
EvolutionaryEvolutionary
AlgorithmsAlgorithms

Part 3Part 3
Martijn Schut, schut@cs.vu.nl,

Jaap Hofstede, Beasly, Bull, Martin

Andrea G. B. Tettamanzi

Joost N. Kok and Richard Spillman

KMT Software, Inc. -- http://KMT Software, Inc. -- http://www.kmt.www.kmt.comcom

Dan Kiely
Ran Shoham
Brent Heigold

•• SourcesSources

OUTLINEOUTLINE

• Genetic Programming
Structure

• Additional GP Operations

• Hardware Evolution

Artificial Intelligence

Machine learningMachine learning

What is GeneticWhat is Genetic
Programming(GP)?Programming(GP)?

GP

Artificial
Intelligence

ES
EP GA

evolutionary

Soft computing?

Genetic Algorithms-reviewGenetic Algorithms-review
• Most widely used
• Robust
• uses 2 separate spaces

– search space - coded solution (genotype)
– solution space - actual solutions (phenotypes)

Genotypes must
be mapped to
phenotypes
before the
quality or fitness
of each solution
can be evaluated

New Idea -EvolutionaryNew Idea -Evolutionary
Strategies (ES)Strategies (ES)

• ES are like GP -- no distinction between search
and solution space

• Individuals are represented as real-valued
vectors.

• Simple ES
– one parent and one child
– Child solution generated by randomly mutating the

problem parameters of the parent.
• Susceptible to stagnation at local optima

Evolutionary Strategies (Evolutionary Strategies (cont’dcont’d))

• Slow to converge to optimal solution
• More advanced ES

– have pools of parents and children
• Unlike GA and GP, ES

– Separates parent individuals from child
individuals

– Selects its parent solutions deterministically

Evolutionary ProgrammingEvolutionary Programming
• Resembles ES, developed independently
• Early versions of EP applied to the evolution of

transition table of finite state machines
• One population of solutions, reproduction is by mutation

only
• Like ES operates on the decision variable of the problem

directly (ie Genotype = PhenotypeGenotype = Phenotype)
• Tournament selection of parents

– better fitness more likely a parent
– children generated until population doubled in size
– everyone evaluated and the half of population with lowest

fitness deleted.

• What is Genetic Programming?
• Background/History.
• Why Genetic Programming?
• How Genetic Principles are Applied.
• Examples of Genetic Programs.
• Future of Genetic Programming.

Genetic ProgrammingGenetic Programming
• Specialized (or, generalized?) form of GA
• Manipulates a very specific type of solution

using modified genetic operators
• Original application was to design

computer programs
• Now applied in alternative areas such as

Analog Circuits
• Does not make distinction between search

and solution space.
• Solution represented in very specific

hierarchical manner.

The geneticThe genetic
programmingprogramming

cycle:cycle:

• By John R. Koza, Stanford University.
• 1992, Genetic Programming Treatise -

“Genetic Programming. On the Programming
of Computers by Means of Natural
Selection.” - Origin of GP.

• Combining the idea of machine learning and
evolved tree structures.

Why Genetic Programming?Why Genetic Programming?

• It saves time by freeing the human from
having to design complex algorithms.

• Not only designing the algorithms but
creating ones that give optimal solutions.

• Again, link to Artificial Intelligence, but
also systematic design, CAD,
optimization, future computing.

What Constitutes a GeneticWhat Constitutes a Genetic
Program?Program?

• Starts with "What needs to be done"
• Agent figures out "How to do it"
• Produces a computer program - “Breeding Programs”
• Fitness Test
• Code reuse
• Architecture Design - Hierarchies
• Produce results that are competitive with human

produced results (well, sometimes)

How are Genetic PrinciplesHow are Genetic Principles
Applied?Applied?

• “Breeding” computer programs.
• Crossovers.
• Mutations.
• Fitness testing.

“Breeding” Computer Programs“Breeding” Computer Programs

• Start off with a large “pool” of random computer
programs.

