ECS 2001 Joint Intenational Meeting, San Francisco Sept. 2-7, 2001 Sixth International Symposium on Quantum Confinement

Quantum Devices and Integrated Circuits Based on Quantum Confinement in III-V Nanowire Networks Controlled by Nano-Schottky Gates

Hideki Hasegawa

Research Center for Integrated Quantum Electronics (RCIQE) and Graduate School of Electronics and Information Engineering Hokkaido University, Japan

Outline

- 1. Introduction
- 2. Hexagonal BDD Quantum Circuits
- 3. GaAs-Based Quantum BDD Node Devices and Circuits
 - Novel nanometer-scale Schottky gates
 - GaAs-based quantum BDD node devices
 - Integration of BDD node devices on hexagonal nanowire networks
- 4. Toward Room Temperature Operation and High Density Integration
 - Formation of InP-based high density hexagonal nanowire networks
 - Surface related key issue
- 5. Conclusion

Collaborators

RCIQE staff

Dr. S. Kasai, Dr. C. Jiang and Dr. T. Sato

Students

T. Muranaka, A. Ito and M. Yumoto

Speed, Delay-Power Product of Quantum Devices

$$=\frac{C}{G}$$

$$G G_0 \frac{2e^2}{h}$$

J.E.Mooij, 1993 SSDM Ext. Abs. 339

Scale-down limit of Si CMOS LSIs

Research on **Semiconductor Nanostructure**

Growing demands on Information Technology (IT)

Semiconductor Nanoelectronics based on Quantum Device and Circuit

- delay-power product near quantum limit
- small-size and high-density
- nano-sensing, nano-control

But, How to? So far no realistic approach.

High Density Integration?

Semi-classical devices

First Monolithic Integrated Circuit in the World (Noyce, 1959)

300µm rule

Current Microprocessor (2001)

IBM PowerPC

64-bit 0.18µm rule 700MHz 1.4mm x 1.4mm SOI technology

Discrete quantum devices How to make QLSIs?

Example of Quantum Logic Circuits

QWRTr-load SET inverter

(S. Kasai and H. Hasegawa presented at DRC 2000)

W = 440 nm

SET: $L_G = 50 \text{ nm}, d_f = 200 \text{ nm}$

QWRTr: $L_G = 300 \text{ nm}$

small delay•power product
but | low gain
voltage mismatch
poor Vth control
poor drivability
low temperature

Novel Approach for III-V QLSI

1. Digital Processing Architecture

Binary Decision Diagram (BDD) logic architecture

2. Nanostucture

Hexagonal nanowire networks by GaAs etched nanowires and InGaAs nanowires by Selective MBE

3. Nanoscale Gate Technology

Schottky in-plane gate (IPG) and wrap gate (WPG)

4. Surface and Interface Control

Nano-Schottky interface Interface control layer (ICL)-based passivation

5. Device

BDD node devices using gate-control quantum wire (QWR) and quantum dot (QD)

Hexagonal BDD QLSI Approach

BDD node device

BDD logic architecture

Example: Exclusive OR Logic Function

Boolean Logic Gate

5 gates, 16 Trs

Features of Our Approach

Hokkaido University RC IQE

BDD is suited to quantum devices

No direct input-output connection is required

- no precise voltage matching
- •no large voltage gain
- •no large current drivability
- •no large fan-in and fan-out

- Ultra-low delay-power product near the quantum limit
- High density integration
 - •hexagonal closely packed nanowire network
 - •free from contact problem
 - reduced device count
- The circuit itself works at room temperature at sacrifice of delay-power product

Hexagonal quantum BDD

IPG/WPG QWRTr-based BDD devices act as classical path switching devices even under non-quantum conditions.

single electron regime

few electron regime

many electron classical regime

Basic Schottky Gate Structure

Schottky In-Plane Gate (IPG) and Schottky Wrap Gate (WPG) control of AlGaAs/GaAs etched nanowires

- ·lateral structure suitable for planar integration
- -stronger confinement size ~ smaller high temperature operation

AlGaAs/GaAs quantum wire nanowire depletion layer

WPG quantum wire transistor (QWRTr)

tunnel barrier control WPGs

Hokkaido University

RC | |QE

quantum dot

2-gate WPG single electron transistor (SET)

