EVoivable
Sardware or
SEearning
Hardware?

- LEARNING IS
DESIGNING A
NETWORK

. Evolv]ng IINdEavare versus learning in
freifclyyzlre., -

NI rECEAVEASEIe de /el'o’b“ ents in the area of soft

cOIMpULINERICCHIIET) Jnrlllrhu'“_ rtificial Neural Networks
(ANINS)REEllularNetraliNets (CNINS), Fuzzy Logic, Rough
SeLs) GencueyAgpthms (GAS), Genetic and Evolutionary
Progicmiminee

¥ " .
. Mixed mety orJJ @i thie albeve are used to solve complex or poorly defined

proble that they propose a way of automatic
learni '_ oy thersyst Tﬁé computer Is taught by examples rather than
completely prog@m_med In what to do.

This philosophy: alse dominates the areas of Artificial Life,
solving problems by analegy to nature, decision making,

knowledge acquisition.

Machine Learning thus becomes a new and general system
design paradigm unifying these previously disconnected
research areas.

EVeI\VebIE B Ware (EFVY) means th e ealization of genetic algorithm
(CA) 101 r2eopiilejtireid e piElelyWEl (s i

BEINENIEIEWENER9PIOEACH CONSISLS]; using feedback from the
CVIRGRMENTFLO CIEATE! 8 Seguential netw o k nd subsequently realizing
tRISHELVOIKAINFERGAS: '

p)

oniversalrLogicaviacine (UL J\/’bro ose%e creation of a learning
macnine PasEEion JDJJ(principles; in particular temporal logic,
CoNstrucUVENnEUction, rrr id' rough set theory.

Learning| Hardware'as any: mechanism that leads to the improvement of
operation including evolution-based learning. In the process of learning
a network (combit |on#r sequential) is constructed that stores the
knowledge acquired in the learning phase. The learned network is then
run on old or new data. Responses may be correct or erroneous. The
network behavior is then evaluated by some cost -

~
@,

lREPCHeR e State Machines from
liempoeral Logic Constraints

s

8 mltiggrEin) 'Lr.h]nK]'rngj consists in abstract

USENeIESyImbels rather than assigning

- NUMERCAWEIgTS te neurons.

" The built fnathematical
optimization technigues such as
graph coloring and satisfiability

LEARNING IS DESIGN

“INEWOIHECEIIRIEICONIIINBHEION diScrete.
S GOl EeEIRGIgSETIENEI. SYnclrenous or asynchronous.

— Boaglezn, Mult-Velvee FiEay, Alefel ol g=l[em
SISEmMENVAYACRUESIoNIng th S network by positive
(and IEGEVEYREXCINIIES.

» |
i sorne wey of evaluating 2 on data

Trus, tre structure of the nety must be created, and
o / | - T
IS0 its eJemama MUSE be' designed, adapted, selected from a
enu, ortlneadfinrtne

The network can be realized in or as

Amdahl' Law Is crucial for hardware and mixed designs.
Not reasonable to speed up only part of computation

TRANSFORMING T

ORCENHENEWYBIFAIAS BEEH IOURTESIT can be to another

NEWork, EIthERCompIetely equivalent to it or being its generalization.

S EeInStECENINRLIEGEF9aSed netial net or a multi-valued (MV) decision tree
caliIe hothrcompiled to binary. JDJL’JH es

Trie riet czn o2 designed using [ru all at once from the

complete set eiexanplest(an approach used for diagnostic trees), or it can

Joe buult mcrementall (J]}m done for neural nets).

| F\ can be directly compiled to binary
hardware without the intermediate medium of cellular automata.

A different than the genetic algorithm can be used to
construct the ANN.

VARIOUS APPRC

“WWhHENTE SYStEMMas
IMEIEVERT MOV

~ Constructionim
- (anerym e S[C

Different - _ﬁr
and Evolvable Hardware disagree in the network
model selection and network construction methods.

EVOIVING 0 Learning In
Saleware?