• Need a way of coming up with the best solution
to the problem using the programs in the “pool”

• Based on the definition of the problem and
criteria specified in the fitness test, mutations
and crossovers are used to come up with new
programs which will solve the problem.

Genetic Programming StructureGenetic Programming Structure

• Given the graph representation, Genetic
Programming becomes a straightforward
implementation of a Genetic Algorithm

• A GP system must have:

Initial Population Generation Method

Parent Selection Method

CrossOver and Mutation Operators

Initial PopulationInitial Population

• The initial population for a GP run consists of a
randomly generated set of “rooted, point-labeled
trees with ordered branches”

• Begin by selecting one of the functions from the
set of functions (F) to be labeled as a root

the number of branches from the root is given by
the number of arguments required by the selected function
An element is randomly selected from the combined
function and terminal set (F and T) and placed on each
of the branches

if a function is selected, branches are created for its
arguments

ExampleExample

• Let F = {AND,OR,NOT} and T = {X, Y}

Randomly select OR
OR

Randomly select X
X

Randomly select NOT
NOT

Randomly select Y

Y
(OR X (NOT Y))

Computer Programs as TreesComputer Programs as Trees

• Infix/Postfix
• (2 + a)*(4 - num) *

+ -

2 a 4 num

Genetic Programming: TheGenetic Programming: The
IndividualsIndividuals

subset of LISP S-expressions

(OR (AND (NOT d0) (NOT d1)) (AND d0 d1))

OR

AND

NOT

d0

NOT

d1

AND

d0 d1

Generative MethodGenerative Method
• GOAL: Start with an initial mixture of

trees (programs) of various sizes and shapes

DEFINITION: The depth of a tree is the length of the
longest path from the root to an endpoint

The “full” generation method creates a population of
trees in which the length of every path is equal to a
specified maximum depth

PROCESS: Restrict the selection of nodes at depths
less than the maximum to the function set and select
only terminal nodes at the maximum depth

Growth MethodGrowth Method
• Create an initial population consisting of trees with a

variable depth up to some maximum

PROCESS: Allow both functions and
terminals for all nodes below the maximum
depth and only terminals for nodes at
the maximum depth

Best MethodBest Method

• The best method combines these two approaches

a maximum depth is specified (say 2 to 6)

PROCESS: an equal number of trees at
each maximum depth is constructed - half
using the full method and half using the
grow method

Mutations in NatureMutations in Nature
• Ultimate source of genetic variation.
• Radiation, chemicals change genetic information.
• Causes new genes to be created.
• One chromosome.
• Asexual.
• Very rare.

Before:

 acgtactggctaa

After:

 acatactggctaa

Properties of mutationsProperties of mutations

Mutations in ProgramsMutations in Programs
• Single parental program is probabilistically selected from

the population based on fitness.
•• MutationMutation point randomly chosen.

– the subtree rooted at that point is deleted, and
– a new subtree is grown there using the same random growth

process that was used to generate the initial population.

• Asexual operations (mutation) are typically performed
sparingly:
– with a low probability of,
– probabilistically selected from the population based on fitness.

Mutation Mutation inProgramsinPrograms
• Determine if a population element will be subjected to

a mutation

• Select a random point in the program tree

• Remove the subtree at that point

• Insert a randomly generated subtree at that point

Example of Mutation in GPExample of Mutation in GP
• Apply mutation to:

+

* Y

X 12

+

* Y

X -

X 3

Crossover Example in GPCrossover Example in GP

• Given
two
parents:

(* (* Z Y) (+ Y (* 0.314 Z)))

+

* -

0.234 Z X 0.789

*

* -

Z Y Y *

0.314 Z

Crossover
Point

Crossover
Point

CHILDREN

+

-

X 0.789

-

Y *

0.314 Z

*

*

Z Y

*

0.234 Z

NOTE: The root could be selected from
one parent so the entire parent would be
placed at the crossover site

