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■■ Evolving in hardware versus learning inEvolving in hardware versus learning in
hardware.hardware.

■■     In recent years rapid developments in the area of softIn recent years rapid developments in the area of soft
computing occurred, including : Artificial Neural Networkscomputing occurred, including : Artificial Neural Networks
((ANNsANNs), Cellular Neural Nets (), Cellular Neural Nets (CNNsCNNs), Fuzzy Logic, Rough), Fuzzy Logic, Rough
Sets, Genetic Algorithms (Sets, Genetic Algorithms (GAsGAs), Genetic and Evolutionary), Genetic and Evolutionary
Programming.Programming.
–– Mixed methods of the above are used to solve complex or poorly definedMixed methods of the above are used to solve complex or poorly defined

problems. The common factor is that they propose a way of automaticproblems. The common factor is that they propose a way of automatic
learning by the system. The computer is taught by examples rather thanlearning by the system. The computer is taught by examples rather than
completely programmed in what to do.completely programmed in what to do.

■■ This philosophy also dominates the areas of Artificial Life,This philosophy also dominates the areas of Artificial Life,
solving problems by analogy to nature, decision making,solving problems by analogy to nature, decision making,
knowledge acquisition.knowledge acquisition.

■■ Machine Learning thus becomes a new and general systemMachine Learning thus becomes a new and general system
design paradigm unifying these  previously disconnecteddesign paradigm unifying these  previously disconnected
research areas.research areas.



■■ Evolvable Evolvable Hardware (Hardware (EHWEHW) means the realization of genetic algorithm) means the realization of genetic algorithm
(GA) in (GA) in reconfigurable hadwarereconfigurable hadware..

■■ Learning hardware approach consists in using feedback from theLearning hardware approach consists in using feedback from the
environment to create a sequential network and subsequently realizingenvironment to create a sequential network and subsequently realizing
this network in this network in FPGAsFPGAs..

■■ Universal Logic Machine (Universal Logic Machine (ULM)ULM) proposes the creation of a learning proposes the creation of a learning
machine based on logic principles, in particular temporal logic,machine based on logic principles, in particular temporal logic,
constructive induction, and rough set theory.constructive induction, and rough set theory.

■■ Learning Hardware as any mechanism that leads to the improvement ofLearning Hardware as any mechanism that leads to the improvement of
operation including evolution-based learning. In the process of learningoperation including evolution-based learning. In the process of learning
a network (a network (combinational combinational or sequential) is constructed that stores theor sequential) is constructed that stores the
knowledge acquired in the learning phase. The learned network is thenknowledge acquired in the learning phase. The learned network is then
run on old or new data. Responses may be correct or erroneous. Therun on old or new data. Responses may be correct or erroneous. The
network behavior is then evaluated by some cost -network behavior is then evaluated by some cost -



Induction of State Machines fromInduction of State Machines from
Temporal Logic ConstraintsTemporal Logic Constraints

■■ Human thinking consists in abstractHuman thinking consists in abstract
use of symbols rather than assigninguse of symbols rather than assigning
numeric weights to neurons.numeric weights to neurons.

■■ The built-in mathematicalThe built-in mathematical
optimization techniques such asoptimization techniques such as
graph coloring andgraph coloring and satisfiability satisfiability



LEARNING IS DESIGNING A NETWORKLEARNING IS DESIGNING A NETWORK
■■ Network can be Network can be continuouscontinuous or  or discrete.discrete.

––  Combinational Combinational or sequential. Synchronous or asynchronous. or sequential. Synchronous or asynchronous.
––  Boolean, Multi-Valued, Fuzzy, Algebraic. Boolean, Multi-Valued, Fuzzy, Algebraic.

■■  There is some way o There is some way of designing f designing this network by positivethis network by positive
(and negative) (and negative) examples.examples.

■■  Next some way o Next some way of f evaluating evaluating network's behaviornetwork's behavior on data on data
sets.sets.

■■  Thus, the  Thus, the structure structure of the networkof the network must be created, and must be created, and
also its also its elements elements must be designed, adapted, selected from amust be designed, adapted, selected from a
menu, or tuned in the menu, or tuned in the learning process.learning process.

■■  The network can be realized in  The network can be realized in softwarsoftware, ie, in hardwaren hardware  or asor as
software-hardware co-desigsoftware-hardware co-design.n.

■■   Amdahl' Law Amdahl' Law is crucial for hardware and mixed designs.is crucial for hardware and mixed designs.
–– Not reasonable to speed up only part of computationNot reasonable to speed up only part of computation



TRANSFORMING THE NETWORKTRANSFORMING THE NETWORK
■■ Once the network has been found, it can be Once the network has been found, it can be transformedtransformed to another to another

network, either completely equivalent to it or being its generalization.network, either completely equivalent to it or being its generalization.
––   For instance, an integer-based neural net or a multi-valued (MV) decision treeFor instance, an integer-based neural net or a multi-valued (MV) decision tree

can be both compiled to binary logic gates.can be both compiled to binary logic gates.

■■   The net can be The net can be designed using constructive methodsdesigned using constructive methods  all at onceall at once from the from the
complete set of examples (an approach used for diagnostic trees), or it cancomplete set of examples (an approach used for diagnostic trees), or it can
be be built incrementallybuilt incrementally (like done for neural nets). (like done for neural nets).

■■   Many new approaches can be created and investigated based onMany new approaches can be created and investigated based on
combining combining basic learning models and methods in various ways.basic learning models and methods in various ways.

■■   For instance:For instance:
–– tthe ANN built in he ANN built in Brain BuilderBrain Builder can be directly compiled to binary can be directly compiled to binary

hardware without the intermediate medium of cellular automata.hardware without the intermediate medium of cellular automata.
––   A A learning algorithmlearning algorithm different than the genetic algorithm can be used to different than the genetic algorithm can be used to

construct the ANN.construct the ANN.



VARIOUS APPROACHES TOVARIOUS APPROACHES TO
LEARNINGLEARNING

■■ When the system has been already taught, it isWhen the system has been already taught, it is
irrelevant how.irrelevant how.

■■   Construction methodsConstruction methods differ in: differ in:
–– convergence speeds, sizes of networks,convergence speeds, sizes of networks,
–– their learning errors, networks' speeds,their learning errors, networks' speeds,
–– testabilitiestestabilities, power , power consumptionsconsumptions..

■■   Different Different methods to design Learning Hardwaremethods to design Learning Hardware
and and EvolvableEvolvable Hardware Hardware disagree in the  disagree in the networknetwork
model selection model selection and and network construction methodsnetwork construction methods..



Evolving or Learning inEvolving or Learning in
Hardware?Hardware?

�� Machine Learning becomes a new and most generalMachine Learning becomes a new and most general
system design paradigmsystem design paradigm

�� It starts to become a new hardware constructionIt starts to become a new hardware construction
paradigm as wellparadigm as well

� Evolvable Hardware is Genetic Algorithm PLUS
reconfigurable hardware

�� We propose We propose Learning HardwareLearning Hardware as  as any learningany learning
algorithmalgorithm PLUS  PLUS reconfigurable reconfigurable hardwarehardware

�� Learning algorithm can be realized in software or inLearning algorithm can be realized in software or in
hardware.hardware.



