
Reversible Function Synthesis with Minimum Garbage Outputs

Gerhard W. Dueck� and Dmitri Maslov

Faculty of Computer Science

University of New Brunswick

Fredericton, N.B. E3B 5A3 CANADA

Abstract

Reversible functions are of interest in the design
of low power CMOS circuits and in quantum com-
puting. We describe a synthesis method for a
proposed regular structure of generalized To�oli
gates. Multiple output functions are transformed
into reversible functions with a minimum of num-
ber garbage outputs. The synthesis algorithm is
greedy with one level look ahead. The synthesis
results from benchmark functions are encouraging.
The current version of the algorithm is limited to
functions with no more than 10 inputs.

1 Introduction

Energy loss is an important consideration in dig-
ital design. Part of the problem of energy dissi-
pation is related to non-ideality of switches and
materials. Higher levels of integration and the use
of new fabrication processes have dramatically re-
duced the heat loss over the last decades. The
other part of the problem arises from Landauer's
principle [5] for which there is no solution. Lan-
dauer's principle states that logic computations
that are not reversible, necessarily generate heat
kT � log 2 for every bit of information that is lost,
where k is Boltzmann's constant and T the tem-
perature. For room temperature T the amount of
dissipating heat is small (i.e. 2:9�10�21 joule), but
not negligible. The design that does not result in
information loss is called reversible. It naturally
takes care of heating generated due to the informa-
tion loss. This will become an issue as the circuits
become smaller.

Most gates used in digital design are not re-
versible. For example the AND, OR, and XOR
gates do not perform reversible operations. Of
the commonly used gates, only the NOT gate is
reversible. A set of reversible gates is needed

�Research supported by the NSERC (CANADA).

to design reversible circuits. Several such gates
have been proposed over the past decades. Among
them are the controlled-not (CNOT) proposed by
Feynman [1], To�oli [12], and Fredkin [2] gates.
These gates have been studied in detail. How-
ever, good synthesis methods have not emerged.
Shende et al. [11] suggest a synthesis method that
produces a minimal circuit with up to 4 input
variables. Iwama et al. [3] describe transforma-
tion rules for CNOT based circuits. These rules
may be of use in a synthesis method. Miller [7]
uses spectral techniques to �nd near optimal cir-
cuits. Mishchenko and Perkowski [9] suggest a
regular structure of reversible wave cascades and
show that such a structure would require no more
cascades than product terms in an ESOP realiza-
tion of the function. In fact, one would expect
that a better method can be found. The algo-
rithm sketched in [9] has not been implemented.
A regular symmetric structure has been proposed
by Perkowski et al. [10] to realize symmetric func-
tions.

In reversible logic feedbacks and fan-outs are not
permitted. This makes the synthesis substantially
di�erent. Traditional design methods use, among
other criteria, the number of gates as complex-
ity measure (sometimes taken with some speci�c
weights reecting area of the gate). From the point
of view of reversible logic we have one more fac-
tor, which may be more important than the num-
ber of gates used, namely the number of garbage
outputs. Since reversible design methods use re-
versible gates, where number of inputs is equal to
the number of outputs, the total number of out-
puts of such a network will be equal to the number
of inputs. The existing methods ([9]) use analogy
of copying gates to keep information on the input
of the network, therefore introducing the constant
inputs and garbage outputs|information that we
do not need for the computation. In some cases
garbage is unavoidable. For example, a single out-

put function of n variables will require at least
n � 1 garbage outputs, since the reversibility ne-
cessitates an equal number of outputs and inputs.
Previously, we [6] suggested a structure for re-

versible design that requires minimal number of
garbage outputs, therefore solving the \garbage"
part of the synthesis problem. In this work we
take the proposed structure and design a regular
method for the function synthesis. The results of
the synthesis method, applied to some benchmark
functions are analyzed and compared to the results
of [9] and [7].

2 Synthesis of Reversible

Functions

2.1 De�nitions

In this section we propose a method for reversible
logic function synthesis and expand it to multiple
output functions in the next section. To make a
multiple a output function reversible we may have
to add garbage outputs and/or constant inputs.
For instance, 2-input 2-output output function
(x; y) ! (x; xy) is not reversible, since the input
values cannot be recovered if the output is (0; 0).
The (0; 0) output could be the result of the input
being one of (0; 0) or (0; 1). One way to make this
function reversible, is to consider To�oli gate [12],
given by speci�cation (x; y; z) ! (x; y; z � xy),
where we �x input variable z to be 0, and con-
sider �rst and third outputs to get the outputs of
desired multiple output function output. The out-
put y is considered to be \garbage" since it was
not required in the function speci�cation. The for-
mal procedure to make a multiple output function
reversible is described in [6].

We used the notation from the same paper.
Here is a brief review.

De�nition 1. Function f(x1; x2; :::; xn) of n

Boolean variables is called reversible if: the num-
ber of outputs is equal to the number of inputs and
any input pattern maps to a unique output pat-
tern. I

De�nition 2. Garbage is the number of outputs
added to make an n-input k-output Boolean func-
tion ((n; k) function) reversible. I

In [6] we proposed a generalized To�oli gate.
The gate can take up to n inputs. n�1 outputs are

equal to the corresponding inputs. The remaining
line output is equal to the corresponding input or
its inverse, depending on the other inputs. The
general model is as follows:

� Take an (n; k) function and make it reversible
by adding the theoretically minimal number
of garbage outputs. The idea is to separate
di�erent output strings. If an output pattern
appears m times, we need dlogme garbage
outputs.

� Consider cascades of the following gates,
where each horizontal line is of the following 4
types (their pictorial representation is shown
in Fig. 1):

xi
Type 1.

xi
Type 2.

xi
Type 3.

xi
Type 4.