(+ (* 0.234 Z) (- X 0.789)

Genetic Programming: InitializationGenetic Programming: Initialization

OR

AND

NOT

d0

NOT

d1

AND

d0 d1

OR

OR

AND

OR

AND AND

OR

AND AND

NOT

Genetic Programming: CrossoverGenetic Programming: Crossover

OR

ANDNOT

d0 d0 d1

OR

OR AND

d1 NOT NOT NOT

d0 d0 d1

OR

AND NOT

d0d0 d1

OR

ORAND

d1 NOTNOT NOT

d0d0 d1

Crossovers in Crossovers in ProgramsPrograms
• Two parental programs are selected from the population

based on fitness.
• A crossover point is randomly chosen in the first and second

parent.
– The first parent is called receiving
– The second parent is called contributing

• The subtree rooted at the crossover point of the first parent
is deleted

• It is replaced by the subtree from the second parent.
•• CrossoverCrossover is the predominant operation in genetic

programming (and genetic algorithm) research
• It is performed with a high probability (say, 85% to 90%).

ExamplesExamples of Genetic of Genetic
ProgramsPrograms

• 1. Symbolic Regression -
– the process of discovering:

• the functional form of a target function
• and all of its necessary coefficients,
• or at least an approximation to these.

• 2. Analog circuit design
– Embryo circuit is an initial circuit which is modified

to create a new circuit according to functionality
criteria.

Genetic Programming inGenetic Programming in
the Futurethe Future

• Speculative.
• Only been around for 8 years.
• Is very successful.
• Discovery of new algorithms in

existing projects.

Mr.
Roboto

Growth ControlGrowth Control
• Since crossover selects randomly sized subtrees to

place at random locations in an existing tree, it is
possible for these trees to grow quite large

SOLUTION: If a crossover operation
creates a tree that is too large then abort
the crossover and select one of the parents
to pass to the next generation

Parent SelectionParent Selection
• Since all the reproduction methods are based on the

fitness measure, they can be used for genetic
programming without a change

Roulette Wheel Selection

Tournament Selection

• Overall, the fitness calculation for genetic programming
requires running each program in the population and
evaluating the results

• EXAMPLE: the problem is to develop a program which
implements a function that passes through a set of 5 given
points

run the program for each of the 5 points and
compare how far the output is from the point
it is trying to match

• Identifying the way of evaluating how good a
given computer program is at solving the
problem at hand.

• How good can a program cope with its
environment.

• Can be measured in many ways, i.e. error,
distance, time, etc…

Fitness Test CriteriaFitness Test Criteria

• Time complexity a good criteria.
– i.e. n2 vs. n*log n.

• Accuracy - Values of variables.
• Combinations of criteria may also be

tested.

• Simplify functions as genetic programming is running

• Implements a set of rules for simplification

• RULE ONE: If any function that has no side effects and
only constants as arguments is found, it is replaced by the
results of its evaluation

Other Editing Rules: (- X X) is replaced by 0

(/ X 1) is replaced by X

(and X X) is replaced by X

EncapsulationEncapsulation
• GOAL: identify an important operation and protect it from

disruption by crossover by creating a new function

• Begin by randomly selecting a population element in the
same way they are selected to become parents - bias to the
best
– randomly select a subtree and create a function without arguments

which implements the subtree
– replace the subtree with a single node that calls this new function

• Many programs involve the implementation of
an algorithm which contains mathematical
expressions some of which contain constants

• METHOD: a special terminal is added to the
terminal set, R, a random constant
– some characteristics are specified such as possible

range and type (real, integer. . .)
– every time R is selected, a random version of R is

placed in the tree

Initial Population AlternativeInitial Population Alternative

• To avoid prejudicing the initial population
towards full or grow trees, do ramped- half-
and- half using user-determined minDepth
and maxDepth parameters.
– At each depth D between minDepth and

maxDepth, create:
• popsize/(maxDepth- minDepth)/ 2 full trees
• popsize/(maxDepth- minDepth)/ 2 grow trees each

of depth D.

