our life sized kitten robot
""RobokonekoRobokoneko".".

■■ The shape and colors of the machine areThe shape and colors of the machine are
symbolic.symbolic.
–– The shape is supposed to represent a slice of cortex,The shape is supposed to represent a slice of cortex,

and its colors (and its colors (greygrey and white) represent the outer and white) represent the outer
""greygrey matter" of the cortex (i.e. the neurons) and its matter" of the cortex (i.e. the neurons) and its
inner "white matter" (the interconnecting axons).inner "white matter" (the interconnecting axons).



■■ The electronic boards are placed in theThe electronic boards are placed in the grey grey
section. The power supply is placed in thesection. The power supply is placed in the
white section, as shown in the photos below.white section, as shown in the photos below.

■■ If you want to buy one of these machines,If you want to buy one of these machines,
contact Dr. Michaelcontact Dr. Michael Korkin Korkin of of Genobyte Genobyte Inc, Inc,
Boulder, Colorado, USA. We have only enoughBoulder, Colorado, USA. We have only enough
programmable (andprogrammable (and evolvable evolvable) chips () chips (XilinxXilinx
XC6264) for about 8 machines.XC6264) for about 8 machines.

■■ So if you want one, you should get your orderSo if you want one, you should get your order
in quickly, because 3 have already been signedin quickly, because 3 have already been signed
for.for.



■■ Summary of CBM Technical Specifications:Summary of CBM Technical Specifications:
–– Cellular Automata Update Rate (max.): 152 billionCellular Automata Update Rate (max.): 152 billion

cells/second.cells/second.
–– Cellular Automata Update Rate (min.): 114 billionCellular Automata Update Rate (min.): 114 billion

cells/second.cells/second.
–– Number of Supported Cellular Automata CellsNumber of Supported Cellular Automata Cells

(max.): 453 million(max.): 453 million
–– Number of Supported Neurons (max., per module):Number of Supported Neurons (max., per module):

1,152.1,152.
–– Number of Supported Neural Modules: 32,768.Number of Supported Neural Modules: 32,768.
–– Number of Supported Neurons (max., per brain):Number of Supported Neurons (max., per brain):

37,748,736.37,748,736.
–– Neural Module Chromosome Length: 91,008 bits.Neural Module Chromosome Length: 91,008 bits.



■■ Information Flow Rate, Neuronal Level (max.): 12Information Flow Rate, Neuronal Level (max.): 12
GbytesGbytes/s./s.

■■ Information Flow Rate, Dendrite Level (estimatedInformation Flow Rate, Dendrite Level (estimated
average): 36average): 36 Gbytes Gbytes/s./s.

■■ Information Flow Rate,Information Flow Rate, Intermodular Intermodular Level (max.): Level (max.):
400 Mbytes/s.400 Mbytes/s.

■■ Number ofNumber of FPGAs FPGAs: 72 (: 72 (XilinxXilinx XC6264BG560). XC6264BG560).
■■ Number of FPGANumber of FPGA Reconfigurable Reconfigurable Function Units: Function Units:

1,179,648.1,179,648.
■■ Phenotype/Genotype Memory: 1.18Phenotype/Genotype Memory: 1.18 Gbytes Gbytes..
■■ Power Consumption: 1.5Power Consumption: 1.5 KWatt KWatt (5 V, 300 A). (5 V, 300 A).
■■ Computational power (estimated): 10,000 Pentium IIComputational power (estimated): 10,000 Pentium II

400 MHz computers.400 MHz computers.



Evolvable Evolvable Neural NetNeural Net
Supercomputer of De Supercomputer of De GarisGaris









CAM-Brain 3D Cube Circuit Module ImagesCAM-Brain 3D Cube Circuit Module Images

■■ These three images show a CAM-Brain Module atThese three images show a CAM-Brain Module at
different scales.different scales.

■■ A module is a 24*24*24 cube of 3D CA (cellularA module is a 24*24*24 cube of 3D CA (cellular
automata) cells, which contain up to about 1000automata) cells, which contain up to about 1000
neurons (red).neurons (red).

■■ From these neurons grow axons (blue) and dendritesFrom these neurons grow axons (blue) and dendrites
(green).(green).