PLAN OF THIS LECTUREPLAN OF THIS LECTURE
■■  Compare  Compare logic logic versus ANN and GA approaches toversus ANN and GA approaches to

learning.learning.
■■  Introduce the concept of  Introduce the concept of Learning Hardware Learning Hardware ..
■■  Methods of  Methods of knowledge representationknowledge representation  in thein the

Universal Logic Machine (ULM):Universal Logic Machine (ULM):
–– variants of Cube Calculus.variants of Cube Calculus.

■■  Two different concepts of designing Learning Two different concepts of designing Learning
Hardware using the DEC-PERLE-1 board.Hardware using the DEC-PERLE-1 board.
–– A A general-purposegeneral-purpose computer with instructions specialized computer with instructions specialized

to to operate on logic data: Cube Calculus Machine.operate on logic data: Cube Calculus Machine.
––   A processor for A processor for only one applicationonly one application: Curtis: Curtis

Decomposition Decomposition Machine.Machine.



LOGIC APPROACHES TOLOGIC APPROACHES TO
LEARNING: OUR EXPERIENCELEARNING: OUR EXPERIENCE

■■ We compared We compared various network structuresvarious network structures for learning: for learning:
––   two-level AND/OR (Sum-of-Products (SOP), or DNF),two-level AND/OR (Sum-of-Products (SOP), or DNF),
––   Exclusive-Or-Sum-of-Products (ESOP),Exclusive-Or-Sum-of-Products (ESOP),
––   Three-Level NAND/AND/OR networks,Three-Level NAND/AND/OR networks,
––   Three-Level AND/NOT (TANT) networks,Three-Level AND/NOT (TANT) networks,
––   Decision trees (C4.5),Decision trees (C4.5),
––   multi-level decomposition structures.multi-level decomposition structures.

■■ We compared also various logic, non-logic and mixedWe compared also various logic, non-logic and mixed
optimization methodsoptimization methods::
––   search, rule-based, set-covering, graph-coloring,search, rule-based, set-covering, graph-coloring,
––   genetic algorithm (including mixtures of logic and GA approaches),genetic algorithm (including mixtures of logic and GA approaches),
––   genetic programming,genetic programming, articial articial neural nets, and simulated neural nets, and simulated

annealing.annealing.



LOGIC APPROACHES TOLOGIC APPROACHES TO
LEARNING: THE CONCLUSIONSLEARNING: THE CONCLUSIONS

■■ We compared our networks' results on:We compared our networks' results on:
––  their  their complexity complexity ((Occam'sOccam's Razor), Razor),
––  various ways of calculating the  various ways of calculating the error of learning error of learning ..

■■ The The Decomposed Function CardinalityDecomposed Function Cardinality  (DFC) and its extensions(DFC) and its extensions
for MV logic were used as common measures of complexity,for MV logic were used as common measures of complexity,
because of their theoretically proven properties.because of their theoretically proven properties.

■■ Logic approaches and especially the MV decompositionLogic approaches and especially the MV decomposition
techniques, are techniques, are superiorsuperior  to other approaches with respect toto other approaches with respect to
smaller net complexity and learning error.smaller net complexity and learning error.

■■ They should be combined with They should be combined with smart heuristic strategiessmart heuristic strategies
and and good data representations.good data representations.



GENETIC ALGORITHMSGENETIC ALGORITHMS
ARE POOR. SO WHAT?ARE POOR. SO WHAT?

■■ Based on small complexity and error, the especially poorBased on small complexity and error, the especially poor
results were obtained using the results were obtained using the genetic algorithmsgenetic algorithms..

■■   We do not know of any problem for which a GA-basedWe do not know of any problem for which a GA-based
algorithm would be superior to a logic algorithm.algorithm would be superior to a logic algorithm.

■■   We want to make use of the We want to make use of the accumulated humanaccumulated human
experienceexperience in our approach, rather than to "reinvent" in our approach, rather than to "reinvent"
algorithms using GA.algorithms using GA.

■■   On the other hand, for large data the logic algorithmsOn the other hand, for large data the logic algorithms
are relatively slow, are relatively slow, hence must be speed-up inhence must be speed-up in
hardwarehardware . .



HARDWARE SPEED-UP OF LEARNINGHARDWARE SPEED-UP OF LEARNING
ALGORITHMSALGORITHMS

■■ Five approachesFive approaches to implementing the learning algorithms: to implementing the learning algorithms:
–– A1.A1. Both learning and execution are done in software. This standard Both learning and execution are done in software. This standard

approach still dominates the Artificial Neural Nets, Constructiveapproach still dominates the Artificial Neural Nets, Constructive
Induction, Data Mining, and the so-called "extrinsic" Induction, Data Mining, and the so-called "extrinsic" EvolvableEvolvable Hardware Hardware
((DeGarisDeGaris-93).-93).

–– A2.A2. The learning phase is performed in software and the network is next The learning phase is performed in software and the network is next
downloaded to hardware for execution (fuzzy logic controllers).downloaded to hardware for execution (fuzzy logic controllers).

–– A3.A3. The learning phase is performed in hardware and the execution The learning phase is performed in hardware and the execution
phase in software. This approach is thus a hardware-accelerated designphase in software. This approach is thus a hardware-accelerated design
of a knowledge-based expert system.of a knowledge-based expert system.

–– A4.A4. Both the learning and the execution phase are performed in Both the learning and the execution phase are performed in
hardware. This is the area of classicalhardware. This is the area of classical ANNs ANNs,, CNNs CNNs and "intrinsic" and "intrinsic"
evolvableevolvable hardware. hardware.

–– A5.A5. Software-hardware co-design in one or in both phases.  Software-hardware co-design in one or in both phases. MostMost
prospective approach prospective approach in our view.in our view.



TECHNOLOGIES FORTECHNOLOGIES FOR
LEARNING HARDWARELEARNING HARDWARE

■■  Field Programmable Analog Arrays, Cellular Neural Nets, Field Programmable Analog Arrays, Cellular Neural Nets,
Artificial Neural Nets, Multi-ValuedArtificial Neural Nets, Multi-Valued FPGAs FPGAs, Fuzzy Logic, Fuzzy Logic
Programmable Arrays, and MixedProgrammable Arrays, and Mixed FPAAs FPAAs..

■■   Binary Field Programmable Gate ArraysBinary Field Programmable Gate Arrays  - there are no other- there are no other
mass-scale hardware mass-scale hardware reconfigurablereconfigurable technologies available. technologies available.

■■  A  A practical taskpractical task should be then to  should be then to comparecompare FPGA-based FPGA-based
realizations of various machine learning paradigms.realizations of various machine learning paradigms.