Selection Alternative in GPSelection Alternative in GP
• As in GA, GP can use fitness proportional selection and

tournament selection.

• fitness-overselection is a technique used to increase
selection pressure on large populations.
– the population of trees is sorted in fitness order
– those trees that are part of the top 32% of the population’s fitness

are selected for 80% of the time,
– the remaining 68% of the population is selected for only 20% of

the time.

Example of GP in circuit designExample of GP in circuit design

• Evolve code which implements an 8-to-1 Mux
– function set = {and (2 args), or (2 args), not (1arg), if (3 args:

condition, true exp, false exp)}
– terminal set = {d0 ... d7, a0 ... a2}
– fitness = each tree is evaluated on all 2048 (211) cases of possible

input, fitness is how many cases the GP tree gets right.

Typical Program in GP (LISP data)Typical Program in GP (LISP data)

• An early program might look like:

Evolution Strategies: IndividualsEvolution Strategies: Individuals

candidate solution

rotation angles

standard deviations

�a

�x
�

α
�

σ

α
σ σij

i j

i j
=

−
1
2

2
2 2arctan

cov(,)

Evolution Strategies: MutationEvolution Strategies: Mutation

′ = ′ +
′ = +

′ = + ′ ′

σ σ τ τ
α α β

σ α

i i i

j j j

N N
N

x x N

exp((,) (,))
(,)

(, ,)

0 1 0 1
0 1

0� �

� �
� �

Hans-Paul Schwefel suggests:

()
()

τ

τ
β

∝

′ ∝
≈ = °

−

−

2

2
0 0873 5

1

1

n

n
.

self-adaptation

Genetic ProgrammingGenetic Programming
• Program induction
• LISP (historically), math expressions, machine language,

...
• Applications:

– optimal control;
– planning;
– sequence induction;
– symbolic regression;
– modelling and forecasting;
– symbolic integration and differentiation;
– inverse problems

Genetic Programming: Genetic Programming: OtherOther
OperatorsOperators

• Mutation: replace a terminal with a subtree
• Permutation: change the order of arguments to

a function
• Editing: simplify S-expressions, e.g. (AND X

X) → X
• Encapsulation: define a new function using a

subtree
• Decimation: throw away most of the

population

Genetic Programming: FitnessGenetic Programming: Fitness

Fitness cases: j = 1, ..., Ne

“Raw” fitness:

“Standardized” fitness: s(γ) ∈ [0, +∞)

“Adjusted” fitness:

r j C j
j

Ne

() Output(,) ()γ γ= −
=
∑

1

a
s

()
()

γ
γ

=
+

1
1

Example of Application:Example of Application: Myoelectric Myoelectric
Prosthesis ControlProsthesis Control

• Control of an upper arm prosthesis
• Genetic Programming application
• Recognize thumb flection, extension and abduction

patterns

Prosthesis Control: The ContextProsthesis Control: The Context

human
arm

myoelectric signals

measure
raw myo-measurements

preprocess
myo-signal features

deduce intentions

map into goal
human motion

robot motion

convert

actuator commands

robot
arm

150 ms

2 electrodes

Prosthesis Control: TerminalsProsthesis Control: Terminals
Features for electrodes 1, 2:
• Mean absolute value (MAV)
• Mean absolute value slope (MAVS)
• Number of zero crossings (ZC)
• Number of slope sign changes (SC)
• Waveform length (LEN)
• Average value (AVG)
• Up slope (UP)
• Down slope (DOWN)
• MAV1/MAV2, MAV2/MAV1
• 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 0.01, -1.0

Prosthesis Control: Function SetProsthesis Control: Function Set
Addition x + y
Subtraction x - y
Multiplication x * y
Division x / y (protected for y=0)
Square root sqrt(|x|)
Sine sin x
Cosine cos x
Tangent tan x (protected for x=π/2)
Natural logarithm ln |x| (protected for x=0)
Common logarithm log |x| (protected for x=0)
Exponential exp x
Power function x ^ y
Reciprocal 1/x (protected for x=0)
Absolute value |x|
Integer or truncate int(x)
Sign sign(x)