VIECIIENEECINMINORBECOIES) & new and most general
SyStemdesIgn paradiom e
[STANTSOMELOME & new: hardware construction
paradigiiaswell | =

S Evolvable Hardwagilis Ge

econfigurable :

\ We propose lLearning Hardware as any learning

algorithm PLUS =
Learning algorithm can be realized in software or in
hardware.

PLAN OF THIS

D CompeENerIcVErSUSTANN and GA approaches to
EaIIngs .
4 mrrorJn the concept of LLearning Hardware .

4 ge representation in the
: (ULM):

Hardware usiﬁ'gﬁhe DEC-PERLE-1 board.

A computer with instructions specialized
to operate on logic data: Cube Calculus Machine.
A processor for . Curtis

Decomposition Machine.

LOGIC APPE

LEARNING: OU

Wecelig) gzlicie various netorsiie for learning:
—StERIEVEIFAND/OR(SLJrrJ~O'f~Produr S (SOP), or DNF),

— Exclusive=@rESum-of-Products (ES
E 1 S ENANBIZANIBIAG)EE etworks
. JEINANIE J/fbr TANT) networks,

cision treesi(C4.5),

ultilevel'c le COl S|t|on structures.

We comre alsc \II’IIOUS logic, non-logic and mixed

search, rule-based, set-covering, graph-coloring,
genetic algorithm (including mixtures of logic and GA approaches),

genetic programming, articial neural nets, and simulated
annealing.

LOGIC APPF
LEARNING: THE,

e comorlred 0)L)f rwrv\/or} Shi JJ S On;

= in2)r complexity (Clgezlngls R Jr),

— Varous Wely/Sieircalc LJJa'tJrLg the

r fiz Decomposed Function Ce ?DFC) and its extensions

or M\/ [o]c JJr WETE U "d as common measures of complexity,
ieoeretically’ proven properties.

LOQIIC approe espeC|aIIy the MV decomposition

techniques, are JloJEto other approaches with respect to
smaller net complexity' and learning error.

They should be combined with
and

GENETIC ALGCO
ARE POOR. tv

SASEd OnISmalifcomiplexity” rnrJrl 2Iror, the especially poor
ESUIESRVERE OpTaINEGFUSING the

We der netknew: el any. prok e'h%r which a GA-based

dlgertamiveuldsee superor to a logic algorithm.
- 4 :
We want e make use of the

4ol rience AfGUI approeach, rather than to “"reinvent”
ggo [thms “]nc. A,

On the other I ﬁor large data the logic algorithms
are relatively slow,

¢
L

(__):‘chfbdr)
— 2 The lear

nllg) g phase is performed in software and the network is next
downloa;

Jedz rlrrl\@? fior execution (fuzzy logic controllers).

OW| edge ased expert system.

Both the Iea‘r#ng and the execution phase are performed In

hardware. This Is the area of classical ANNs, CNNs and "intrinsic"
evolvable hardware.

Software-hardware co-design in one or in both phases. Most
prospective approach in our view.

S EEl ProgiaimmeanierAnalogiAnrays, Cellular Neural Nets,
ArtificialiNetaifNeLs, Multi-Valued EPGAS, Fuzzy Logic
Progrmmm?lblp Arrays, anariViixed FPAAS.

Learning levels:
1. arithmetic operations (ANNs, Fuzzy Logic functions) - too high.
2. switching transistors for routing connection paths - too low.

. Because in binary FPGAs everything is
realized on the level of binary logic gates and flip-flops, the
should be also performed on the level of logic gates.

uomrrrJon, aspecially fior reconfigurable
SESUELENTC hlnes, logic synthesis, technology
cEment and routing, partitioning, timing
-

.

We do not believe that the to
evolutionary hardware (Brain Builder Group) will be
practically acceptable for most commercial applications
of Learning Hardware.

= Useprevieustiatimea

zlle) rlooJ/ manyAmat

S'Era'zngef

The variants evaluation/selection should be also performed at
abstract levels, before mapping to low-level field-

programmable resources, such as switches, for which
chromosomes are long and the operation of GA is inefficient.

logic network description.
glelfelyvelfe real'gﬁtt]on oI |
- tWorFlevel AND/OR mWers, two-level AND/EXOR minimizers,
minimizers, and functional (Ashenhurst-Curtis)

The (quasi)opti \ nstructed network is mapped to
and realized using standard EDA tools:

partitioning, placement and routing and other EDA tools from Xilinx and
commercial EDA software companies.

