Binary Image Operations

morphological

Image Processing, How's

- Reducing the amount of information
- Small in size, Huge in information

197	42	101	8	58
6	235	125	219	97
79	122	1 45	115	29
210	154	58	33	103
97	129	28	172	201
233	137	222	30	323
150	7	144	72	1.47
139	209	197	48	116
1.42	50	53	7	7.1
18	142	113	31	214
91	99	48	93	88
1 17	149	Z11	225	236
29	25	202	78	1 45
62	161	16	55	99
75	12	93	56	199
106	126	208	100	18
194	91	63	160	185
3	35	101	42	23
227	2	36	180	170

Before

		L CE	1	155
П	0			162
П	200	.0	135	111
	201		11	
П	142		132	
0	210	(D)	80	
	225	<u> </u>	21	0
0	0	166	250	
		72	9	
	0	23	0	
п		72	D	
П	0	22	0	0
0	0	100		
1	U	п	D D	
181	0	(4)	0	0
35		0.0	0	0
п	0	, H	J.	0
0		(0)	0	0
0	0	0.0	0	0

After

Morphological Binary Image Operations

Structuring elements and neighborhood

- SE is an M X N matrix of O's and 1's.
- The center pixel is at floor(M+1/2,N+1/2).
- The neighborhood of the center pixel are all the pixels in SE that are 1.

<u>ero de and dilate</u>

 For each pixel in the input image, examine the neighborhood as specified by the structuring element.

 For erode: If every pixel in the neighborhood is on, the output pixel is on. Tends to make objects smaller.

 For dilate: If any pixel in the neighborhood is on, the output pixel is on. Tends to make objects larger.

Example of erode and dilated

Binary Image

dilated

eroded

Binary image contour extraction

Satellite image with contour.

Example

- Selection of a problem
- Selection of Image Capturing tools
- Image Processing
 - -Canny Edge Detection
 - -Hough Transforms
- Putting it all together

Why?

- Monitor power level in robot's batteries
- When power goes low, interrupt actions
- Search for the wall plug
- Traverse over to it
- Plug itself to it in.

Image Processing, how?

- Currently there are many, many ways to approach this problem
 - Segmentation
 - Edge Detection
 - DPC compression
 - FFT
 - IFFT
 - DFT
 - Thinning
 - Growing
 - Haar Transform
 - Hex Rotate

Alpha filtering

DPC compression

Perimeter

Fractal

Gaussian Filter

Band Pass Filter

Homomorphic Filtering

Contrast

Sharper

Least Square Restoration

Warping

Dilation

Image Processing, how?

- Divided into two groups
 - -Reduction
 - –Interpretation

Problems

- Write program for dilation of images
- Modify it to do erosions (few types)
- Modify it to perform shift and exor operation and shift and min operation