Motivations for Hough Transform (example)
Hough Transform

• One of the most popular utilizations of a voting mechanism

• A kind of structured Neural Network

• A transformation from an image space to a parameter space (vote space, Hough space).

• Voting is performed in the parameter space

• This transform can be also treated as template matching
Hough Transform

- It locates straight lines (SHT) - standard, simple HT
- It locates straight line intervals
- It locates circles
- It locates algebraic curves
- It locates arbitrary specific shapes in an image

- But you pay progressively for complexity of shapes by time and memory usage
Hough Transform idea

- An Edge Pixel in Real Space would vote into Hough Space all possible lines that contain that point

\[y = mx + b \]

- Continue to Add Votes for different Edge Pixels

- Intersection gives Equation for line
 - Edge Detected Image (real space)
 - Hough Space
Hough Transform for Lines

- Line equation: $y = mx + c \iff c = -mx + y$
- Each point in image space corresponds to a line in parameter space.
- An intersection point in parameter space corresponds to a line in image space.
The standard Hough Transform for lines (continued)

• Example: Parametric equation of a line

\[x \cos \@ + y \sin \@ = r \]

• **Generalization:**
 – Technique to isolate curves of a given shape in an image
 – Curve specified by parametric equation
Line Normal Parameterization

- $\rho = x_i \cos \theta + y_i \sin \theta$
 - $0 \leq \theta \leq 2\pi$, $-N \leq \rho \leq N$

- $\rho = r \left(\frac{x_i}{r \cos \theta} + \frac{y_i}{r \sin \theta} \right)$
 - $= r \cos (\theta - \Phi)$

- Error term:
 - $\Delta \rho = d \Delta \theta$
Circle Fitting

- Implicit circle equation:
 \[(x - a)^2 + (y - b)^2 = r^2\]
- Parametric equations:
 \[a = x + r \cos \theta, \quad b = y + r \sin \theta\]
- To find the center of a circle with fixed radius \(r\):
Circle Fitting (cont’d)

For unknown radius r use one of the following:

1. Use a 2 dimensional space (a,b), but loose radius size:

 \[b = a \tan \theta - x \tan \theta + y \]

2. Use a 3 dimensional space (a,b,r) and parametric equations:

 \[a = x + r \cos \theta, \quad b = y + r \sin \theta. \]

Points in image space correspond to cones.
SHT: Problem

• Standard Hough Transform requires parametric representation for desired curve

• This idea is generalized in the Generalized Hough Transform
Example: Human Face recognition

• Is there some attribute of the structure of the head that we can exploit to help estimate pose estimation?
• Is this attribute invariant under change in pose?
 Or
• “Can we model how this attribute varies with pose?”
Hough Transform in General

• Technique to isolate curves of a given shape in an image
• Standard Hough Transform (HT) uses parametric formulation of curves
• Generalized Hough Transform (GHT) extends for arbitrary curves
Hough Transform Algorithm

1. Form a parameter space to represent all of the unknown parameters in an equation of a family of curves \(f(x,a)=0 \).
2. Quantize the parameter space appropriately to form an accumulator array \(A \).
3. Initialize each cell in accumulator \(A \) to 0.
4. For each edge point in the image increment all the cells in the accumulator array \(A \) that satisfy the curve equation.
5. Local maxima in the accumulator array \(A \) correspond to a curve with those parameter in image space.
The Generalized Hough Transform

• Technique to find arbitrary curves in a given image

• Parametric equation no longer required

• Look-up table used as transform mechanism

• Two phases:

• R-Table Generation phase

• Object Detection phase
Conclusions on GHT

• Standard Techniques allow for invariance to scale and rotation in the plane.

• In general, objects in the real world are 3-dimensional.

• Hence a single silhouette provides no invariance to pose (i.e. rotation out of the plane).

• No pose estimation.

• This is generalized to Surface Normal Hough Transform.
The Surface Normal Hough Transform

- A technique for computing the 3-D position of a surface having a specific pose

- A technique for computing the 3-D position and orientation (pose) of a surface with respect to the pose of a prototypical exemplar of that surface

- Hence a technique for directly registering two similar surfaces
Conclusions and Research Directions

• Technique for registration of surfaces
• Invariant to size and orientation in 3-D
• Can be extended to localization in 2-D
• Implementation
• Validation of simple surfaces
• Face Database for testing of human head pose estimation
Advantages:

- Works for broken curves
- Uses gradient for speed and further noise removal
- Robust to noise
- Can be extended to a General Hough Transform

Disadvantages:

- Expensive when number of parameters is large
- Gradient information can have errors
Gradient Information

- Edge gradient in image space can be used in Hough Transform to reduce one dimension in incrementing the accumulator array.

- For line detection the gradient is θ and so need only to vote for one cell (p, θ) where p is

 \[p = x_i \cos \theta + y_i \sin \theta \]

- For circle detection the gradient is θ and so need only to vote along a line given by the equations

 \[a = x + r \cos \theta \quad b = y + r \sin \theta \]
Figure 6.3 A Hough accumulator array
Drift Chamber Tracking Method: Hough Transform

- Optimum choice of particle trajectory
- Calculate ϕ/α for each x_1-x_2 pair at the reference radius (R) after most of the bending has occurred.
 - 6000 bins in $\sin(\phi)$
 - 300 bins in α
Sample Drift Chamber Hough Transform

- Peaks are clearly distinguishable from the background in phase space
Sources

• Zinovi Tauber