The knowledge of the machine is
representing logic nets.

LEARNING HARD'

between various learned nets, Jggzsiclil glon rules that also can be acquired
autemeaticallys '
ASI tEMETWOIKISBIVES NEW! propblems, the
dECISIonS arer-leatl e fand the |
radesJ J nead. ,

W data sets and training
S repeatedly automatically

using standard FPG

The same physical FPGA resources are multiplexed to implement:
the virtual human-designed “learning hardware"
and the automatically learned “data hardware".

pmian (eACETASSS

World Mocle]

Irnage Process

Irnage Accluisitiorn)

5eNsors m

camera

Rooot krogylaclea
rOQO0OT 1oy _,_,J_, <::|

Thie "learning hardwereSr:\leRigls
harclwz

vl

Lotus

FPGA progreirrnirig

State rnacnines

Rooot knowlecdge

While the IS designed once by
humans and cannot be changed, the
can be permanently modified.

COMPARISON OF BRAIN BUILDER CAM-BRAIN

MACHINE (CBM) AND UNIVERSAL LOGIC MACHINE

- Universal Logic Machine
ViedelFoirEearming Z i mti-VaIued Logic Language

IHOW tHE RETS Capleile Alejo)fiiala) Multi-Valued Logic Synthesis,
ConStrCEet AN wn]ng " Constructive Induction,
j Rough Theory
SCallbiarAutenmata MV logic networks and state machines

with arbitrary structures and arbitrary
operators realized as look-up tables
language expressions

Mapped to: array of binary EP 5As array of binary FPGAS
Hardware platform: Xilinx 6000 series Xilinx 3090 + on-board memory
CBM DEC-PERLE-1 board + DEC workstation

To Spéed-up both the and the

phases of application software that iIs now used In
Machine Learning, Knowledge Discovery from
Databases, Data Mining, and robotics.

PRACTICAL GOAL

“PSOIVENRNEWISECOES and with error as small as the
E2mING EOIRGI OURcUITEnt software, the following
DroPIENSE -
= I Evenfdatersetiirom the U.C. Invine Repository of Data
| l\/I]rJ];.Jg.benchmarks as Well our benchmarks. Including all
- VersionstoMarge examples such as Breast Cancer, and
Michalski'sSirains with 30 trains (Grygiel). They take now up
to 30 minutes’in software.
2. The recognition of cervical mucus fearning microscope

Images for ovulation prediction. It takes now minutes in
software.

3. The recognition of 3-dimensional images of rooms and
corridors for mobile robot orientation (PSUBOT). This task
takes now up to 17 minutes in software.

DIV rinrl }’JJ{' a&

don t Car O MBKE).
Operatio shou Abe eaS|Iy realizable in hardware.

binary and Multi-Valued Cube
Calculus (Dietmeyer), Decision Tables, Rough Sets (Pawlak),
Rough Partitions (Luba), Labeled Rough Partitions (Grygiel),
Binary and Multi-Valued Decision Diagrams.

Tabular representation of data (Codd).

(99% of

LOGIC PATIER

I EACHNOW CEINIEN 'ruug it efpas a record from a data base, or
LHENTSERNOIRERCOlIECHON O (IMa! ge | jieatures after image
PIEPNOCESSING® .

Standard don't cares versis generall
Comparnarewsiand cellmns off such table can be done
~ partally Inparlieigna ngri&r e to nd patterns in data.

Patterns used to:
generate primesdmplicants,

L4
n\ o
Co

decompose function,

find a "bound & set” or "free set” of variables for decomposition,
remove redundant vaﬁfoles,

find essential variables,

find essential implicants, etc.

