Evolutionary Algorithms Part 2

Sources

Martijn Schut, schut@cs.vu.nl,

Jaap Hofstede, Beasly, Bull, Martin

Andrea G. B. Tettamanzi

Joost N. Kok and Richard Spillman

KMT Software, Inc. -- http://www.kmt.com

Evolutionary Theory and Algorithm Variants Ideas

Review – EA Structure

- GA Structure
- GA Operators
- GA Applications
- GA Examples

Remember: EA is a philosophy of solving problems not a single method

Alternative EA Structures

Theoretical Background

- Theory of random processes;
- Convergence in probability;
- Open question: rate of convergence.

Events

Variabili aleatorie

Stochastic Processes

Un processo stocastico è una successione di v.a.

$$X_1, X_2, ..., X_t, ...$$

Ciascuna con la propria distribuzione di probabilità.

Notazione:
$$\left\{X_{t}(\omega)\right\}_{t=0,1,...}$$

EAs as Random Processes

$$(\Gamma, 2^{\Gamma}, \mu)$$
 probability space

$$x \in \Gamma^{(n)}$$
 a sample of size n

"random numbers" $\left\{ \Omega\,,\,F\,,\,P\right) \qquad \qquad \left\{ X_t\left(\omega\right)\right\}_{t=0,1,\dots} \text{evolutionary process}$

Catene di Markov

Un processo stocastico

$$\left\{X_{t}(\omega)\right\}_{t=0,1,\ldots}$$

è una catena di Markov sse il suo stato dipende solo dallo stato precedente, cioè, per ogni *t*,

$$P[X_t = x | X_0, X_1, ..., X_{t-1}] = P[X_t = x | X_{t-1}]$$

Abstract Evolutionary Algorithm

Stochastic functions:

select: $\Gamma^{(n)} \times \Omega \to \Gamma$

cross: $\Gamma \times \Gamma \times \Omega \rightarrow \Gamma$

mutate: $\Gamma \times \Omega \rightarrow \Gamma$

 $\mathbf{mate} \colon \Gamma \times \Gamma \times \Omega \to \Gamma$

insert: $\Gamma \times \Omega \rightarrow \Gamma$

Transition function:

$$X_{t+1}(\omega) = T_t(\omega) (X_t(\omega))$$

Convergence to Optimum

Theorem: if $\{X_t(\omega)\}_{t=0,1,...}$ is *monotone*, *homogeneous*, x_0 is given, $\forall y$ in **reach** $(x_0) \exists \gamma \in \Gamma^{(n)}_{O}$ reachable, then

$$\lim_{t \to \infty} P[X_t \in \Gamma_O^{(n)} | X_0 = X_0] = 1.$$

Theorem: if **select**, **mutate** are *generous*, the neighborhood structure is *connective*, transition functions $T_t(\omega)$, t = 0, 1, ... are i.i.d. and *elitist*, then

$$\lim_{t\to\infty} P[X_t \in \Gamma_O^{(n)}] = 1.$$

Introduction to GA Theory

- Reproduction, crossover, and mutation are all surprisingly simple, computationally trivial operations <u>so, how do they lead to an effective search procedure</u>?
 - The answer is found in the concept that the strings in the population encode more than just a single solution
 - Substrings within each string contain notions of what is important to the solution

1 0 1 1 0 0 0 0 1 1 0 1 0 1 0 0 1 0 0

Substring - maybe all the best answers have this substring

Schemata

- Individual strings in the population are not the focus
 - similarities between highly fit strings guide the search
- DEFINITION: A schema is a similarity template describing a subset of strings with similarities at certain string positions
 - > EXAMPLE: What is the schema for these strings?

Schemata Structure

- The schemata symbols are 0, 1 and *
- A schema matches a given string if at every location in the schema:
 - > a 1 matches a 1 in the string
 - > a 0 matches a 0 in the string
 - a * matches either 0 or 1
- For example
 - > *0000 matches (00000, 10000)

chemata

Don't care symbol: **

* * Example of schema

O(s) = 3

order of a schema: o(S) = # fixed positions defining length $\delta(S)$ = distance between first and last fixed position

- a schema S matches 2^{l o(S)} strings
 a string of length l is matched by 2^l schemata

Counting Schemata

- ❖ If the string is of length v then there are 3^v different similarity templates because each of the v positions could be 0, 1 or *
- If the alphabet has k characters (k=2 for binary strings) then the number of similarity templates is (k+1)^v
- A population of n strings of length / contains 2' to n2' schemata depending upon the population diversity
- RESULT: even a small population contains a large number of important similarities