■■ Lighter blue and green cells contain a signal (1 bit).Lighter blue and green cells contain a signal (1 bit).
■■ Whitened tapered connections to a neuron areWhitened tapered connections to a neuron are

excitatory neural inputs, i.e. the signal adds to theexcitatory neural inputs, i.e. the signal adds to the
neurons' binary counter.neurons' binary counter.



CAM-Brain 3D Cube Circuit Module ImagesCAM-Brain 3D Cube Circuit Module Images

■■ Darkened tapered connections to a neuron areDarkened tapered connections to a neuron are
inhibitory neural inputs, i.e. the signal subtracts frominhibitory neural inputs, i.e. the signal subtracts from
the neuron's binary counter.the neuron's binary counter.

■■  If the counter value goes over a threshold value If the counter value goes over a threshold value
(usually 2), the neuron fires a binary signal into its(usually 2), the neuron fires a binary signal into its
axons.axons.
––  Cube1 24*24*24 3D CA cells in a CAM-Brain circuit module Cube1 24*24*24 3D CA cells in a CAM-Brain circuit module
––  Cube2 24*24*24 3D CA cells in a CAM-Brain circuit module, Cube2 24*24*24 3D CA cells in a CAM-Brain circuit module,

zoomedzoomed
––   Cube3 24*24*24 3D CA cells in a CAM-Brain circuit  Cube3 24*24*24 3D CA cells in a CAM-Brain circuit

module, zoomed againmodule, zoomed again













… and what… and what
about PSU?about PSU?







Evolving or Learning inEvolving or Learning in
Hardware?Hardware?

� Evolvable Hardware is Genetic Algorithm PLUS
reconfigurable hardware

�� We propose We propose Learning HardwareLearning Hardware as any learning as any learning
algorithm PLUSalgorithm PLUS reconfigurable reconfigurable hardware hardware

�� Learning algorithm can be realized in software or inLearning algorithm can be realized in software or in
hardware.hardware.

Machine Learning becomes a new and most general system
design paradigm
It starts to become a new hardware construction paradigm as
well



Universal Logic MachineUniversal Logic Machine
��   Synthesis and Decision problems reduced to NP-hardSynthesis and Decision problems reduced to NP-hard

combinational combinational problemsproblems

�� Combinational Combinational problems reduced to simpleproblems reduced to simple
combinational combinational problems such as graph coloring, setproblems such as graph coloring, set
covering, covering, binatebinate covering, clique partitioning, covering, clique partitioning,
satisfiability satisfiability or multi-valued relation/functionor multi-valued relation/function
manipulationmanipulation

�� Cube Calculus Machine (CCM) operates on multiple-Cube Calculus Machine (CCM) operates on multiple-
valued cubes (terms of MV valued cubes (terms of MV literalsliterals).).

�� First variant uses two FPGA 3090 chips and secondFirst variant uses two FPGA 3090 chips and second
the DEC-PERLE-1 board with 23 chipsthe DEC-PERLE-1 board with 23 chips

�� General Special-Purpose computer for Cube CalculusGeneral Special-Purpose computer for Cube Calculus



Universal Logic MachineUniversal Logic Machine
��   Phase of learning (construction, synthesis)Phase of learning (construction, synthesis)

��  Phase of acting (function evaluation, state machine Phase of acting (function evaluation, state machine
operation)operation)

�� You cannot redesign standard computer hardwareYou cannot redesign standard computer hardware
when it cannot solve the problem correctly.when it cannot solve the problem correctly.

�� The Learning Hardware redesigns itself using newThe Learning Hardware redesigns itself using new
learning examples given to itlearning examples given to it

�� Michie Michie makes distinction between black-box andmakes distinction between black-box and
knowledge-oriented learning systemsknowledge-oriented learning systems

�� Concepts of  “weak” and “strong” criteriaConcepts of  “weak” and “strong” criteria

�� “The system satisfies a weak “The system satisfies a weak criterium criterium if it uses dataif it uses data
to generate an updated basis for improvedto generate an updated basis for improved
performance on subsequent data” (Neural, Genetic)performance on subsequent data” (Neural, Genetic)



What is most important in robotics?What is most important in robotics?