LOGIC PATTERNS

EiRCIRERegeranelyZIing patterns in such tables is a
SURJECTROIFROUON Sets ineory (Pawlak), Logic
SYAESIS, and DatarBase Theory (Codd).
" Vianyssimigiper competing algorithms for the
~ saime tasiahave been) developed in these areas
s Aer the tabular data model.
Basicioperait ops'éf algorithms
1o ‘columns,

them,
rows or columns, etc.

“SVulitEValuedimulti-eutput (combinational) relation in

Inputl input2 gugpyty OUtPUL2

TWO- AND OMNE-L
DATA MO

IWOFdmEnSIGNaINMOEE] canN, to smaller parts.

aSpeller 'tabJes CANFOE EXtIECIEE ES ', In the big table,
SImilaiiy asHtISTdORE; In convolution-| dﬁSP algorithms.

Iwo-dimensionalfre tatio loned to one-dimensional
- Fepresentatens:
l his can be domex'Eile:11)" C
The main advantage ¢ one-ﬁgnsional representations is that they can be
efficiently processed in ¢ , Systolic, ping-pong,
SIMD and pipelined' rdwa__@architectures.

In "Array of FPGAs" environment

where routing long connections is the main design bottleneck.

= generalization of Cellular Automata.

ala

REGRpatitomata

flistERVireRmeERtiIs similar to Cellular
AlLERALENCA)) but dees not require all
AlleMBLe ter vertiiersame: or to be entirely
egulary conpected.

ore fIesability exists thus in this model than
N the CAS, WhICh are a

One-dimensional representations resemble

In Genetic Algorithms, which
allows to use them in evolutionary
computations.

TWO-DIMENSIONAL REPRE

FROM ONE-DIMENSIONAIL

Standard Binary Cube Calculus (CCYENz{e) g C1{ oMb [\Y=] 8

Multi-Valued Cube Calculus (M ©¢ - Su, Brayton, Sasao,
PENKOVSKIL
Generalized MV Cube Calculus (C - Perkowski
(SENCASZ)E “
Simplied Binary Cube Calc - Decomposition
Viachine; Perkewski/Viatison.

mplied MV Cube Calc - Pawlak, Michalski,
Codd - Rough Set Machine, Muraszkiewicz/Rybinski,
Lewis/Perkowski. >

Reed-Muller (FPRM and GRM),
Walsh, Linearly-Independent, Falkowski/Perkowski.

(Luba) and
(Perkowski/Grygiel).

Whytwe de not like the
GENEWCMAIgorithm?

IS OUIFCHUCISTIg aeut LIS]HJ A for digital circuits
NN OREXI) LGNS GIVER DY/ aGA
t0/any EDA tool

I It mekestner user oft human knowledge and years
of ;.ggumuja-mc angineering/research experience

I T 1S VERASIBI comparing

o Practi cally, Itis not convergent
0 It is difficult to gntrol

0 We do not know of any “real” success story of
using GA In digital design

_ea
| CAa

= SYIHIESISRaNUNIDECISION: problems
hard combinational probl |
"/C‘ornb]natlon?lJ 'r'oolerr, reduced to

vinationalproniems.

; suchias graph celoring,

=>set coverlng, bini; covering,

=>cligue partitioning, satisfiability

=>or multi-valued relation/function manipulation

VI hea's ,‘ pproach to
[

simple

n, synthesis)
V‘aluation, state machine

- Concepts of “Weak#and “strong” criteria

> “The system satisfies a weak criterium If it uses data to
generate an updated basis for improved performance on
subsequent data” (Neural, Genetic)

SuEIERCHtErUMm for Learning

SV NSHONEREIENINNEISAUSIIED T the system communicates in
SYIMBEICHOIIMINCONCEPLS thatlit learned

= ConstruicuVESIauction (le/I’Jc'F'.I,- Rough Set Theory
(PEWIEHPIDECISIONNNINEEST (QUinlan), Decision Diagrams,
DISjUnCHVESNOIMEIFEOIMS.