Implicit Parallelism of EA

- In a population of n individuals of length I
- **❖2'** ≤ # schemata processed ≤ *n*2'
- of which are <u>processed usefully</u> (Holland 1989)
 - (i.e. are not disrupted by <u>crossover</u> and mutation)

But see Bertoni & Dorigo (1993) "Implicit Parallelism in Genetic Algorithms"

Artificial Intelligence 61(2), p. 307–314

Reproduction/Crossover

- Observe that highly fit strings have higher probabilities of being selected
- Thus, on the average, more samples in the next population will <u>have the best similarity patterns</u>
- Crossover leaves some schema unchanged while it disrupts others
 - a schema is unchanged if it is not cut by the crossover
 - a schema is changed if it is cut by the crossover point

So how schema affect solutions?

- Some schema are more likely to be disrupted than others
- For example, 1***0 is more likely to be disrupted by crossover than **11*
- Therefore, schemata that have a short defining length tend to be left alone by the crossover
 - > thus they are reproduced at a higher sampling rate

CONCLUSION: Highly fit, short-defining length schemata (called *building blocks*) are propagated generation to generation by giving exponentially increasing samples to the observed best.

Fitness of a schema

 $f(\gamma)$: fitness of string γ

 $q_{x}(\gamma)$: fraction of strings equal to γ in population x

 $q_x(S)$: fraction of strings matched by S in population x

$$f_{x}(S) = \frac{1}{q_{x}(S)} \sum_{\gamma \in S} q_{x}(\gamma) f(\gamma)$$

Fitness of schema S

The Schema Theorem

 $\{X_t\}_{t=0,1,...}$ populations at times t

suppose that
$$\frac{f_{X_t}(S) - f(X_t)}{f(X_t)} = c \quad \text{is constant}$$

$$E[q_{X_t}(S)|X_0] \ge q_{X_0}(S)(1+c)^t \left(1 - p_{cross} \frac{\delta(S)}{l-1} - o(S)p_{mut}\right)^t$$

i.e. above-average individuals increase exponentially!

The Schema Theorem (proof)

$$E[q_{X_{t}}(S)|X_{t-1}] \ge q_{X_{t-1}}(S) \frac{f_{X_{t-1}}(S)}{f(X_{t-1})} P_{SUV}[S] = q_{X_{t-1}}(S)(1+c) P_{SUV}[S]$$

$$P_{surv}[S] = 1 - p_{cross} \frac{\delta(S)}{1 - l} - p_{mut} o(S)$$

The Building Blocks Hypothesis

"An evolutionary algorithm seeks near-optimal performance through the juxtaposition of short, low-order, high-performance schemata — the building blocks"

Deception

i.e. when the building block hypothesis does not hold:

for some schema S, $\gamma^* \in S$ but f(S) < f(S)

$$\gamma^* \in S$$

Example:

$$\gamma^* = 11111111111$$

$$S_1 = 111^{*******}$$

$$S_2 = ********11$$

$$S = 111*****11$$

$$\overline{S} = 000^{****}00$$

Remedies to deception

Prior knowledge of the objective function

Non-deceptive encoding

Inversion

Semantics of genes not positional

Underspecification & overspecification

"Messy Genetic Algorithms"

Alternative Selection Methods

- The process of selecting the chromosomes to contribute to the next generation has a significant impact on the performance of a GA
- Rather than use a roulette wheel approach, there are many other selection methods
 - > Tournament Selection
 - Greedy Overselection
 - **>** . . .

REVIEW: Tournament Selection

- With tournament selection a specified group of individuals (usually 2) are chosen at random from the population
 - the one with the better fitness is selected to be the parent
- If more than 2 are used, the process is to select the best from the set

Greedy Overselection

- CONCEPT: Greedily over-select the fitter individuals in a population
- PROCESS: Create a high fitness group, H, and a low fitness group, L
 - > 80% of the time select the parent from group H
 - > 20% of the time select the parent from group L

Steps of Greedy Overselection

- Step 1: Sort the chromosomes in decreasing order of fitness
- Step 2: Place the top 32% of the chromosomes in group H, the rest in group L
- Step 3: 80% of the time select a parent from group H and 20% of the time select a parent from group L

NOTE: Also use greedy overselection to create the initial population

Alternative

Crossover Methods

- Rather than use single point crossover there are several other methods:
 - ➤ Two Point Crossover (already discussed)
 - Constrained Crossover
 - ➤ Shuffle Crossover
 - ➤ Uniform Crossover
 - **≻** Selective Crossover
 - Arithmetical Crossover

Constrained Crossover

- GOAL: Select a crossover point that always produces variations
- PROCESS: Constrain crossover points to occur within non-matching alleles
- **EXAMPLE:**

