
Goran Negovetic
ECE572: Advanced Logic Synthesis
Project Proposal
November 4, 2001

Hardware Implementation of Quantum Circuits

1. Introduction

Since there are no means to make a true quantum computer at present, we have to

settle on different software and hardware simulations. Quantum calculations obey the
laws of quantum mechanics. Quantum computation requires exponential amount of
calculation in a polynomial amount of space and time. This is the reason why even
limited size-circuits require exponential amount of memory and processing time and
recourses. However, quantum circuit operation exhibits a large amount of regularity and
parallelism. This led to an idea of using FPGA based hardware for quantum circuit
simulation. It is important to realize that this circuit can be only of a finite size to meet
the hardware resources. However, today's FPGA offer very large amount of memory and
flip-flops, as well as hard-wired arithmetic operations such as multipliers.

2. Quantum Circuits

Quantum circuits are composed of quantum logic gates. There are number of

elementary quantum gates; however, only a subset of these are required to implement an
arbitrary size quantum circuit. Penalty for smaller set of gates is paid with a larger over-
all circuit.

The basic storage unit in a quantum computer is a Qubit. A Qubit can take value
of zero, one, and a superposition of 0 and 1. In the superposition state, complex
amplitudes are used to represent probabilities of the Qubit being in one of the familiar
logic states, namely 0 and 1. For a register of N bits, there are 2^N states, each having a
complex probability in the superposition state. This is the root of parallelism, since all
possible states are calculated in parallel. When the state of a Qubit is observed, its
probability collapses to either 0 or 1, hence the superposition is destroyed. Also, since
only finite precision can be employed for either software or hardware quantum circuit
simulation, there is accumulated error that propagates through the system.

Quantum gate operations can be expressed as matrix operations. Each gate
operation is expressed as multiplying 2^N-dimensional vector by the 2^N x 2^N
transformation matrix. Going from M x 2^N-dimensional Quantum vectors to one
2^(M+N) vector, we employ the Kronecker product matrix operation. Also, since I will
use only gates that operate on a small number of Qubit (N = 1 or 2), these matrices are
2x2 or 4x4 matrices replicated many times, as on Figure 1.

Figure 1

To visualize the quantum circuit operation, I created elementary quantum gates as

functions on matrices in Matlab. The quantum circuit is than the input vector passed
through these functions. Figure 2 shows a small circuit in Simulink, using those Matlab
functions.

Figure 2

Most quantum operations can be implemented as register content transfer. For

example this is so-called controlled NOT gate:

Figure 2

So the function of the gate is to swap a2 and a3.

3. Implementation

 The following diagram describes the flow of proposed Quantum circuit
implementation.

Quantum
Logic

Functon

Minima-
lization

(Synthesis)

Quantum
Circuit
Net-list

Logic Gate
Instantiation

Binary
Logic

Synthesis
&

Implement-
ation

Figure 3

My goal is to implement a library of Quantum gate primitives, together with the

gates for matrix manipulation necessary for the circuit implementation. There will be a
utility program to transform the Quantum circuit net- list to the instantiation of these
library primitives. From that point on, the circuit will be synthesized and implemented
using existing tools for a chosen FPGA architecture.

3.1 Hardware resources and data representation
As per previous discussion, each Qubit is represented as two complex numbers.

Each complex number requires two registers, each storing a floating-point number. I
assumed that amplitudes of Qubits are normalized. IEEE floating number format offers
excessive dynamic range, hence I decided to use simplified format:

S Fraction – 15-bit

The largest number less than one is 0.99998 and smallest number larger than zero is
0.0000305.

I will build a complex number multiplier using this number representation. It will
consist of four unsigned integer multipliers, two adder/subtractions and the logic for sign
decision.

As shown earlier, most quantum operations consist of swapping the register
contents. Even though these are counterparts of combinatorial binary logic, in this
implementation they will be clocked. This naturally leads to the pipelined architecture.

3.2 FPGA
I chose to use Xilix Virtex-II architecture FPGA for the Quantum circuit

implementation. It offers up to 8 million system gates, up to 1.5Mb SRAM memory,
dedicated 18 x 18-bit multiplier blocks and fast look-ahead carry logic chains.

4. Conclusion

The performance and feasibility of proposed implementation is limited by the size

of the circuit and available hardware resources. Exponentially increasing size of the
parallel processing is the limiting factor. However, similarity of quantum circuit
operations with unitary transforms often employed for image and other signal processing,
leaves possibilities of reusing and modifying the procedure for applications in digital
signal processing

5. Acknowledgements

1. A Parallel Quantum Computer Simulator, Kevin M. Obanland and Alvin M.
Despain

2. Quantum Computation: Theory and Implementation, Edward S. Boyden
3. Efficient Quantum Transforms, Peter Hoyer
4. Elementary Gate for Quantum Computation, Adriano Barenco et al.