» Occam'siRaZor F Hrm”r)lé

> Learning oni symic |Cd@9i IS the first main point of our
approach, learning en the level of logic gates Is the second

> Our approachi Is based om decomposition of relations and
functions and on synthesis of non-deterministic machines
from declarative specifications

2> “Do-not-knows” become “don’t-cares” for logic synthesis

DECOINPOSILON smcl Structlve Induction

IMERIEIINC Ul O tECO) p03|t|onal techniques In
VIZEHINENNEEEING, Datc I\/Ilnlng and Knowledge
PISCOVER/ alieas ™ Was demonstrated by several
AoreHRess (WHGHE Labs),Bohanec, Bratko/Zupan,
EEIKOWSKI/GIYOIE], Perkoy ski/Luba/Sadowska,
JoZ\WIeremEliaEr, Goldmar Axtel.

Shall]L—)clfﬂlﬂg 2IorS. Mﬂural problem representation
-)W pared the same problems using several

meths: decor Eosition, decision trees, neural nets,
and genetic algorithms

2 Decomposition is clearly the winner but it is slow
because the NP-complete problem of graph creation
and coloring Is repeated very many times.

Extrinsic Verst
Approaches o

Hardw_

SHUSHArSPECTEl mrlrrlvvrrre'&, needed

> OURWOIKSGBES TIFW0 rljregue ns: software and hardware

> Ini softwanessapproach, we developed several -efficient
aI' ithms forsstate machine design and relation/function
decompositionand realization

> Our methods’ are ﬁed to data represented as relations
(many “don’t-knows”)

2 In hardware approach, we developed an accelerator for
basic operations

- yelvVable
/61 dware
f '

HaS Lezrnidy

|
T

HOWAIS Machine Learning
Hardware Realized?

‘ﬂ-

- figuration IS mainly at the

IS data which defines the new
ning) of the FPGA.

* Howeve . 0S are being take to place vital
optimization rou Ines such as decomposition and satisfiability
theory into hardware.

And who knows... Maybe with advances in technology, we’ll
be able to dedicate part of a highly programmable chip with the
programmer itself (in effect, the software is downloaded on to
the same chip that programs itself).

I'ne Process
of Learning

THE PROCESS OF L
HARDWARE WITH FP

ntial “learning” and the next 6
nvergTon into an FPGA.

1) Ba
(RSM).

ﬁ.

* These are usually non-deterministic state machines.
» The functional block contains no temporal variables (time relations).

» The description consists of the input/output specs, initial state specs,
and environment constraints.

nistic and state-minimized
e variables.

graph and the RSM graph such as isomorphisms.

autonomous sta

* (Technology mapping to FSM’s could be used here).

/) The Time based MV logic expressions or RA are decomposed
(utilizing some form of MV functional decomposition).

All variables are converted to binary representations.

1 network is then mapped to
dlocks (CLB) and

‘ t/ routing tools. Each
1 to a binary image of
yvitches in the FPGA.

binary memory patterns representing the
FPGA programming information. The
hardware then undergoes a transition by
switching between a number of evolved
circuits, depending on rules.

23S hew problems, the new
NS are accumulated
s performed again...
2dge or “from scratch”

-

that we mé‘tion temporal logic.

al riables IS briefly discussed

or finite state

machines

«Simplified languages to describe them

*Generalized concepts (Petri Nets, Parallel Machines,
Clauses, etc)

C

| tural

r
0
Jjes
1acC

y arning

Le

Temporal Logic

_ REXIEHSIONeIMPIEdICELENangUage; can e done by introducing variables
tifie., For instanc Ce, row a from the previous
0 themew: language as follows :-

dplelt elee) eJrJ Pnraiserete
a [t

taeErcan PE; rewritten

052 (DFSAZ MR = Y2[2] (L) —————-- at the same moment.
-
We' can SpeciiyAaimitiErny regular grammars, regular expressions,
sequential netlistsiFerr statermachines with mulivalued 1/0 by allowing
Previous: or rIéyT ticks of time, for instance :-

X1[0,2] (t-2) & X2[1] (g) — V2[2] (t+3) -----arbitrary /O times.

Timed binary variables are next internally converted to standard binary
variables, for instance x(t) = x, — x(t-1) = x’, x(t-2) = x”, etc. Similarly,
timed MV variables are internally converted to standard binary variables.