Find a non-matching segment and select a random point within the segment

Shuffle Crossover

Three Step Process

- randomly shuffle the bit positions of the two strings in tandem
- cross the strings using any crossover process
- unshuffle the strings

***** EXAMPLE

Arithmetical Crossover

- If the chromosomes are made up of floating point numbers instead of binary bits, then <u>other</u> types of crossover may be considered
- Arithmetical crossover is defined as a linear combination of two vectors
 - if v^t and w^t are to be crossed, the resulting offspring are:

$$v^{t+1} = aw^t + (1-a)v^t$$

 $w^{t+1} = av^t + (1-a)w^t$

if the parameter a is a constant then this is called uniform arithmetical crossover

Important Issues/Ideas

Selective Crossover – Is the increase in the dominance value for the higher fit child anything like an ant algorithm – laying down the pheromone trail?

Literature:

*"Selective Crossover in Genetic Algorithms" K. Vekaria and C. Clack

Selective Crossover

Selective Crossover associates a real-valued vector with each chromosome such that each gene has an associated "dominance" value

*****EXAMPLE

The dominance values are randomly selected at the start

Selective Crossover Procedure

- During crossover the first child receives all dominant alleles and their dominance values.
 - > The second child receives all the recessive alleles
 - The fitness of the children are compared to the parents.
 - ✓ When an increase occurs, the dominance values in the <u>fitter child</u> whose genes have changed from that of the fitter parent are increased.

Example of selective crossover

Advantages of selective crossover

- Selective crossover is not biased against schema with high defining length
- *For example, interaction genes <u>at the two extremes of the chromosome</u> can be propagated as easily as those <u>located adjacent</u> to each other.

Alternative Mutations

- Rather than complementing a random bit based on a low probability action:
 - ➤ Non Uniform Mutation
 - > Inversion

Non-Uniform Mutation

- Standard mutation changes one bit of a string at a time - it is using only local knowledge (that is, knowledge of that single bit)
 - however, if the string encodes a number then we know
 - ✓ bits on the left side of the sequence represent significant values.
 - ✓ bits on the right side of the sequence represent small values.
 - Non-uniform mutation uses this global knowledge
 - ✓ as the population ages, the probability of mutation for bits on the right increases
 - ✓ as the same time, the probability of mutation on the left decreases

Inversion of bit order as mutation

Rather than selecting a single bit to mutate, inversion finds two random points in the string and reverses the order of the bits between those points.

*****EXAMPLE

Alternative GA structures

- There are several variations on the GA concept
 - CHC Algorithm(see below)
 - Breeder Genetic Algorithm
 - Various Hybrid Architectures
 - Evolution Algorithms
- These variations illustrate the use of alternative selection, crossover, and mutation schemes

CHC Adaptive Search Algorithm

- Fundamentally, CHC is a genetic algorithm but it differs from the standard GA in several ways
 - Unbiased parent selection cross generational selection
 - >HUX crossover (Half, Uniform X-over)
 - Maintains diversity

Cross Generational Selection

- Chromosomes are randomly selected from the parent population (high fitness is not favored)
 - Offspring are held in a temporary population
 - ➤ A survival competition is held where the best N chromosomes from the parent and the offspring populations are selected to form the next generation

Heterogeneous Recombination

- Incest prevention is used to guide the combination of parents
 - only chromosomes which differ from each other by some fixed number of bits are allowed to crossover
 - ➤ the threshold is initially L/4 where L is the length of a chromosome
 - when no offspring are created, then the threshold is reduced by 1

Diversity

- When no offspring can be inserted into the population and the threshold is 0, the population is reinitialized using cataclysmic mutation
 - the best chromosome is saved and placed in the new population
 - ➤ the <u>remaining elements</u> are formed by a random mutation of about 35% of the bits in the best element

HUX Crossover

- Uniform crossover over half the bits that differ between the two parents
 - Find all the bit positions that differ between the two parents
 - randomly select a position and swap the bits
 - repeat this process until half of the differing bits have been swapped

GA Flexibility and your "Inventing New Game of Life Class Project"

- The real beauty of genetic algorithms is their adaptability
- You are free to try any reasonable approach to selection, crossover, and mutation
- This opens up a wide range of possible innovative class projects

Possible Other Project Topics

- Check my KAIST web site for Fall Quarter for a GA project in quantum computing
- Some topics that might be interesting:
 - Developing GA's to break cipher systems
 - Developing GA's to solve any of the class of NP-Complete problems
 - Developing GA's to create neural networks or cellular automata (more on these later in the course)
 - Brain Building check on my WebPage and Andrzej Buller's WWW Page in ATR Japan.