■■  Learning levels: Learning levels:
–– 1. arithmetic operations (1. arithmetic operations (ANNsANNs, Fuzzy Logic functions) - , Fuzzy Logic functions) - too higtoo high.h.
–– 2. switching transistors for routing connection paths - 2. switching transistors for routing connection paths - too lotoo low.w.

■■   OUR PRINCIPLEOUR PRINCIPLE: : Because in binaryBecause in binary FPGAs FPGAs everything is everything is
realized on the level of binary logic gates and flip-flops, realized on the level of binary logic gates and flip-flops, thethe
learning processlearning process should be also performed  should be also performed on the level of logic gateon the level of logic gatess..



OTHER MAIN PRINCIPLESOTHER MAIN PRINCIPLES
■■  Re-use powerful  Re-use powerful EDA toolsEDA tools  that engineers havethat engineers have

already developed in many years in the area of digitalalready developed in many years in the area of digital
design automation, especially for design automation, especially for reconfigurablereconfigurable
computers: state machines, logic synthesis, technologycomputers: state machines, logic synthesis, technology
mapping, placement and routing, partitioning, timingmapping, placement and routing, partitioning, timing
analysis, etc.analysis, etc.

■■   OccamOccam Razor principle Razor principle  = meaningful discoveries.= meaningful discoveries.
■■   We do not believe that the We do not believe that the "purist strategies""purist strategies"  toto

evolutionary hardware (Brain Builder Group) will beevolutionary hardware (Brain Builder Group) will be
practically acceptable for most commercial applicationspractically acceptable for most commercial applications
of Learning Hardware.of Learning Hardware.



OTHER MAIN PRINCIPLES (OTHER MAIN PRINCIPLES (contcont))
■■ We propose here the principles of Learning Hardware that will:We propose here the principles of Learning Hardware that will:

––  use previous human problem-solving experience use previous human problem-solving experience
–– and apply many mathematical algorithms and problem-solvingand apply many mathematical algorithms and problem-solving

strategiesstrategies
––  rather than rely on only  rather than rely on only two generic methodstwo generic methods of of Evolvable Evolvable Hardware: Hardware:

ANNsANNs and GA. and GA.

■■   Learning/evolution should still remain as the main principle ofLearning/evolution should still remain as the main principle of
building new generation hardware,building new generation hardware,
–– but it should be but it should be restricted to high abstract levelsrestricted to high abstract levels..

■■   The variants evaluation/selection should be also performed atThe variants evaluation/selection should be also performed at
abstract levels, before mapping to low-level field-abstract levels, before mapping to low-level field-
programmable resources, such as switches, for whichprogrammable resources, such as switches, for which
chromosomes are long and the operation of GA is inefficient.chromosomes are long and the operation of GA is inefficient.



LEARNING HARDWARE METHODOLOGYLEARNING HARDWARE METHODOLOGY

■■ Based on Based on sets of examplessets of examples classified to several (at least two) categories, classified to several (at least two) categories,
and various network requirements (background knowledge), theand various network requirements (background knowledge), the
hardware processors, using logic/mathematical algorithms, hardware processors, using logic/mathematical algorithms, create thecreate the
logic network description.logic network description.

■■   We use hardware realization of We use hardware realization of well-known logic synthesis algorithmswell-known logic synthesis algorithms
such as: two-level AND/ORsuch as: two-level AND/OR minimizers minimizers, two-level AND/EXOR, two-level AND/EXOR minimizers minimizers,,
three-level OR/AND/ORthree-level OR/AND/OR minimizers minimizers, and functional (, and functional (AshenhurstAshenhurst-Curtis)-Curtis)
decomposers.decomposers.

■■ The (quasi)optimally constructed network is mapped to The (quasi)optimally constructed network is mapped to standardstandard FPGAs FPGAs
and realized using standard EDA tools:and realized using standard EDA tools:
–– partitioning, placement and routing and other EDA tools frompartitioning, placement and routing and other EDA tools from Xilinx Xilinx and and

commercial EDA software companies.commercial EDA software companies.

■■ The knowledge of the machine is The knowledge of the machine is stored in memory patternsstored in memory patterns
representing logic nets.representing logic nets.

The phase of learningThe phase of learning



■■ Under supervision of the software program, the Under supervision of the software program, the hardware multiplexeshardware multiplexes
between various learned netsbetween various learned nets, depending on rules that also can be acquired, depending on rules that also can be acquired
automatically.automatically.

■■   As the network solves new problems, the new data sets and trainingAs the network solves new problems, the new data sets and training
decisions are decisions are accumulated accumulated and the network is repeatedly automaticallyand the network is repeatedly automatically
redesigned.redesigned.
–– The old network can serve as a redesign plan for the new network, or the net isThe old network can serve as a redesign plan for the new network, or the net is

"redesigned from scratch"."redesigned from scratch".

■■   The process of evolving on all design levels used in EHW is replaced withThe process of evolving on all design levels used in EHW is replaced with
the the ULM model of learning at high level and next compiling to low levelULM model of learning at high level and next compiling to low level
using standard FPGA-based tools.using standard FPGA-based tools.

■■   The same physical FPGA The same physical FPGA resources are multiplexedresources are multiplexed to implement: to implement:
––  the virtual human-designed "learning hardware" the virtual human-designed "learning hardware"
–– and the automatically learned "data hardware".and the automatically learned "data hardware".

The phase of learningThe phase of learning

LEARNING HARDWARE METHODOLOGYLEARNING HARDWARE METHODOLOGY



DualDual

World ModelWorld Model

SynthaSyntha

TraceTrace
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FPGA programmingFPGA programming
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sensorssensors
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TheThe "learning hardware"  "learning hardware" and the and the "data"data
hardware”hardware”

■■   While the While the "learning hardware""learning hardware" is designed once by is designed once by
humans and cannot be changed, the humans and cannot be changed, the "data hardware”"data hardware”
can be permanently modified.can be permanently modified.

MvgudMvgud

LotusLotus

FPGA programmingFPGA programming

RobotRobot  knowledgeknowledge

State machinesState machines



COMPARISON OF BRAIN BUILDER CAM-BRAINCOMPARISON OF BRAIN BUILDER CAM-BRAIN
MACHINE (CBM) AND UNIVERSAL LOGIC MACHINEMACHINE (CBM) AND UNIVERSAL LOGIC MACHINE