■■ Speed ofSpeed of
processing dataprocessing data
in real timein real time

■■ UnderstandingUnderstanding
what is going on,what is going on,
rather than usingrather than using
black boxesblack boxes

■■ Building model ofBuilding model of
the world aroundthe world around

Our algorithms proved toOur algorithms proved to
be useful and give verybe useful and give very
good quality solutions ingood quality solutions in

---  FPGA synthesis---  FPGA synthesis

--- Data Mining--- Data Mining

So now let us try theSo now let us try the
challenge of ROBOTICSchallenge of ROBOTICS



Why we do not like theWhy we do not like the
Genetic Algorithm?Genetic Algorithm?

➨➨  Our criticism is about using GA for digital circuits Our criticism is about using GA for digital circuits

➨➨  No explanation is given by a GA No explanation is given by a GA

➨➨  It is very slow comparing to any EDA tool It is very slow comparing to any EDA tool

➨➨ It makes no use of human knowledge and yearsIt makes no use of human knowledge and years
of accumulated engineering/research experienceof accumulated engineering/research experience

Practically, it is not convergent
It is difficult to control
We do not know of any “real” success story of using GA
in digital design



Universal Logic MachineUniversal Logic Machine

�� CombinationalCombinational problems reduced to simple problems reduced to simple
combinationalcombinational problems such as graph coloring, set problems such as graph coloring, set
covering, covering, binatebinate covering, clique partitioning, covering, clique partitioning,
satisfiability satisfiability or multi-valued relation/functionor multi-valued relation/function
manipulationmanipulation

 Cube Calculus Machine (CCM) operates on multiple-valued
cubes (terms of MV literals).
First variantFirst variant uses two FPGA 3090 chips and secondsecond the
DEC-PERLE-1 board with 23 chips
General Special-Purpose computer for Cube Calculus

 Synthesis and Decision problems reduced to NP-Synthesis and Decision problems reduced to NP-
hard hard combinational combinational problemsproblems





■■ DECstationDECstation
and theand the
DEC PERLEDEC PERLE
1 board1 board



�� The high quality of The high quality of decompositional decompositional techniques intechniques in
Machine Learning, Data Mining and KnowledgeMachine Learning, Data Mining and Knowledge
Discovery areas was demonstrated by severalDiscovery areas was demonstrated by several
authors; Ross (Wright Labs),authors; Ross (Wright Labs),BohanecBohanec, , BratkoBratko//ZupanZupan,,
PerkowskiPerkowski//GrygielGrygiel,,PerkowskiPerkowski//LubaLuba//SadowskaSadowska,,
JozwiakJozwiak, , LubaLuba, Goldman, , Goldman, AxtelAxtel..

�� Small learning errors. Natural problem representationSmall learning errors. Natural problem representation

We compared the same problems using several methods:
decomposition, decision trees, neural nets, and genetic
algorithms
Decomposition is clearly the winner but it is slow because the
NP-complete problem of graph creation and coloring is
repeated very many times.



