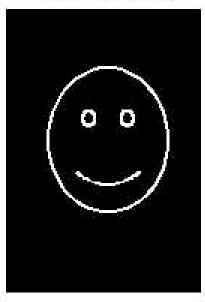
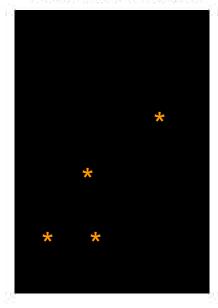

Hough Transform

- It locates straight lines
- It locates straight line intervals
- It locates circles
- It locates algebraic curves
- It locates arbitrary specific shapes in an image
 - But you pay progressively for complexity of shapes by time and memory usage

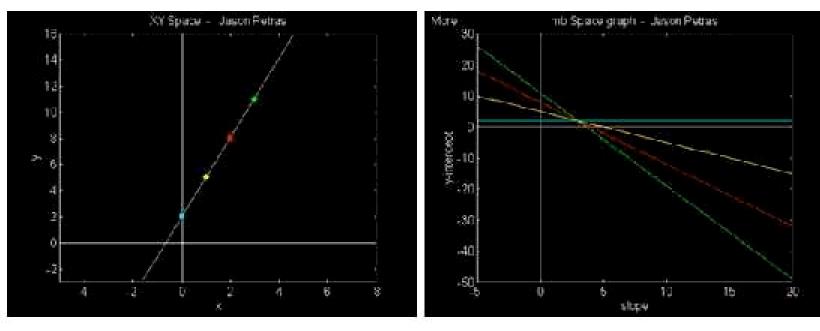

Hough Transform


Works in 2 domains

Votes possible representations of object you are looking for in Hough Space

Edge Detected Image

Hough Space / Vote Space

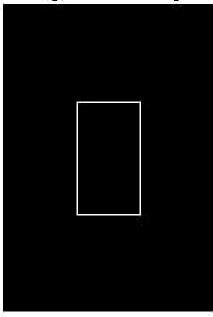


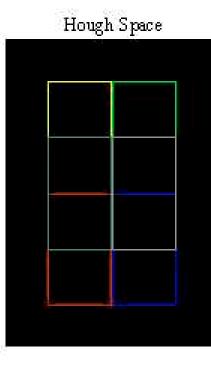
Hough Transform

An Edge Pixel in Real Space would vote into Hough Space all possible lines that contain that point. y = mx + b
Continue to Add Votes for different Edge Pixels
Intersection Gives Equation for line

Edge Detected Image (Real Space)

Hough Space


Hough Transform for Rectangles


Same idea with a twist

- Vote in Rectangles of shape and size you want.
- Hough Space acts like just like an accumulation table.

Votes will accumulate highest in center of rectangle!

Edge Detected Image

Voted Rectangles are produced from the pixels in the corners of the Edge Image and the middle of the two vertical sides.

Object Recognition

- A wise robot sees as much as he ought, not as much as he can
- Search for objects that are important
 - lamps
 - outlets
 - wall corners
 - doors
 - wall plugs

A mobile robot should be selfsufficient in power finding

- Framework of research
- Introduction to Images and Image Capturing
- Image Processing
 - -Canny Edge Detection
 - -Hough Transforms
- Putting it all together

Why?

- Monitor power level in robot's batteries
- When power goes low, interrupt actions
- Search for the wall plug
- Traverse over to it
- Plug itself to it in.

Image Processing, How's

Currently there are many, many ways to approach this problem

Segmentation	Baid Passfittering	Mesh Warping
Edge Detection	Homomorphic Filtering	Morph Dilation
alpha titte ring	Costrast	Morph Close
DPC Compression	Starpet	Thinking
Euler	Least Squares Restoration	Growing
Perimeter	Hex Rotate	FFT
Fractal	Haar Trakstorm	IFFT
Gaisslai filter	Miean Fiftering	DFTS

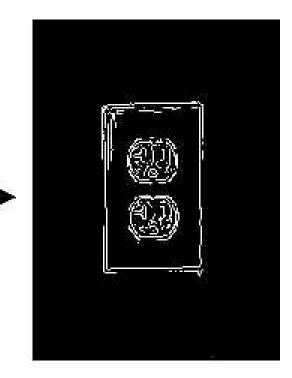
- Personally divided into two groups: Reduction
 - Interpretation

Image Processing, How's

Reducing the amount of information Small in size, Huge in information

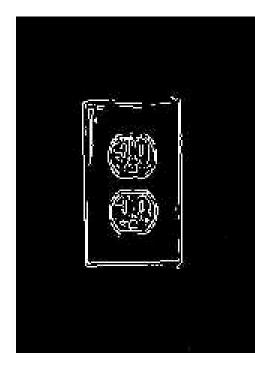
197	42	181	8	58
6	235	125	Z 19	97
79	132	145	1 15	29
Z 10	154	58	æ	103
97	129	72	172	201
233	137	278	- 30	88
150	7	1.66	78	1 47
139	209	197	48	1 16
1.4Z	50	53	Z	71
18	148	113	31	Z 14
91	99	-68	93	88
1 17	149	Z11	2 25	239
89	39	202	78	145
62	161	14	<u>95</u>	99
75	12	93	96	199
106	136	208	18	18
194	91	63	160	189
3	35	101	4Z	Z 3
227	Z	36	180	170

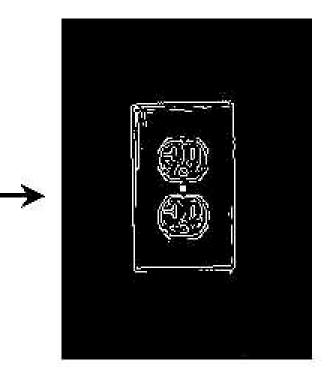
Before


D	0	D	1 300	199
0			1	162
a -	200		135	111
0	201	0	11	
a	142		138	0
	210	D	80	0
	725		81	
D		166	290	
		72	.	
		83	0	0
п		72	1	
		72		
		0	0	0
п		П	1	
181				
Э		0	<u> </u>	
		П	0	
		D		
		D	0	0

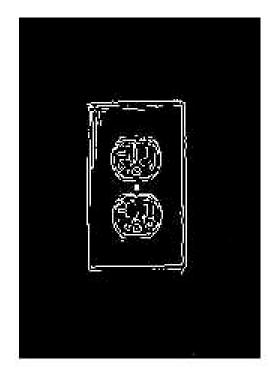
After

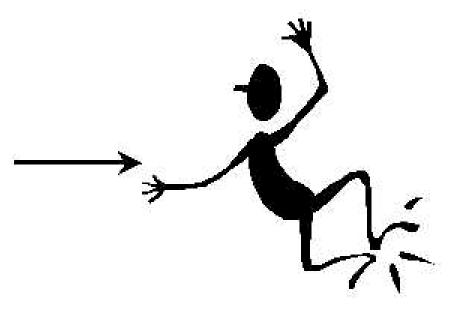
Canny and Hough Together


Image -> Canny



Canny and Hough Together


Canny -> Hough for Rectangles



Canny and Hough Together

Hough -> Finding the Rectangle!