                                                                          Brain Builder                 Brain Builder                    Universal Logic Machine Universal Logic Machine
 Model of Learning Model of Learning           Artificial Neural Net      Artificial Neural Net        Multi-Valued Logic Language Multi-Valued Logic Language
How the net isHow the net is                         Genetic Algorithm,         Genetic Algorithm,           Multi-Valued Logic Synthesis, Multi-Valued Logic Synthesis,
    constructed    constructed                           ANN Training              ANN Training                       Constructive Induction,Constructive Induction,
                                                                                 Rough Theory                                                                                 Rough Theory
Virtual intermediateVirtual intermediate       Cellular Automata         Cellular Automata               MV logic networks and state  machines MV logic networks and state  machines
representation        representation                                                                                                       with arbitrary structures and arbitrary with arbitrary structures and arbitrary
                                                                                                                                                             operators realized  as look-up tables operators realized  as look-up tables
What is learned:What is learned:                   automata tables       automata tables                         language expressions language expressions
Net constructionNet construction                   hardware                 hardware                                   hardware and software hardware and software
Mapped to:Mapped to:                                   array of binary array of binary FPGAs FPGAs           array of binary array of binary FPGAs FPGAs
Hardware platform:Hardware platform:         Xilinx Xilinx 6000 series         6000 series               Xilinx Xilinx 3090 + on-board memory 3090 + on-board memory
                                                                         CBM                        CBM                                          DEC-PERLE-1 board + DEC workstation DEC-PERLE-1 board + DEC workstation



OUR GOALSOUR GOALS
■■ ULM is the early prototype of ULM is the early prototype of Data MiningData Mining

machinesmachines . .
––   SuchSuch  DM Machines will be able to mine data in on-lineDM Machines will be able to mine data in on-line

data bases, for instance from the Internet, production line,data bases, for instance from the Internet, production line,
or battle-field.or battle-field.

■■ To develop a system for To develop a system for meaningful discoveriesmeaningful discoveries in in
narrowly defined areas.narrowly defined areas.

■■   To sTo speedpeed-up -up both both the the learninglearning and the  and the executionexecution
phases of application software that is now used inphases of application software that is now used in
Machine Learning, Knowledge Discovery fromMachine Learning, Knowledge Discovery from
Databases, Data Mining, and robotics.Databases, Data Mining, and robotics.



PRACTICAL GOALS OF THIS PROJECTPRACTICAL GOALS OF THIS PROJECT

■■ Solve in few seconds and with error as small as theSolve in few seconds and with error as small as the
learning error of our current software, the followinglearning error of our current software, the following
problems:problems:
–– 1. Every data set from the U.C. Irvine Repository of Data1. Every data set from the U.C. Irvine Repository of Data

Mining benchmarks, as well our benchmarks. Including allMining benchmarks, as well our benchmarks. Including all
versions of large examples such as Breast Cancer, andversions of large examples such as Breast Cancer, and
Michalski'sMichalski's Trains with 30 trains ( Trains with 30 trains (GrygielGrygiel). They take now up). They take now up
to 30 minutes in software.to 30 minutes in software.

–– 2. The recognition of cervical mucus2. The recognition of cervical mucus fearning fearning microscope microscope
images for ovulation prediction. It takes now minutes inimages for ovulation prediction. It takes now minutes in
software.software.

–– 3. The recognition of 3-dimensional images of rooms and3. The recognition of 3-dimensional images of rooms and
corridors for mobile robot orientation (PSUBOT). This taskcorridors for mobile robot orientation (PSUBOT). This task
takes now up to 17 minutes in software.takes now up to 17 minutes in software.



MULTI-VALUED LOGIC LANGUAGE TOMULTI-VALUED LOGIC LANGUAGE TO
REPRESENTREPRESENT

THE LEARNING DATA IN HARDWARETHE LEARNING DATA IN HARDWARE
■■ A high-level language, in which expressions, the virtual nets,A high-level language, in which expressions, the virtual nets,

are automatically created, evaluated, selected and optimized, toare automatically created, evaluated, selected and optimized, to
be next realized as hardware FPGA nets by top-down automaticbe next realized as hardware FPGA nets by top-down automatic
design methods.design methods.

■■ In ML, DM and KDD data are In ML, DM and KDD data are very stronglyvery strongly unspecied unspecied (99% of (99% of
don't cares, or more).don't cares, or more).

■■   Operations should be easily realizable in hardware.Operations should be easily realizable in hardware.
■■   Previous such languages:Previous such languages: binary and Multi-Valued Cube binary and Multi-Valued Cube

Calculus (Calculus (DietmeyerDietmeyer), Decision Tables, Rough Sets (), Decision Tables, Rough Sets (PawlakPawlak),),
Rough Partitions (Rough Partitions (LubaLuba), Labeled Rough Partitions (), Labeled Rough Partitions (GrygielGrygiel),),
Binary and Multi-Valued Decision Diagrams.Binary and Multi-Valued Decision Diagrams.

■■   Tabular representation of data (Tabular representation of data (CoddCodd).).



LOGIC PATTERNS IN TABLESLOGIC PATTERNS IN TABLES
■■  Each  Each row row can be thought of as a record from a data base, orcan be thought of as a record from a data base, or

their set, or a collection of image features after imagetheir set, or a collection of image features after image
preprocessing.preprocessing.

■■   Standard don't caresStandard don't cares  versus versus generalized don't cares generalized don't cares ..
■■   Comparing Comparing rows and columns of such table can be donerows and columns of such table can be done

partially partially in parallel in parallel and can serve toand can serve to  ndnd patterns  patterns in data.in data.
■■   Patterns Patterns used to:used to:

–– generate primegenerate prime implicants implicants,,
––  decompose function, decompose function,
–– find a "bound set" or "free set" of variables for decomposition,find a "bound set" or "free set" of variables for decomposition,
––  remove redundant variables, remove redundant variables,
––  find essential variables, find essential variables,
––  find essential find essential implicants implicants, etc., etc.



LOGIC PATTERNS IN TABLES (2)LOGIC PATTERNS IN TABLES (2)
■■  Finding and analyzing patterns in such tables is a Finding and analyzing patterns in such tables is a

subject of subject of Rough Sets TheoryRough Sets Theory ( (PawlakPawlak), ), LogicLogic
Synthesis,Synthesis, and  and Data Base TheoryData Base Theory ( (CoddCodd).).

■■  Many similar or competing algorithms for the Many similar or competing algorithms for the
same task have been same task have been developed developed in these areasin these areas
independently independently for the tabular data model.for the tabular data model.

■■  Basic  Basic operations of algorithmsoperations of algorithms
–– removeremove  rows or columns,rows or columns,
––   copy and modifycopy and modify  them,them,
–– mergemerge  rows or columns, etc.rows or columns, etc.



Induction of Logic Formulas fromInduction of Logic Formulas from
ExamplesExamples

b

c

■■ Multi-Valued multi-output (Multi-Valued multi-output (combinationalcombinational) relation in) relation in
tabular formtabular form

d

a
X1 X2 Y1 Y2

0,2
0,1
2
1

1
0
0
1

-
0,2
1,2
1,2

2
1
0
2

Record
from
data 
base

Input 1 input2 output1 output2



TWO- AND ONE-DIMENSIONALTWO- AND ONE-DIMENSIONAL
DATA MODELSDATA MODELS

■■  Two-dimensional model can be  Two-dimensional model can be regularly partitionedregularly partitioned  to smaller parts.to smaller parts.

■■  Smaller tables can be extracted as Smaller tables can be extracted as  scannablescannable windows windows  in the big table,in the big table,
similarly as it is done in convolution-based DSP algorithms.similarly as it is done in convolution-based DSP algorithms.