EEREangUages For Learning

very hard for a machine to

1ine data based on time or

"

e data-base of input/output
fg@l‘e to our “learning language”.

| ' ature. Temporal variables are the
same variables we would see in our data-base, except
they have that added time relation.

*This is well suited for creating state machines. This
way, a machine can learn event-driven knowledge.

SIGIIHEL R SBNEIIEINSSigliages For Learning

Marn, Wolt, Gzt aric@zle)erlo[k

Missionaries and Cannibais
— ==

of Pavlov’s
DIotoCol:
other ified

. i
and

Dining Philc
.

We feed the machine basic rules which it could learn

from a data base, such as “the wolf and the goat

cannot be on the same side without the man”, etc.

=y ciple of
Dest/o N
/_e }0 age [

uﬁ'5|t|on of Finite
State Machines from

Examples

Man. Wolf. 'Goat

. Problem Statement - Ai '- e beginning all of them are on

SN ETN 2K GISIIE IVETS glanrr;_ mani shoeuld transport them to
IEEeEKE ENWOlIFand the oat as well as the goat and
"Lhe capPEUENCERRoPENeft alone on the same bank without
anp e veaiNSHIeEVIgated oy mamn Who can take only one

‘Onject WiliaNalink Y
e be glerm Velldelie Sélﬁ'f'st order predicates depending
on discrete time.

The follo in@hﬁe when ini the left bank of the river and
false when on the right bank as follows :-

M(t) - man, W(t) - wolf, G(t) . goat, C(t) . cabbage.
The symbols — , &, |, = , = desighate complemented variable,
logic AND, logic OR, logic implication (—a&b), and logic
equivalence (a&b/ —a& —b), respectively.

(D

ral information. Such as, “if the wolf
ither the wolf stayed there or the
right bank a unit of time before.”

nvented that allows us to
oral relations.

nnot stay on the same bank

(W(t) & GlE)) =
' ion we noted at the top of the page:

The ‘~’ Is the negation of the relation and in this case refers
to the “left” side of the bank.

So,

and ~M(t) is true if he’s on the left.

JIEeEIaiNEegIc specification of
‘Ml Wealt, ogl_r.glnrl Cabbage” Problem

A [GV BlIes) arel first-order predicates
clggericling on discraid e, -
VI(NERIERHENENTIEINI theleft bank and false when
LgENIICINIGIIRENO It oanke™

ESSamEREPPIES toavaranles W(t), G(t), C(t), which
| g

CNoLErtMENVOIRUIERIOat; enaltine cabbage respectively.

on the right bank w d OUL the man:
(WT)RSGE CEaRIe—— ().
(~WT)SSESE g ===V

VignmWolli Geat and Cabbage

Trie godt aridl ez caglpels stay on the left bank and
of) the rignt Darc witnlosisagik
Crcli) & Cliu =i @N
(~Q:(-'g‘) 4 ~C(i))‘ > ~ O
2 RENVelINSERtE el (rght) vank, It means that either
e vvoJr StelEURENET o1 e man has brought it there from
the right (IERvEIK onerunit of: time before:
WT (CWE-D) | ~Wt-1)&Mt-1)& Mt)).

t-1) || Wt-1)& Mt-1)&Mt)).

IRdUCueRreIFState Machines from
IiEmperelttegic Constraints
means that either the goat

he € from the right (left) bank
‘the cabbage :-

gREIENERN(IIgNL) Dank a
StENmEn has pBrovgnt It
JEIoIE; anaditiie same

< C
()80 =M1) VI(t
G((t-1)& M(t-:
;)u V(-1 &M(t))
~ ((r) — (~ ((£~_) C(t-1)& M(t-1)& ~ M(t))
5. Any two ebjectsicannot be brought across the river at the same time
((oﬁww | (6() ~ G(t-1))
(W) - WED)] (C(t-1))
G - 6E-1) | €1 - CE-1)
6. The man Is always on the move:-
M(t-1) = ~M(t)

J\/J t))

a Food for th:o :

“NECIRERCPPIVAIESE Ideas to factory
clLfionpetijop?