Gate Control Characteristics of IPG/WPG Structures Hokkaido University RC **Controlof Weff SdH** oscillation **IPG QWRTr** 800 T = 4.2K**IPG QWR** Source VG=0V (R-R₀)/R₀ **√** W_{geo} 600 -0.4V Weff(nm) IPG -0.6V 0 1µm Drain B (T) 5 2 3 6 7 8 200 -1.5 -0.5 -1 -2 0 VG (V) **WPG QWRTr** 500 **WPG QWR** T=1.6 K GaAs exit branch 15 400 L_G | R (kg) -0.48V -0.36V Weff(nm) 10 300 -0.42V 5 Schottky 200 VG=0V W -0.24V **WPG** 500 nm 0 5 2 3 4 100 B (T) 0.6 -0.4 -0.2 0 VG (V)

I-V Characteristics of IPG/WPG QWRTrs

AlGaAs/GaAs etched nanowire

Single Electron Transport in 2-WPG SET

AIGaAs

GaAs

Lateral resonant tunnling of single electron

$$I = \frac{e^2}{h} \int |T(E)|^2 [f(E) - f(E + qV_{DS})] dE$$

Various Types of BDD Node Devices by IPG/WPG Control of III-V Nanowires

QWR-based BDD node device

Single electron BDD node device

WPG BDD Quantum Node Device

WPG single electron BDD devices

WPG QWR-based BDD device

quantum dot

tunnel barrier

branch switch type

node switch type

Switching Characteristics

QWR branch-switch BDD node device

WPG BDD Single Electron Node Device

QD-based node switch device

Conductance oscillation from single channel

Switching characteristics

Conductance oscillation due to single electron transport Clear path switching

Quantum BDD Implementation

Quantum BDD large scale integration

hexagonal nanowire network + WPG

WPG BDD OR Logic Function Block

WPG single electron BDD OR circuit

Operation of WPG BDD OR Logic

Input/Output waveform

 $V_{DD} = 0.2 \text{ mV}$ pulse he clock: 0.1 Hz x_1 : 1200 n

pulse height
1200 mV entry gate: +1000 mV
1000 mV

WPG BDD Fundamental Logic Family

OR

OR x1 x2 x1+x2 0 0 0 0 0 0 1 1 1 1 1 1 1 1

pulse height x_1 : 1200 mV x_2 : 1000 mV entry gate: +1000 mV $V_{DD} = 0.2$ mV

Half adder (exclusive OR)

x1 x2	x1⊕ x2
0 0	0
0 1	1
1 0	1
1 1	0

pulse h offset +x1: 0.02 V -0.4 V - x1: 0.44 -1.2 +x2: 1.7 1.9 - x2: 0.1 1.6 V_{DD}: 250 mV

Circuit Design and Fabrication Technology Towards BDD Quantum Integrated Circuit

Example: BDD 2-bit adder

circuit diagram

WPG/nanowire layout

Fabricated 2-bit adder circuit

Hexagonal BDD 2 bit Adder

InGaAs Ridge Nanowires for Room Temperature Operation

AIGaAs/GaAs etched nanowires:

possible minimum width = 70-100 nm Room temperature operation requires <u>sub-10 nm</u> width

Formation Process

Wire width of 6 nm has been achieved

Hexagonal InGaAs Ridge Nanowire Network

SEM image of hexagonal InGaAs nanowire network

AFM image

(Ito et al. IPRM01, ICFSI-8)

Potential Controllability of Nanometer-Sized Schottky Gates

Semiconductor surface

- 1. Strong pinning (0.88 eV)
- 2. Unpinning

nano-Schottky gate

$$_{MS} = 1.0 \text{ eV}$$

$$L_g = 90nm$$

1. With strong pinned surface

2. With unpinned surface

Control of an environmental Fermi level pinning is important

Conclusion

1) A new, simple and realistic approach for quantum LSIs is presented and discussed.

•Architecture: BDD logic architecture

•Hardware: Schottky WPG control of

hexagonal III-V nanowire networks.

- 2) WPG QWR and single electron BDD node devices using GaAs etched nanowires have been fabricated and BDD switching was realized.
- 3) Hexagonal BDD ICs using GaAs etched nanowires have been fabricated. Logic operation has been confirmed.
- 4) Hexagonal InGaAs nanowire network by H* assisted selective MBE combined with IPG/WPG gate technology gives good prospect for high density BDD QLSIs that are operating at delay-power products near the quantum limit at RT.
- 5) Control of surface/interface remains to be a key issue.