Prosthesis Control: FitnessProsthesis Control: Fitness

type 1 type 2 type 3undefined undefined undefined

{ }r()
min , ,abduction extension flexion

abduction extension abduction flexion extension flexion

γ σ σ σ
µ µ µ µ µ µ

= + + +
− − −

100

µ

σ

separation

spread

22 signals per motion

result

MyoelectricMyoelectric Prosthesis ControlProsthesis Control
ReferenceReference

• Jaime J. Fernandez, Kristin A. Farry and John B.
Cheatham. “Waveform Recognition Using Genetic
Programming: The Myoelectric Signal Recognition
Problem. GP ‘96, The MIT Press, pp. 63–71

Classifier SystemsClassifier Systems (Michigan approach) (Michigan approach)

IF X = A AND Y = B THEN Z = Dindividual:

IF ... THEN ...

IF ... THEN ...

IF ... THEN ...

IF ... THEN ...

IF ... THEN ...

IF ... THEN ...

IF ... THEN ...

IF ... THEN ...

IF ... THEN ...

f
e f r n n

p f n nn
n

n
+ =

− + =
− ≠

1

1
1

()
() () () class()

() () () class()
γ

γ γ
γ γ

r gN R∝ −()1 γwhere

number of attributes
in antecedent part

Practical Implementation IssuesPractical Implementation Issues

• from elegant academia to not so elegant
but robust and efficient real-world
applications, evolution programs

• handling constraints
• hybridization
• parallel and distributed algorithms

Evolution ProgramsEvolution Programs
Slogan:

Genetic Algorithms + Data Structures = Evolution Programs

Key ideas:
• use a data structure as close as possible to object problem
• write appropriate genetic operators
• ensure that all genotypes correspond to feasible solutions
• ensure that genetic operators preserve feasibility

EncodingsEncodings: “Pie” Problems: “Pie” Problems

W
X
Y
Z

0–255
128 32 90 20

0–255 0–255 0–255

W X Y Z

X = 32/270 = 11.85%

EncodingsEncodings: “Permutation” Problems: “Permutation” Problems

Adjacency Representation

Ordinal Representation

(2, 4, 8, 3, 9, 7, 1, 5, 6)

1 - 2 - 4 - 3 - 8 - 5 - 9 - 6 - 7

(1, 1, 2, 1, 4, 1, 3, 1, 1)

Path Representation

(1, 2, 4, 3, 8, 5, 9, 6, 7)

Matrix Representation
10 1

0
0

0
0

0
0

0
0

1 1 1 1 1 1
0 1 1 1 1 1 1 1
0 0 0 1 1 1 1 1
0 0 1 1 1 1 1 1

0 0 00 1 1 1 1

0 0 00 01 1 1

0 0 00 00 1 1

10
0

0 0 0 0 0 0
0 0 0 0 0 0 0

Sorting Representation

(-23, -6, 2, 0, 19, 32, 85, 11, 25)

Handling ConstraintsHandling Constraints

• Penalty functions
Risk of spending most of the time evaluating unfeasible solutions,
sticking with the first feasible solution found, or finding an
unfeasible solution that scores better of feasible solutions

• Decoders or repair algorithms
Computationally intensive, tailored to the particular application

• Appropriate data structures and specialized genetic
operators

All possible genotypes encode for feasible solutions

S c

P

f c z P z() Eval(()) ()γ = +

P z w t w zi i
i

() () ()= ∑ ∆

Decoders / Repair AlgorithmsDecoders / Repair Algorithms

S c

recombination

mutation

HybridizationHybridization

2) Use local optimization algorithms as genetic operators
 (Lamarckian mutation)