Decomposition of RelationsDecomposition of Relations



Good guysGood guys

Bad guysBad guys

JohnJohn MarkMark DaveDave JimJim

AlanAlan

NickNickMateMate RobertRobert



Good guysGood guys

Bad guysBad guys

JohnJohn MarkMark DaveDave JimJim

AlanAlan

NickNickMateMate RobertRobert

A - size of hairA - size of hair

C - size of beardC - size of beard D - color of eyesD - color of eyes

B - size of noseB - size of nose



Good guysGood guys
JohnJohn MarkMark DaveDave JimJim

C - size of beardC - size of beard

D - color of eyesD - color of eyes

A - size of hairA - size of hair

B - size of noseB - size of nose

A’ BCDA’ BCD A’ BCD’A’ BCD’ A’ B’CDA’ B’CD A’ B’CDA’ B’CD

00 01 11 10
00 - 1 -
01 – 1 1
11 - – - -
10 - - - -

ABAB

CDCD

-
-



C - size of beardC - size of beard

D - color of eyesD - color of eyes

A - size of hairA - size of hair

B - size of noseB - size of nose

A’ BC’D’A’ BC’D’ AB’C’DAB’C’D ABCDABCD A’ B’C’DA’ B’C’D

00 01 11 10
00 - 1 -
01 0 1 1
11 - – 0 -
10 - 0 - -

ABAB

CDCD

-
0

AlanAlan

NickNickMateMate RobertRobert

Bad guysBad guys

A’CA’C



C - size of beardC - size of beard

D - color of eyesD - color of eyes

A - size of hairA - size of hair

B - size of noseB - size of nose00 01 11 10
00 - 1 -
01 0 1 1
11 - – 0 -
10 - 0 - -

ABAB

CDCD

-
0

A’CA’C

Generalization 1:Generalization 1:

Bald guys with beards are goodBald guys with beards are good

GeneralizationGeneralization 2: 2:

All other guys are no goodAll other guys are no good





Induction of Logic Formulas fromInduction of Logic Formulas from
ExamplesExamples

b

c

■■ Multi-Valued multi-output (Multi-Valued multi-output (combinationalcombinational) relation in) relation in
tabular formtabular form

d

a
X1 X2 Y1 Y2

0,2
0,1
2
1

1
0
0
1

-
0,2
1,2
1,2

2
1
0
2

Record
from
data 
base

Input 1 input2 output1 output2



Induction of State Machines fromInduction of State Machines from
Temporal Logic ConstraintsTemporal Logic Constraints

■■ From the previous table Y1 denotes a relation output. X1 and X2From the previous table Y1 denotes a relation output. X1 and X2
together with output Y1 specify an (oriented) relation. Relationtogether with output Y1 specify an (oriented) relation. Relation
can be used to express facts as :- this color is red or white butcan be used to express facts as :- this color is red or white but
not yellow or black. Symbol Y2 denotes  a function output;not yellow or black. Symbol Y2 denotes  a function output;
Y2(X1,X2). Y2(X1,X2). Rowa Rowa c and d have only one value for each attribute,c and d have only one value for each attribute,
so they are so they are mintermsminterms..

■■  Rows a and b have more than one value for attributes, so they Rows a and b have more than one value for attributes, so they
are cubes. Each row can be thought of  as a record from a dataare cubes. Each row can be thought of  as a record from a data
base, or their set, or a collection of image features after imagebase, or their set, or a collection of image features after image
preprocessing.preprocessing.

■■ Observe, however that although such language is quiet powerfulObserve, however that although such language is quiet powerful
for ML, DM, and KD from data bases applications, it cannotfor ML, DM, and KD from data bases applications, it cannot
specify time, it is thus too poor to describe state machines,specify time, it is thus too poor to describe state machines,
regular expressions, regular expressions, petri petri nets, path expressions, sequentialnets, path expressions, sequential
netlistsnetlists, grammars and other models, , grammars and other models, tha tha t are used in speecht are used in speech

d i iti b ti d thd i iti b ti d th





• Now, we have a data-base of good girlfriends and bad
girlfriends that can be described by their four attributes.

• We should see how learning in Hardware is much like
logic-design (using K-maps) and generalization is similar
to taking advantage of “Don’t Cares”.

• Now let’s look at our example data base….



The Characteristic Key:

Before we introduce our data-base of good and bad
girlfriends, we first need to encode their characteristics as states
before. Each girl is given a 4 bit code4 bit code. The first bit is her Eye ColorEye Color
(0=dark, 1=light), the second is Hair LengthHair Length (0=short, 1=long), the
third is Height (0=short, 1=tall), and the fourth is WeightWeight
(0=skinny, 1=healthy). So, for example:

1111

Would represent a girl with light eyes, long hair, tall, and of
a  healthy weight. Now we can finally go to our data base example:



First, the sample “GOOD” girlfriends:

0000              1011               0001               0010

0100                1100                  0110                    1100

And lastly, our data-base of “BAD” girlfriends



Of course, the pictures have absolutely no correlation to my previous girlfriends that were
“bad”.

Next, we want to learn from this data. So, let’s construct a K-Map
with output being “GOOD=1” and “BAD=0”. And the inputs are
the four input bits that describe a prospective girlfriend.