■■  Two-dimensional representations are  Two-dimensional representations are partitioned to one-dimensionalpartitioned to one-dimensional
representations.representations.

■■  This can be done  This can be done vertically vertically or or horizontallhorizontally.y.
■■  The main advantage of  The main advantage of one-dimensional representations one-dimensional representations is that they can beis that they can be

efficiently processed in efficiently processed in one-dimensional one-dimensional cellular automatacellular automata, systolic, ping-pong,, systolic, ping-pong,
SIMD SIMD and and pipelined hardware architectures.pipelined hardware architectures.

■■   Regularity Regularity is the key to successis the key to success in "Array of in "Array of FPGAs FPGAs" environment" environment
■■ where routing long connections is the main design bottleneck.where routing long connections is the main design bottleneck.
■■  Regular Automata Regular Automata = generalization of Cellular Automata. = generalization of Cellular Automata.



■■ This environment is similar to CellularThis environment is similar to Cellular
Automata (CA), but does not require allAutomata (CA), but does not require all
automata to be the same or to be entirelyautomata to be the same or to be entirely
regularly connected.regularly connected.

■■  More flexibility exists thus in this model than More flexibility exists thus in this model than
in thein the CAs CAs, which are a , which are a very restricted designvery restricted design
environment.environment.

■■  One-dimensional representations resemble One-dimensional representations resemble
chromosomeschromosomes  in Genetic Algorithms, whichin Genetic Algorithms, which
allows to use them in evolutionaryallows to use them in evolutionary
computations.computations.

Regular automataRegular automata



TWO-DIMENSIONAL REPRESENTATIONS COMPOSEDTWO-DIMENSIONAL REPRESENTATIONS COMPOSED
FROM ONE-DIMENSIONAL REPRESENTATIONSFROM ONE-DIMENSIONAL REPRESENTATIONS

■■ Standard Binary Cube Calculus (CC)Standard Binary Cube Calculus (CC) - Roth, - Roth, Karp Karp,, Dietmeyer Dietmeyer..
■■   Multi-Valued Cube Calculus (MVCC)Multi-Valued Cube Calculus (MVCC) - Su, - Su, Brayton Brayton,, Sasao Sasao,,

Perkowski.Perkowski.
■■   Generalized MV Cube Calculus (GMVCC)Generalized MV Cube Calculus (GMVCC) - Perkowski - Perkowski

(Sendai92).(Sendai92).
■■   SimpliedSimplied Binary Cube Calculus (SBCC) Binary Cube Calculus (SBCC) - Decomposition - Decomposition

Machine, Perkowski/Machine, Perkowski/MattsonMattson..
■■   SimpliedSimplied MV Cube Calculus (SMVCC) MV Cube Calculus (SMVCC) - - Pawlak Pawlak,, Michalski Michalski,,

CoddCodd - Rough Set Machine, - Rough Set Machine, Muraszkiewicz Muraszkiewicz//RybinskiRybinski,,
Lewis/Perkowski.Lewis/Perkowski.

■■   Spectral Representations.Spectral Representations. Reed-Muller (FPRM and GRM), Reed-Muller (FPRM and GRM),
Walsh, Linearly-Independent,Walsh, Linearly-Independent, Falkowski Falkowski/Perkowski./Perkowski.

■■   Rough PartitionsRough Partitions ( (LubaLuba) and ) and Labeled Rough PartitionsLabeled Rough Partitions
■■ (Perkowski/(Perkowski/GrygielGrygiel).).



Why we do not like theWhy we do not like the
Genetic Algorithm?Genetic Algorithm?

➨➨  Our criticism about using GA for digital circuits Our criticism about using GA for digital circuits

➨➨  No explanation is given by a GA No explanation is given by a GA

➨➨  It is very slow comparing to any EDA tool It is very slow comparing to any EDA tool

➨➨ It makes no use of human knowledge and yearsIt makes no use of human knowledge and years
of accumulated engineering/research experienceof accumulated engineering/research experience

➨➨ Practically, it is not convergentPractically, it is not convergent

➨➨ It is difficult to controlIt is difficult to control

➨➨ We do not know of any “real” success story ofWe do not know of any “real” success story of
using GA in digital designusing GA in digital design



Logic Synthesis Approach toLogic Synthesis Approach to
LearningLearning

��  Synthesis and Decision problems Synthesis and Decision problems reduced to NP-reduced to NP-
hard hard combinational combinational problemsproblems

��Combinational Combinational problems problems reduced to simplereduced to simple
combinational combinational problems:problems:
�� such as graph coloring, such as graph coloring,

��set covering, set covering, binatebinate covering, covering,

��clique partitioning, clique partitioning, satisfiabilitysatisfiability

��or multi-valued relation/function manipulationor multi-valued relation/function manipulation



��   Phase of learning (construction, synthesis)Phase of learning (construction, synthesis)

��  Phase of acting (function evaluation, state machine Phase of acting (function evaluation, state machine
operation)operation)

�� You cannot redesign standard computer hardware whenYou cannot redesign standard computer hardware when
it cannot solve the problem correctly.it cannot solve the problem correctly.

�� The Learning Hardware redesigns itself using newThe Learning Hardware redesigns itself using new
learning examples given to itlearning examples given to it

�� Michie Michie makes distinction between black-box andmakes distinction between black-box and
knowledge-oriented learning systemsknowledge-oriented learning systems

�� Concepts of  “weak” and “strong” criteriaConcepts of  “weak” and “strong” criteria

�� “The system satisfies a weak “The system satisfies a weak criterium criterium if it uses data toif it uses data to
generate an updated basis for improved performance ongenerate an updated basis for improved performance on
subsequent data” (Neural, Genetic)subsequent data” (Neural, Genetic)

Logic Synthesis Approach to LearningLogic Synthesis Approach to Learning



Strong Strong Criterium Criterium for Learningfor Learning
�� A strong A strong criterium criterium is satisfied if the system communicates inis satisfied if the system communicates in

symbolic form concepts that it learnedsymbolic form concepts that it learned

�� Constructive Induction (Constructive Induction (MichalskiMichalski), Rough Set Theory), Rough Set Theory
((PawlakPawlak), Decision Trees (), Decision Trees (QuinlanQuinlan), Decision Diagrams,), Decision Diagrams,
Disjunctive Normal Forms.Disjunctive Normal Forms.