1) Seed the population with solutions provided by some heuristics

heuristics initial population

3) Encode parameters of a heuristics

genotype heuristics candidate solution

Example of Application: UnitExample of Application: Unit
CommitmentCommitment

• Multiobjective optimization problem: cost VS emission
• Many linear and non-linear constraints
• Traditionally approached with dynamic programming

• Hybrid evolutionary/knowledge-based approach
• A flexible decision support system for planners
• Solution time increases linearly with the problem size

The Unit Commitment ProblemThe Unit Commitment Problem

C P a b P c Pi i i i i i i() = + + 2

()z C P SU SD HSi i i i i
i

n

$ ()= + + +
=
∑

1
z E PE i i

i

n

=
=
∑ ()

1

E P P Pij i ij ij i ij i() = + +α β γ 2

E P E Pi i ij i
j

m

() ()=
=
∑

1

Emissions Cost

Predicted Load CurvePredicted Load Curve

0

5

10

15

20

25

30

35

40

45

12
:00

 A
M

2:0
0

AM

4:0
0

AM

6:0
0

AM

8:0
0

AM
10

:00
 A

M
12

:00
 P

M

2:0
0

PM

4:0
0

PM

6:0
0

PM

8:0
0

PM
10

:00
 P

M

Spinning Reserve
Load

Unit Commitment: ConstraintsUnit Commitment: Constraints

• Power balance requirement
• Spinning reserve requirement
• Unit maximum and minimum output limits
• Unit minimum up and down times
• Power rate limits
• Unit initial conditions
• Unit status restrictions
• Plant crew constraints
• ...

Unit Commitment: EncodingUnit Commitment: Encoding
Unit 1 Unit 2 Unit 3 Unit 4 Time

1.0 00:00
01:00
02:00
03:00
04:00
05:00
06:00
07:00
08:00
09:00

1.0
1.0

1.0
1.0

1.0 1.0
1.0
1.0

1.0

1.0
1.01.0

0.9
0.8

0.8

0.8
0.8
0.4

0.8

0.8

0.75
0.8

0.2
0.2

0.25
0.2

0.2

0.15

0.0
0.0

0.0 0.0

0.0 0.0

0.5
0.65

0.5
0.5
1.0

Fuzzy
Knowledge

Base

Unit Commitment: SolutionUnit Commitment: Solution
Unit 1 Unit 2 Unit 3 Unit 4 Time

00:00
01:00
02:00
03:00
04:00
05:00
06:00
07:00
08:00
09:00

down

hot-stand-by
starting
shutting down
up

Unit Commitment: SelectionUnit Commitment: Selection

cost ($)

em
is

si
on

$507,762 $516,511
213,489 £ 60,080 £

competitive selection:

Unit Commitment ReferencesUnit Commitment References
• D. Srinivasan, A. Tettamanzi. “An Integrated Framework for Devising

Optimum Generation Schedules”. In Proceedings of the 1995 IEEE
International Conference on Evolutionary Computing (ICEC ‘95),
vol. 1, pp. 1-4.

• D. Srinivasan, A. Tettamanzi. A Heuristic-Guided Evolutionary
Approach to Multiobjective Generation Scheduling. IEE Proceedings
Part C - Generation, Transmission, and Distribution, 143(6):553-559,
November 1996.

• D. Srinivasan, A. Tettamanzi. An Evolutionary Algorithm for
Evauation of Emission Compliance Options in View of the Clean Air
Act Amendments. IEEE Transactions on Power Systems, 12(1):336-
341, February 1997.