1 1 X 1

0 X X 0

0 X X X

X X 1 X

ab

00

01

11

10

cd    00        01          11           10

“BAD”=0

“GOOD”=1



So, in our example we obtained an expression for the GOOD
girls as though we were performing logic minimization with
a K-Map.

At the same time, we took advantage of the Don’t Cares to
generalize and simplify our logic.

So what did our data-base reveal? The output function or
“Rule” for a GOOD girlfriend was:

GOOD = not(b), Where b = Hair Length

So, good girlfriends are ones with short hair. And
therefore, BAD girlfriends can be generalized to not(GOOD)
or BAD = b, or girls with long hair.

Now your robot can tell you if your date tonight is good or
bad for you :).



• This was a very simple example, but
the steps were somewhat similar.

•      We see that symbolic representation and
optimization are natural and we have a solid
foundation in symbolic theory from many
years of human invention. -->



•This is another powerful point of Learning Hardware
using Logic Synthesis (or Constructive Induction).

•We have at our disposal years of engineering experience
to benefit from.

• This differs greatly with evolvable techniques in which
a decent solution is found but the resulting network can
be chaotic, complex, redundant, and perplexing.

•It is this random behavior that interest some people, but
for Hardware Learning, we are not interested in evolving
a circuit that uses 100 gates to perform the simple
operation of A EXOR B.



.type.type mv mv

.i 9.i 9

.o 1.o 1

..ilbilb i0 i1 i2 i3 i4 i5 i6 i7 i0 i1 i2 i3 i4 i5 i6 i7
i8i8

..obob o0 o0

..imvimv 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

..omvomv 2 2

.p 156.p 156
0 0 0 1 1 - 1 - -   10 0 0 1 1 - 1 - -   1
0 1 1 0 0 - 1 - -   10 1 1 0 0 - 1 - -   1
1 0 1 0 0 - 1 - -   11 0 1 0 0 - 1 - -   1
0 1 0 0 - 1 1 - -   10 1 0 0 - 1 1 - -   1
1 0 0 0 - 1 1 - -   11 0 0 0 - 1 1 - -   1

Relation Function

Relation

0 1 0 0 - 1 1 - -   10 1 0 0 - 1 1 - -   1
1 0 0 0 - 1 1 - -   11 0 0 0 - 1 1 - -   1
0 0 - 0 1 1 1 - -   10 0 - 0 1 1 1 - -   1
0 1 - 0 1 0 1 - -   10 1 - 0 1 0 1 - -   1
1 1 0 - 0 1 0 - -   11 1 0 - 0 1 0 - -   1
1 0 1 - 1 0 0 - -   11 0 1 - 1 0 0 - -   1
0 1 - 1 1 0 0 - -   10 1 - 1 1 0 0 - -   1
0 1 0 1 - 0 - 1 -   10 1 0 1 - 0 - 1 -   1
- 0 1 1 0 0 - 1 -   1- 0 1 1 0 0 - 1 -   1
0 0 - - 0 1 1 1 -   10 0 - - 0 1 1 1 -   1
- - 0 0 1 0 1 1 -   1- - 0 0 1 0 1 1 -   1
0 1 - - 0 0 1 1 -   10 1 - - 0 0 1 1 -   1
.end.end

. .type. .type mv mv

.i 3.i 3

.o 1.o 1

..ilbilb i3 i4 i5 i3 i4 i5

..obob s2.1 s2.1

..imvimv 2 2 2 2 2 2

..omvomv 4 4

.p 8.p 8
0 1 0  10 1 0  1
1 1 0  01 1 0  0
1 1 1  21 1 1  2
1 0 0  11 0 0  1
1 0 1  01 0 1  0
.end.end

.type.type mv mv

.i 3.i 3

.o 1.o 1

..ilbilb i0 i1 i2 i0 i1 i2

..obob s2.0 s2.0

..imvimv 2 2 2 2 2 2

..omvomv 4 4

.p 8.p 8
0 1 0  10 1 0  1
0 1 1  00 1 1  0
1 1 0  01 1 0  0
1 1 1  21 1 1  2
1 0 0  11 0 0  1
1 0 1  01 0 1  0
.end.end