�� Occam’s Occam’s Razor PrincipleRazor Principle

�� Learning on symbolic level is the first main point of ourLearning on symbolic level is the first main point of our
approach, learning on the level of logic gates is the secondapproach, learning on the level of logic gates is the second

�� Our approach is based on decomposition of relations andOur approach is based on decomposition of relations and
functions and on synthesis of non-deterministic machinesfunctions and on synthesis of non-deterministic machines
from declarative specificationsfrom declarative specifications

�� “Do-not-knows” become “don’t-cares” for logic synthesis“Do-not-knows” become “don’t-cares” for logic synthesis



Decomposition and Constructive InductionDecomposition and Constructive Induction

�� The high quality of The high quality of decompositional decompositional techniques intechniques in
Machine Learning, Data Mining and KnowledgeMachine Learning, Data Mining and Knowledge
Discovery areas was demonstrated by severalDiscovery areas was demonstrated by several
authors; Ross (Wright Labs),authors; Ross (Wright Labs),BohanecBohanec, , BratkoBratko//ZupanZupan,,
PerkowskiPerkowski//GrygielGrygiel,,PerkowskiPerkowski//LubaLuba//SadowskaSadowska,,
JozwiakJozwiak, , LubaLuba, Goldman, , Goldman, AxtelAxtel..

�� Small learning errors. Natural problem representationSmall learning errors. Natural problem representation

�� We compared the same problems using severalWe compared the same problems using several
methods: decomposition, decision trees, neural nets,methods: decomposition, decision trees, neural nets,
and genetic algorithmsand genetic algorithms

�� Decomposition is clearly the winner but it is slowDecomposition is clearly the winner but it is slow
because the NP-complete problem of graph creationbecause the NP-complete problem of graph creation
and coloring is repeated very many times.and coloring is repeated very many times.



Extrinsic Versus IntrinsicExtrinsic Versus Intrinsic
Approaches to Approaches to EvolvableEvolvable

HardwareHardware

�� Thus, a special hardware is neededThus, a special hardware is needed

�� Our work goes in two directions: software and hardwareOur work goes in two directions: software and hardware

�� In software approach, we developed several efficientIn software approach, we developed several efficient
algorithms for state machine design and relation/functionalgorithms for state machine design and relation/function
decomposition and realizationdecomposition and realization

�� Our methods are tuned to data represented as relationsOur methods are tuned to data represented as relations
(many “don’t-knows”)(many “don’t-knows”)

�� In hardware approach, we developed an accelerator forIn hardware approach, we developed an accelerator for
basic operationsbasic operations







How is Machine LearningHow is Machine Learning
Hardware Realized?Hardware Realized?

• FPGA’s provide a mass scale reconfigurable, relatively
inexpensive, and widely available technology.

• The work of learning and reconfiguration is mainly at the
software level and the result is data which defines the new
configuration (or programming) of the FPGA.

• However, more steps are being take to place vital
optimization routines such as decomposition and satisfiability
theory into hardware.

•And who knows… Maybe with advances in technology, we’ll
be able to dedicate part of a highly programmable chip with the
programmer itself (in effect, the software is downloaded on to
the same chip that programs itself).





THE PROCESS OF LEARNING INTHE PROCESS OF LEARNING IN
HARDWARE WITH HARDWARE WITH FPGAsFPGAs..
•Seven steps are used to perform an iteration of Machine
Learning.

•The first step performs all the essential “learning” and the next 6
steps are for minimization and conversion into an FPGA.

•We’ll list these steps:

•1) Based on sets of examples… we create Reactive State Machines
(RSM).

• These are usually non-deterministic state machines.

• The functional block contains no temporal variables (time relations).

• The description consists of the input/output specs, initial state specs,
and environment constraints.



••2)2) The RSM is then made deterministic and state-minimized
w.r.t. a partition of the original state variables.

••3)3) The new machine is mapped to constrained structural
resources (a.k.a Regular Automata).

• This is the basic network which is a limited layout of regular
sequential structures.

• Here we check for transition graph properties between the
autonomous state graph and the RSM graph such as isomorphisms.

• (Technology mapping to FSM’s could be used here).

••4)4) The Time based MV logic expressions or RA are decomposed
(utilizing some form of MV functional decomposition).

•All variables are converted to binary representations.

Steps Continued:



5)5) The optimized network is then mapped to
FPGA complex logic blocks (CLB) and
realized with standard
partitioning/placement/ routing tools. Each
RSM is converted to a binary image of
programming switches in the FPGA.

6)6) The knowledge of the machine is stored in
binary memory patterns representing the
FPGA programming information. The
hardware then undergoes a transition by
switching between a number of evolved
circuits, depending on rules.



7)7) As the network solves new problems, the new
data sets and training decisions are accumulated
and the learning procedure is performed again…
either over the existing knowledge or “from scratch”
to avoid any bias.
• You may have noticed that we mention temporal logictemporal logic..

• The idea behind temporal variables is briefly discussed
next….

• Hardware describes combinational logic or finite state
machines

•Simplified languages to describe them

•Generalized concepts (Petri Nets, Parallel Machines,
Clauses, etc)





Temporal Logic ConstraintsTemporal Logic Constraints
■■   Extension of predicate language can be done by introducing variablesExtension of predicate language can be done by introducing variables

that depend on discrete time. For instance, row a from the previousthat depend on discrete time. For instance, row a from the previous
table can be rewritten to the new language as follows :-table can be rewritten to the new language as follows :-

       X1[0,2] (t) & X2[1] (t)        X1[0,2] (t) & X2[1] (t) ⇒⇒ Y2[2] (t)   ----------- at the same moment. Y2[2] (t)   ----------- at the same moment.

■■  We can specify arbitrary regular grammars, regular expressions, We can specify arbitrary regular grammars, regular expressions,
sequential sequential netlistsnetlists, or state machines with , or state machines with mulivalued mulivalued I/O by allowingI/O by allowing
previous or next ticks of time, for instance :-previous or next ticks of time, for instance :-

      X1[0,2] (t-2) & X2[1] (t-3)       X1[0,2] (t-2) & X2[1] (t-3) ⇒⇒ Y2[2] (t+3) -----arbitrary I/O times. Y2[2] (t+3) -----arbitrary I/O times.

■■ Timed binary variables are next internally converted to standard binaryTimed binary variables are next internally converted to standard binary
variables, for instance x(t) variables, for instance x(t) ⇒⇒ x, ~ x(t-1)  x, ~ x(t-1) ⇒⇒ x x’’, x(t-2) , x(t-2) ⇒⇒ x x’’’’, etc. Similarly,, etc. Similarly,
timed MV variables are internally converted to standard binary variables.timed MV variables are internally converted to standard binary variables.



Simplified pseudo-Natural Languages For Learning

• Time dynamical data can be very hard for a machine to
“learn”.

•After all, how do teach a machine data based on time or
events.

•Rather than using a large data-base of input/output
pairs, we add another feature to our “learning language”.

•A time relational feature. Temporal variables are the
same variables we would see in our data-base, except
they have that added time relation.

•This is well suited for creating state machines. This
way, a machine can learn event-driven knowledge.



Simplified pseudo-Natural Languages For LearningSimplified pseudo-Natural Languages For Learning

Famous examples of this are:

 the  Man, Wolf, Goat, and CabbageMan, Wolf, Goat, and Cabbage;;

 the Missionaries and Cannibals;
models of Pavlov’s behaviors,

various real-time protocols,protocols,

 other problems specified by temporal logic constraints.temporal logic constraints.

and the the Dining PhilosophersDining Philosophers..