Parallel Evolutionary AlgorithmsParallel Evolutionary Algorithms

• Standard evolutionary algorithm is sequential...
• … but evolutionary algorithms are intrinsically

parallel
• Various models:

– cellular evolutionary algorithm,
– fine grain parallel evolutionary algorithm,
– course grain parallel evolutionary algorithm, (isand)
– Master-slave sequential evolutionary algorithm with

parallel fitness function calculation

Island ModelIsland Model

Example Application: ProteinExample Application: Protein
FoldingFolding

• Finding 3-D geometry of a protein to
understand its functionality

• Very difficult: one of the “grand
challenge problems”

• Standard GA approach
• Simplified protein model

Protein Folding: The ProblemProtein Folding: The Problem
• Much of a proteins function may be derived from its

conformation (3-D geometry or “tertiary” structure).
• Magnetic resonance & X-ray crystallography are currently used

to view the conformation of a protein:
– expensive in terms of equipment, computation and time;
– require isolation, purification and crystallization of protein.

• Prediction of the final folded conformation of a protein chain has
been shown to be NP-hard.

• Current approaches:
– molecular dynamics modelling (brute force simulation);
– statistical prediction;
– hill-climbing search techniques (simulated annealing).

Protein Folding: Simplified ModelProtein Folding: Simplified Model

• 90° lattice (6 degrees of freedom at each point);
• Peptides occupy intersections;
• No side chains;
• Hydrophobic or hydrophilic (no relative strengths) amino acids;
• Only hydrophobic/hydrophilic forces considered;
• Adjacency considered only in cardinal directions;
• Cross-chain hydrophobic contacts are the basis for evaluation.

Protein Folding: RepresentationProtein Folding: Representation

preference order encoding:

relative move encoding:

UP DOWN FORWARD LEFT UP RIGHT

UP
LEFT
RIGHT
DOWN
FORWARD

DOWN
LEFT
UP
FORWARD
RIGHT

FORWARD
UP
DOWN
LEFT
RIGHT

LEFT
DOWN
FORWARD
UP
RIGHT

...

...

Protein Folding: FitnessProtein Folding: Fitness
Decode: plot the course encoded by the genotype.

Test each occupied cell:
• any collisions: -2;
• no collisions AND a hydrophobe in an adjacent cell: 1.

Notes:
• for each contact: +2;
• adjacent hydrophobes not discounted in the scoring;
• multiple collisions (>1 peptides in one cell): -2;
• hydrophobe collisions imply an additional penalty (no contacts

are scored).

Protein Folding: ExperimentsProtein Folding: Experiments
• Preference ordering encoding;
• Two-point crossover with a rate of 95%;
• Bit mutation with a rate of 0.1%;
• Population size: 1000 individuals;
• crowding and incest reduction.

• Test sequences with known minimum configuration;

Protein Folding ReferencesProtein Folding References
• S. Schulze-Kremer. “Genetic Algorithms for Protein

Tertiary Structure Prediction”. PPSN 2, North-
Holland 1992.

• R. Unger and J. Moult. “A Genetic Algorithm for
3D Protein Folding Simulations”. ICGA-5, 1993,
pp. 581–588.

• Arnold L. Patton, W. F. Punch III and E. D.
Goodman. “A Standard GA Approach to Native
Protein Conformation Prediction”. ICGA 6, 1995,
pp. 574–581.

Example of Application: Drug DesignExample of Application: Drug Design

Purpose: given a chemical specification (activity),
design a tertiary structure complying with it.

Requirement: a quantitative structure-activity
relationship model.

Example: design ligands that can
bind targets specifically and
selectively. Complementary
peptides.

Drug Design: ImplementationDrug Design: Implementation

N L H A F G L F K A

amino acid (residue)

individual

• name
• hydropathic value

Operators:
• Hill-climbing Crossover
• Hill-climbing Mutation
• Reordering (no selection)

implicit selection

Drug Design: FitnessDrug Design: Fitness
target a complement b

moving average
hydropathya hk i

i k s

k s

=
= −

+

∑ b gk i
i k s

k s

=
= −

+

∑

hydropathy of residues

k = s, ..., n − s n: number of residues in target

Q
a b
n s
i i

i
=

+
−∑

() 2

2
(lower Q = better complementarity)

Drug Design: ResultsDrug Design: Results

0 2 4 6 8 10 12 14 16
-6

-4

-2

0

2

4

Sequence:FANSGNVYFGIIAL Fassina
 GA
 Target

Hydropathic
Value

AminoAcid

Drug Design Drug Design ReferencesReferences
• T. S. Lim. A Genetic Algorithms Approach for

Drug Design. MS Dissertation, Oxford
University, Computing Laboratory, 1995.