Learning from
temporal
formulas?

-

r DUAL: ductlon of
BVE from

Temporal Logic
Constraints

'S from Declarative
fc tlons

en lur 9| time constraints
n@tlon using BDDs
4 1\/I]n]mum~yra”e F Vil synthesis by

- construcwen

| Determinization and specification
completion

Verification using R-resolution (new
method)

8 S
DECIaative specification of temporal
~ CONstiainGS Is, converted to a
flof de S INISHC State machine

(12

";ry‘.
['*" Wisss Easwplsr Windoss Help
N Dlsig) | Ie| @leie] | = !l_L!I | || |] mjw| ®|a|sys)

Imgpuks: W
tpute: W, &, ©

[L mam 18 o Dhe 1ell bank
W - the wolf if & the 1Elt Bank @'\' G:}"'

B - the gost ue on B 1eflk hank

' £ - Lher cabbage % on Lk Left bask j G:} -@ W)
W

§ bl wold amil Bhe goak cannotb FLap on the Gl-1
et bank am on Ehe Tight Bank withsat 'I I

S 5l@, ®

Mf-1]

O

[R=]

@- @ |m oG C

E{ti&i{tidh{EFRliE]

/500 00
%—.;EL.IG 000 00

i P T T I m - " ,,.(Efl’ " -

1 -] [L] "'@ =ch

2 1] GAC 1 e] il "{:fl

3 “ WAL 13

4 2 M B 10 s

5] A 11 [

[“ WEE 14 M ':'

T | M E&EC 11

| “ WaHAL 15 M
3 4 “ WAL 13 o r \
W Fiss duipwl =

B for FEM M

T o o T g S G P M

eictical Applications

“IPIOVEBIVECOITect design of real-time
(reacuve) SY/SI

anrl pretocols
L SYRUIESISIeI MIAImun te
(mom rmJAJJrJr =SMs
Efficientttransiation of net-lists into
minimum-state FSMs
Conversion) of regular expressions into FSMs

FSM design for future technologies
(“canonical machines”™)

ct d
CITlS

'r.

_'. Dus - Eusl]
W '

=S|l]

WP S
UTITS: ¢
Wil o2 T3] &)

L RN U R U B I TR T
AR TR il | i)
v I] | i
L L e L F S LT L S L L L
L L RN Lo S [T
- AT vl
TR 2] v
Eriivit 12wl vl

f‘

Second Stage:
" Syntha and Trace:
Optimization and
Synthesis of

Sythas Structural Synthesis
f EHEN\ %chlnes
m [zlgla pgleipleel ror SV specification
“Nenspaentjogic ;yr hesis algorithms
N Econom]o MpIen -ntat%n of next-state

VHDL output
Synthesis for testability (forthcoming)
Technology mapping (forthcoming)

_'TII'_IHI_-IF*# St SN2) S R E

The cyclic shilt b
for ¥ wssishloe!

FI = A%
F2 = Al
F1 = a2

\
15
Fi
-
iz
1
]

1
(i
i1
i
110

==l -l -]
]

- -
LE L

110

TR

1
1K
11

IOTIITH OTH OITIOOHN IIITH I*'H X0
ok el EFEORTE ok ok LET R b LFT o LR

. mm
o

DEZAGN RESULTS

o~

L™
Fan
T

|

S,
2
‘@

B.

FEM PARSMETERS

-~

-~

£
L
=

L

i

Humts=r ol siates -
Mumis=r of Ines - 1

(s
f S

7
;

g

i rma Tupni, Chapriip wl glyrag ek
= idal F* 3 4 § 4 T
Tauees Femnne .1 10

Foey inpud Fanualiz

O Foirer 7

Pamduy 4

gk e ia

kdui

—

ractical
/—\JDJJJJ AtIonNs

| Himansauided ecn@etlon and design of
ENICIEMIRCON] pller o

A I__QQJC Dyn'mgyh 9) ~ecor omical FSMs

Building ESMs, from universal blocks such as
counters, st gs, EXOR modifiers

Using various éncodings and flip-flop types
Adaptations for PLA, FPGA, ASIC
Producing VHDL output