We feed the machine basic rules which it could learn
from a data base, such as “the wolf and the goat
cannot be on the same side without the man”, etc.



Acquisition of FiniteAcquisition of Finite
State Machines fromState Machines from
ExamplesExamples



Man, Wolf, Goat and CabbageMan, Wolf, Goat and Cabbage
■■ Problem StatementProblem Statement :- At the beginning all of them are on :- At the beginning all of them are on

the left bank of the river, and the man should transport them tothe left bank of the river, and the man should transport them to
the right bank. The wolf and the goat, as well as the goat andthe right bank. The wolf and the goat, as well as the goat and
the cabbage, cannot be left alone on the same bank withoutthe cabbage, cannot be left alone on the same bank without
man. The boat is navigated by man who can take only oneman. The boat is navigated by man who can take only one
object with him.object with him.

■■ All the All the boolean boolean variables are first order predicates dependingvariables are first order predicates depending
on discrete time.on discrete time.

■■     The following is true when in the left bank of the river and    The following is true when in the left bank of the river and
false when on the right bank as follows :-false when on the right bank as follows :-

                M(t) : man, W(t) : wolf, G(t) : goat , C(t) : cabbageM(t) : man, W(t) : wolf, G(t) : goat , C(t) : cabbage..
■■ The symbols ~ , &, |, The symbols ~ , &, |, ⇒⇒ ,  , ⇔⇔ designate complemented variable, designate complemented variable,

logic AND, logic OR, logic implication (logic AND, logic OR, logic implication (~a&b), and logic~a&b), and logic
equivalence (a&b/ ~a& ~b), respectively.equivalence (a&b/ ~a& ~b), respectively.



… But we can also add temporal information. Such as, “if the wolf
is on the left bank, it means that either the wolf stayed there or the
man has brought it there from the right bank a unit of time before.”

A relational language was invented that allows us to
express such rules including temporal relations.

The rule: “The wolf and the goat cannot stay on the same bank
without the man” can be expressed as:

(W(t) & G(t)) => M(t)(W(t) & G(t)) => M(t)

And the expression we noted at the top of the page:

W(t) => (W(t-1) | ~W(t-1)&~M(t-1)&M(t))W(t) => (W(t-1) | ~W(t-1)&~M(t-1)&M(t))

The ‘~’ is the negation of the relation and in this case refers
to the “left” side of the bank.

So, M(t) is true if the man is on the right side of the bankM(t) is true if the man is on the right side of the bank

and ~M(t) is true if he’s on the left.~M(t) is true if he’s on the left.



Temporal Logic specification ofTemporal Logic specification of
“Man, Wolf, Goat and Cabbage” Problem“Man, Wolf, Goat and Cabbage” Problem

■■ All the boolean variables are first-order predicatesAll the boolean variables are first-order predicates
depending on discrete time.depending on discrete time.

■■ M(t)M(t) is true when the man in the left bank and false when is true when the man in the left bank and false when
the man in on the right bank.the man in on the right bank.

■■ The same applies to variables The same applies to variables W(t), G(t), C(t),W(t), G(t), C(t), which which
denote the wolf, the goat, and the cabbage respectively.denote the wolf, the goat, and the cabbage respectively.

■■ 1. The wolf and the goat cannot stay on the left bank and1. The wolf and the goat cannot stay on the left bank and
on the right bank without the man:on the right bank without the man:

■■ ( W(t) & G(t) ) => M(t).( W(t) & G(t) ) => M(t).

■■ ( ~W(t) & ~G(t) ) => ~M(t).( ~W(t) & ~G(t) ) => ~M(t).



Man, Wolf, Goat and CabbageMan, Wolf, Goat and Cabbage

■■ The goat and the cabbag cannot stay on the left bank andThe goat and the cabbag cannot stay on the left bank and
on the right bank without the man:on the right bank without the man:

■■ ( G(t) & C(t) ) => M(t).( G(t) & C(t) ) => M(t).

■■ ( ~G(t) & ~C(t) ) => ~M(t)( ~G(t) & ~C(t) ) => ~M(t)..

■■ 2 If the wolf is on the left (right) bank, it means that either2 If the wolf is on the left (right) bank, it means that either
the wolf stayed there or the man has brought it there fromthe wolf stayed there or the man has brought it there from
the right (left) bank one unit of time before:the right (left) bank one unit of time before:

■■ W(t) =>( W(t-1) |~W(t-1)&~M(t-1)& M(t) ).W(t) =>( W(t-1) |~W(t-1)&~M(t-1)& M(t) ).

■■ ~W(t) =>(~W(t-1) | W(t-1)& M(t-1)&~M(t) )~W(t) =>(~W(t-1) | W(t-1)& M(t-1)&~M(t) )..



Induction of State Machines fromInduction of State Machines from
Temporal Logic ConstraintsTemporal Logic Constraints

4. 4. If the goat is on the left (right) bank, it means that either the goatIf the goat is on the left (right) bank, it means that either the goat
stayed there or the man has brought it there from the right (left) bankstayed there or the man has brought it there from the right (left) bank
one unit of time before, and the same for the cabbage :-one unit of time before, and the same for the cabbage :-

         G(t)  G(t) ⇒⇒ (G(t-1) | ~ G(t-1)& ~M(t-1)&M(t)) (G(t-1) | ~ G(t-1)& ~M(t-1)&M(t))
     ~ G(t)      ~ G(t) ⇒⇒ (~ G(t-1) | G(t-1)& M(t-1)& ~ M(t)) (~ G(t-1) | G(t-1)& M(t-1)& ~ M(t))
     C(t)      C(t) ⇒⇒ (C(t-1) | ~C(t-1)& ~M(t-1)&M(t)) (C(t-1) | ~C(t-1)& ~M(t-1)&M(t))
     ~ C(t)      ~ C(t) ⇒⇒ (~ C(t-1) | C(t-1)& M(t-1)& ~ M(t)) (~ C(t-1) | C(t-1)& M(t-1)& ~ M(t))
5. Any two objects cannot be brought across the river at the same time5. Any two objects cannot be brought across the river at the same time
    (W(t)     (W(t) ⇔⇔ W(t-1)) | (G(t)  W(t-1)) | (G(t) ⇔⇔ G(t-1)) G(t-1))
    (W(t)     (W(t) ⇔⇔ W(t-1)) | (C(t)  W(t-1)) | (C(t) ⇔⇔ C(t-1)) C(t-1))
    (G(t)     (G(t) ⇔⇔ G(t-1)) | (C(t)  G(t-1)) | (C(t) ⇔⇔ C(t-1)) C(t-1))
6. The man is always on the move:-6. The man is always on the move:-
     M(t-1)      M(t-1) ⇔⇔ ~M(t) ~M(t)



■■ Food for thoughtFood for thought
■■ Can we apply these ideas to factoryCan we apply these ideas to factory

automation?automation?

Learning fromLearning from
temporaltemporal
formulas?formulas?