. .type. .type mv mv

.i 3.i 3

.o 1.o 1

..ilbilb i3 i4 i5 i3 i4 i5

..obob s2.1 s2.1

..imvimv 2 2 2 2 2 2

..omvomv 4 4

.p 8.p 8
0 1 0  10 1 0  1
1 1 0  01 1 0  0
1 1 1  21 1 1  2
1 0 0  11 0 0  1
1 0 1  01 0 1  0
.end.end



Lattice diagrams realizeLattice diagrams realize
regular layout of logic gatesregular layout of logic gates



■■ Lattice Diagrams - Generalization ofLattice Diagrams - Generalization of
Binary Decision Diagrams and Binary Decision Diagrams and KroneckerKronecker
DiagramsDiagrams

■■ New data structure for layoutNew data structure for layout
minimizationminimization

■■ Optimization of area, speed and powerOptimization of area, speed and power
■■ Predicts results of many levels ofPredicts results of many levels of

synthesissynthesis
■■ Ideal for future technologiesIdeal for future technologies

Lotus: Layout-Driven Logic SynthesisLotus: Layout-Driven Logic Synthesis
for for submicron submicron technologiestechnologies





MvgudMvgud

SynthaSynthaTraceTrace

LotusLotus

FPGA programmingFPGA programming

World ModelWorld Model

Faster!!Faster!!

sensorssensors

Image ProcessingImage Processing

Image AcquisitionImage Acquisition

cameracamera

RobotRobot  knowledgeknowledge

State machinesState machines

DualDual

MUVALMUVAL
architecturearchitecture



Software Architecture 1Software Architecture 1

Behavior 1Behavior 1

Behavior 4Behavior 4Behavior 2Behavior 2

Behavior 3Behavior 3 Behavior 5Behavior 5



Software Architecture 2Software Architecture 2

Behavior 1Behavior 1

Behavior 4Behavior 4Behavior 2Behavior 2

Behavior 3Behavior 3
Behavior 5Behavior 5



Software Architecture 3Software Architecture 3

Behavior 1Behavior 1

Behavior 4Behavior 4Behavior 2Behavior 2

Behavior 3Behavior 3
Behavior 5Behavior 5

learninglearning



Software Architecture 4Software Architecture 4

objectobject

learninglearning

controllercontroller WorldWorld
modelmodel

controllercontroller WorldWorld
modelmodel

controllercontroller WorldWorld
modelmodel



■■ Speedup on 3 variables is 0.72, 4 variables -Speedup on 3 variables is 0.72, 4 variables -
0.72, 5 variables - 0.80.72, 5 variables - 0.8

Frequency of FPGA 3090 was 4MHz

Frequency of Sun Ultra was 270MHz

If we map the entire CCM into one chip delay would be
reduced
New chips are faster and denser.

The delay of CLB of 3090 is 4.5 nS, the delay for CLB of
4085XL is 1.2 nS.

4085 has array 56 * 56 and 448 user I/O pins.



■■ We can map entire CCM We can map entire CCM intointo  oneone 4085 4085

Clock of 4085 is 20 MHz

CCM will run 4 times faster than software approach

Clock of CCM is five times slower than Sun



Undergraduate ProjectsUndergraduate Projects

FPGAFPGA

EPLDEPLD

EPLDEPLD

XILINXXILINX

ALTERAALTERA

CYPRESSCYPRESS

Group Learning behaviors



Undergraduate ProjectsUndergraduate Projects

FPGAFPGA

EPLDEPLD

EPLDEPLD

XILINXXILINX

ALTERAALTERA

CYPRESSCYPRESS



Spider I control - phase oneSpider I control - phase one

stampstamp



Spider I control - phase twoSpider I control - phase two

stampstamp radio radio

PCPC



Spider I control - phase threeSpider I control - phase three
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Modes of OperationModes of Operation

■■ Programmed (theater,Programmed (theater,
demos)demos)

■■ LearningLearning
■■ Interactive (interactiveInteractive (interactive

theater, society of robots,theater, society of robots,
human-robot interaction)human-robot interaction)