lIraces ©pti il 45 |0n based on

AULEROMOUS State Machines
Y

- Newreoneept or cy (JJL“ poolean functions

| rmrlmg CES: Of %/ lic** Boolean functions
| ¥

tr
| rlmere LYJOES o"r 0-flops

Pro ties er 1owni and random functions

Multl -Z00Mm Vi aﬂzatlon using MFC

i
cl
fIE

-~ Tugoe - [Traeal) - ~ alE
A W @] x|

ek o e R O T e | e
g [N [_T'. G

o

Some parssseiees

o Phr Beyre wulh T-ilepiiogy

L - it ol varnskies

IF - e ol slnales

4 - memdeer ol cpcles [subgregd
5 - e Cyche ke

14 - teial =2 Ol lanes

£ - i Sl ol lanes in 6 si

circuits of imized for speed, area, and
testability

Case Study: Efficient reversible counters

Wrzatlon and

Synthesis of

VIVGUD
DEGEIIIPoSIBEoT Multi-Valued
MLl e=Cefre)tys netions and

Re/‘é_fﬁ

n an&KDD are often

;
unctions can be decomposed to relations

AlgpELAMS

s Deconogosiilen) sigel y"'selectlon

8 Velflelgle oelri] ruﬂ_r C r@w algorithms)

-~ INewapaierSstrictire for weakly-specified
functienRsyend relations (LR-partitions)
G i I mui iplicity (graph coloring)
Decompesition evaluation using DFC
Iterative processing of decompositions
Verification of final results

Practical
Applications

Ziranaavitit=Valued Logic
SYNUIESIS ‘ |
Einiterstate. Via nine Decomposition
| Data IVIIAIAC and Machine Learning
Digi al | e %Processing
Artificial Intelligence
Evolutionary Algorithms

500

Conclusions and Waol

“iegllue '/vavlech 9IS

reconflgurable FPGAs

s
4 DmrlH E2IING error"
— explanation,

— Speed
— and high quality of resulting circuits

sonclbsiens and Work in Progress

SCIENEeEwWaresior Combinational
IGIEMS
ApPlICAUBIRISNN Data Mining, Design
AULemE B and Ro0DotICS

= New EPGASHrom Xilinx and Altera will
allew ic Ies 1 truly practical systems

»

-y

~ Further Reading

Lots of different learning techniques
Use dependant on application
Introductory text

Artificial Intelligence: A Modern Approach by
Russell and Noryvig

Research Journals

Machine Learning, Artificial Intelligence, Fuzzy
Computing, Neural Networks, Adaptive

Computing

RErerences

AROICINERINING o/ na/than H. Connell
zlriel Sriclrizie IizifzlelEzlg N

2 WIEHERSAL EET: :iOVVSK]’j'"/—\?"f atoly Chebotarev,
AlanfVisheenke)™ £l ab@ Hardware or
Leanng, /—/F/ff//ﬁ/fc—' 2 lnauction of State
Mac HeEsyomINemporal Logic Constraints”.
3. Marek V. Pert O%Sk/ Stanislaw Gryqgiel,

Qihong (h 7, an‘g’ Dave Mattson “Constructive
Induction Machines for Data Mining”.

[

\OL,__

ROPENTBUEOETCOMpPULES . sty LCL.
Plmell i July 1 |

Steven R. Hutsell
Fall 1999
Sofileipie] Siziichl mvéﬁajr/

VarekPerkows i, Ana oly Chebotarev+,

Alan Mishchenko
~ Portland State University,
ofi Electrical and Computer Engineering,
Portland, OR,
+ Glushkov Institute of Cybernetics, Kiev, Ukraine
July 21, 1999, NASA/DOD Workshop

Department

Smmar
“HDISUCUERSERVEEN Iearning and
IBWIECEE ESECGFMELhods are not

*.

clear-cut

J]\" alent to solvmg the problem!)

Extensions should consider adaptive
technigues

No free lunch?