DUALDUAL: Induction of: Induction of
State MachinesState Machines from from

TemporalTemporal  LogicLogic
ConstraintsConstraints



Dual: Synthesis from DeclarativeDual: Synthesis from Declarative
SpecificationsSpecifications

■■ FSM specification using time constraintsFSM specification using time constraints
■■ Internal data representation using Internal data representation using BDDsBDDs
■■ Minimum-state FSM synthesis byMinimum-state FSM synthesis by

constructionconstruction
■■ DeterminizationDeterminization and specification and specification

completioncompletion
■■ Verification using R-resolution (newVerification using R-resolution (new

method)method)



Declarative specification of temporalDeclarative specification of temporal
constraints is converted to aconstraints is converted to a

nondeterministicnondeterministic state machine state machine



Practical ApplicationsPractical Applications
■■ Provably-correct design of real-timeProvably-correct design of real-time

(reactive) systems and protocols(reactive) systems and protocols
■■ Synthesis of minimum stateSynthesis of minimum state

(non)deterministic(non)deterministic FSMs FSMs
■■ Efficient translation of net-lists intoEfficient translation of net-lists into

minimum-state minimum-state FSMsFSMs
■■ Conversion of regular expressions into Conversion of regular expressions into FSMsFSMs
■■ FSM design for future technologiesFSM design for future technologies

(“canonical machines”)(“canonical machines”)





SynthaSyntha and Trace: and Trace:
Optimization andOptimization and
SynthesisSynthesis of  of StateState

MachinesMachines



■■ Table method for FSM specificationTable method for FSM specification
■■ Transparent logic synthesis algorithmsTransparent logic synthesis algorithms
■■ Economic implementation of next-stateEconomic implementation of next-state

logiclogic
■■ Two-level Two-level boolean boolean optimizationoptimization

(Espresso)(Espresso)
■■ VHDL outputVHDL output
■■ Synthesis for testability (forthcoming)Synthesis for testability (forthcoming)
■■ Technology mapping (forthcoming)Technology mapping (forthcoming)

SynthaSyntha: Structural Synthesis: Structural Synthesis
 of State Machines of State Machines





■■ Human-guided FSM specification and design ofHuman-guided FSM specification and design of
efficient controllerefficient controller

■■ Logic Synthesis of economical Logic Synthesis of economical FSMsFSMs
■■ BuildingBuilding FSMs FSMs from universal blocks such as from universal blocks such as

counters, shifters, EXOR modifierscounters, shifters, EXOR modifiers
■■ Using various Using various encodings encodings and flip-flop typesand flip-flop types
■■ Adaptations for PLA, FPGA, ASICAdaptations for PLA, FPGA, ASIC
■■ Producing VHDL outputProducing VHDL output

PracticalPractical
ApplicationsApplications



■■ New concept of “cyclic” New concept of “cyclic” booleanboolean functions functions
■■ Finding “traces” of “cyclic”Finding “traces” of “cyclic” boolean boolean functions functions

for different types of flip-flopsfor different types of flip-flops
■■ Properties of known and random functionsProperties of known and random functions
■■ MultiMulti-zoom visualization using MFC-zoom visualization using MFC

Trace: Optimization based onTrace: Optimization based on
Autonomous State MachinesAutonomous State Machines





■■ Research in Research in boolean boolean functionsfunctions
■■ Synthesis of economical control unitsSynthesis of economical control units

using embedded autonomous using embedded autonomous FSMsFSMs
■■ Design of Design of FSMsFSMs using AND/EXOR using AND/EXOR

circuits optimized for speed, area, andcircuits optimized for speed, area, and
testabilitytestability

■■ Case Study: Efficient reversible countersCase Study: Efficient reversible counters

PracticalPractical
ApplicationsApplications



Optimization andOptimization and
Synthesis ofSynthesis of

Combinational Combinational LogicLogic



MVGUDMVGUD
Decomposition of Decomposition of MultiMulti-Valued-Valued

MultiMulti-Output Functions and-Output Functions and
RelationsRelations

➪➪Real-life data in ML and KDD are oftenReal-life data in ML and KDD are often
relationsrelations
➪➪Non-deterministic state machines areNon-deterministic state machines are
relationsrelations
➪➪ Functions can be decomposed to relations Functions can be decomposed to relations



■■ Decomposition strategy selectionDecomposition strategy selection
■■ Variable partitioning (new algorithms)Variable partitioning (new algorithms)
■■ New Data Structure for weakly-specifiedNew Data Structure for weakly-specified

functions and relations (LR-partitions)functions and relations (LR-partitions)
■■ Column multiplicity (graph coloring)Column multiplicity (graph coloring)
■■ Decomposition evaluation using DFCDecomposition evaluation using DFC
■■ Iterative processing of Iterative processing of decompositionsdecompositions
■■ Verification of final resultsVerification of final results

AlgorithmsAlgorithms



■■ Boolean and Boolean and MultiMulti-Valued Logic-Valued Logic
SynthesisSynthesis

■■ Finite State Machine DecompositionFinite State Machine Decomposition
■■ Data Mining and Machine LearningData Mining and Machine Learning
■■ Digital Image ProcessingDigital Image Processing
■■ Artificial IntelligenceArtificial Intelligence
■■ Evolutionary AlgorithmsEvolutionary Algorithms

PracticalPractical
ApplicationsApplications



■■ We define a new research area: We define a new research area: Learning HardwareLearning Hardware
■■ Realize Realize knowledge-basedknowledge-based  combinational combinational algorithmsalgorithms in in

reconfigurable FPGAsreconfigurable FPGAs
■■ GeneralizationGeneralization of  of Evolvable Evolvable HardwareHardware
■■ Use of the results from Machine Learning:Use of the results from Machine Learning:

––  small learning error, small learning error,
–– explanation,explanation,
–– no no overfittingoverfitting

■■ Use of the results from Use of the results from Logic Synthesis/EDA toolsLogic Synthesis/EDA tools::
––   speed  speed
––  and high quality of resulting circuits and high quality of resulting circuits

Conclusions and Work in ProgressConclusions and Work in Progress



■■ Efficient Hardware forEfficient Hardware for Combinational Combinational
ProblemsProblems

■■ Applications in Data Mining, DesignApplications in Data Mining, Design
Automation and RoboticsAutomation and Robotics

■■ New New FPGAs FPGAs from from Xilinx Xilinx and and Altera Altera willwill
allow to design truly practical systemsallow to design truly practical systems

Conclusions and Work in ProgressConclusions and Work in Progress



Further ReadingFurther Reading
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SummarySummarySummary
■■ Distinctions between learning andDistinctions between learning and

knowledge based methods are notknowledge based methods are not
clear-cutclear-cut

■■ Representation is vitalRepresentation is vital
–– (and equivalent to solving the problem!)(and equivalent to solving the problem!)

■■ Extensions should consider adaptiveExtensions should consider adaptive
techniquestechniques

■■ No free lunch?No free lunch?