• A. L. Parrill. Evolutionary and Genetic
Methods in Drug Design. Drug Discovery
Today, Vol. 1, No. 12, Dec 1996, pp.
514–521.

Evolution in Hardware, orEvolution in Hardware, or
EvolvableEvolvable Hardware Hardware

(EHW)(EHW)
• A genetic algorithm can be used to design

hardware as well as software

• This requires some form of programmable
hardware
– FPGA structure

Reconfigurable HardwareReconfigurable Hardware

• FPGAs consist
of logic blocks
and
programmable
wire paths:

IOB

IO
B

IOB IOB IOB

IO
B

IO
B

IO
B

CLB CLB

CLB CLB CLB

CLB CLB CLB

CLB

XilinxXilinx XC 4000 Structure XC 4000 Structure

• High Density -> 1M
System Gates

• SRAM Based LUT
• ASIC-like array

structure

CLB

CLB

CLB

CLB

Switch
Matrix

Programmable
Interconnect

D Q
SD

RD
EC

S/R
Control

D Q
SD

RD
EC

S/R
Control

1

1

F'
G'

H'

DIN

F'
G'

H'

DIN

F'

G'
H'

H'

H
Func.
Gen.

G
Func.
Gen.

F
Func.
Gen.

G4
G3
G2
G1

F4
F3
F2
F1

C4C1 C2 C3

 K

Y

X

 H1 DIN S/R EC

Configurable
Logic Blocks (CLBs)

Switch
Matrix

Routed Wires (Blue)
Programmable Interconnect Points, PIPs (White)

Direct
Interconnect
(Green)

CLB
(Red)

Long Lines
(Purple)

Close up view:Close up view:

Evolvable ArchitectureEvolvable Architecture

• A group of
FPGA under the
control of a
microprocessor:

EHW ConceptEHW Concept
• Create new hardware devices:

Accelerated evolution, ~ seconds for electronics

• Potential designs and
implementations
compete;

• the best ones are
slightly modified to
search for even
more suitable
solutions

GA ProcessGA Process
Evolutionary Algorithm
Genetic search on a population of
chromosomes
•select the best designs from a
population
• reproduce them with some variation
• iterate until the performance goal is
reached.

Chromosomes
10110011010100
01110101101111
11011011010110

Reconfigurable HW

Simulators (e.g. SPICE)

Models of circuits Control bitstrings

Conversion
to a circuit
description

Evaluate individual
responses and assess
their fitness

Target
response

Circuit response

Potential designs/implementations compete; the best ones are slightly modified to search for
even more suitable solutions

Powerful IdeasPowerful Ideas

• Reversible Logic
• Evolutionary Algorithms
• Cellular Automata
• FPGA
• Reconfigurable Hardware
• Hardware Evolution

SUMMARYSUMMARY

• Genetic Programming Structure

• Additional GP Operations

• Hardware Evolution

• Field of study in Machine Learning.
• Created by John Koza in 1992.
• Save time while creating better programs.
• Based on the principles of genetics.
• Symbolic Regression/Circuit Design.
• Future uncertain.

Student ProjectsStudent Projects

• Both Genetic Programming and EHW offer
interesting opportunities for projects.
– Select a software algorithm and try to produce

it using GP
– Target a hardware device and use EWH to

design it

Possible Quiz QuestionsPossible Quiz Questions

• Remember that even though each quiz is worth only 5 to 10
points, the points do add up to a significant contribution to
your overall grade

• If there is a quiz it might cover these issues:
– What is the best method to produce an initial population for a GP

system?
– What is reconfigurable hardware?
– What does EHW stand for?