Figure 1: Horizontal line types.

1. Target line. Each gate has only one tar-
get line, appearing at some position j.

2. Positive control line. If the input is
zero, the value of target line will not
change. If it is one, the remaining posi-
tive/negative control lines will determine
whether the value on the target line is
negated.

3. Negative control line. If the input is one,
the value of target line will not change.
If it is zero, the other remaining posi-
tive/negative control lines will determine
whether the value on the target line is
negated.

4. Don't care line. The value of this line
does not a�ect any output.

A vertical line intersects the horizontal lines
of types 1-3. A typical gate is shown in the
Fig. 2. In other words, for the given set
of inputs fx1; x2; :::; xng, subset of variables
fxi1 ; xi2; :::; xikg, integer j 2 f1; 2; :::; ng; j 6=
i1; j 6= i2; :::; j 6= ik and set of � k <

n Boolean values f�1; �2; :::; �kg the family
consists of gates that leave all the bits un-
changed, except for the j-th bit, whose value
is xj � x

�1
i1
x
�2
i2
:::x

�k
ik

Where x�i is xi if � = 1

... ...

x
x
x
x
x

xi

i

i1

4

i

i

i

2

3

5

Type 4.

n

Type 4.
Type 2.

Type 3.

Type 4.

Type 1.

Figure 2: A typical gate

and �xi if � = 0. If the term x
�1
i1
x
�2
i2
:::x

�k
ik

con-
sists of zero variables, we assign it a value of
1. Thus, each gate can be considered to be a
generalized To�oli gate|one bit is changing,
according to the value of a product of inputs.

Due to the similarity of gates in the set Q and
the generalized To�oli gates, we introduce the
following notation. The gate Qa1;a2;:::;an is de-
noted as TOFs(x�1i1 ; x

�2
i2
; :::; x

�s�1
is�1

; y), which is con-
structed as follows:

� Write \TOF".

� Count the number of ai 2 fa1; a2; :::; ang such
that ai 6= 4, write this number and opening
bracket \(".

� For each ai

{ if ai = 2 write \xi";

{ if ai = 3 write \ �xi";

{ otherwise do nothing.

Separate di�erent entities with commas.

� Write xj at the very end, where j is de�ned
such that aj = 1. Finish with the closing
bracket \)".

For example, gate Q3;1;4;2;4 can also be written as
TOF3(�x1; x4; x2).

Let Q be the set of all possible gates with n in-
puts. We have shown [6] that jQj = n3n�1. Given
the model for function implementation, the prob-
lem of synthesis is to write a function in terms of
a sequence of gates from the set Q. We solve this
problem using an incremental approach. That is,
we repeatedly chose a gate that will bring us closer
to the desired function. In order to do this we need
to be able to measure how close two functions are,
we call this the distance between two functions.

We then chose the gate that will decrease the dis-
tance between the realized function and the target
function. We continue to do this until the distance
is zero.

To give a formal de�nition of the distance, we
need the following:

De�nition 3. A partial realization of f is any
function f 0 of the same set of variables. I

De�nition 4. The distance between a reversible
function f and its partial realization f 0 is the Ham-
ming distance between their output parts of truth
table. I

De�nition 5. The error of the function f is its
distance to the identity function. I

Example 1. The reversible function
f(x1; x2; x3) = (x1 � �x2x3; �x2; x1 � x2x3)
whose truth table is shown in Table 1 has 14
errors (shown in bold.)

x1 x2 x3 f1 f2 f3

0 0 0 0 1 0

0 0 1 1 1 0

0 1 0 0 0 0

0 1 1 0 0 1

1 0 0 1 1 1

1 0 1 0 1 1

1 1 0 1 0 1

1 1 1 1 0 0

Table 1: Truth table of f(x1; x2; x3) = (x1 �
�x2x3; �x2; x1 � x2x3)

Example 2. A partial realization f 0(x1; x2; x3) =
(x1� �x2x3; x2; x3) of the reversible function from
previous example is at distance 12 from the target
function f (see Table 2.)

2.2 Synthesis Theory

The previous two examples had an even number
of error bits and number of error 1-bits was equal
to the number of error 0-bits. This result holds in
general as shown in the following lemma.

f1 f2 f3 f 0
1

f 0
2

f 0
3

0 1 0 0 0 0

1 1 0 1 0 1

0 0 0 0 1 0

0 0 1 0 1 1

1 1 1 1 0 0

0 1 1 0 0 1

1 0 1 1 1 0

1 0 0 1 1 1

Table 2: Distance between f and its partial real-
ization

Lemma 1. The error of a reversible function is
even. Among the error bits the number of those
equal to one is the same as the number equal to
zero.

Proof. Write down the truth table of a reversible
function and consider a column in the output part.
Suppose the error in this column occurs in k 0 bits
and s 1 bits. Since the function is reversible, each
column of the output part of the truth table con-
tains 2n�1 zero bits and 2n�1 one bits. Therefore,
the chosen column has 2n�1�k zeros and 2n�1�s

ones. Now, if we ip all the error bits of the func-
tion, it is the n-bit identity function (which also
is reversible). From the point of view of number
of zeros and ones this operation adds s zeros and
k ones in the considered column. In the modi-
�ed truth table numbers of zeros and ones become
2n�1�k+s and 2n�1�s+k correspondingly. Since
the function is reversible, the number of zeros, as
well as the number of ones should stay 2n�1, which
gives the following set of equations:

2n�1 � s + k = 2n�1 � k + s = 2n�1

this is only possible for k = s. Therefore, the
total number of errors in this column is 2k, an
even number. The same proof can be given for
each of n output columns, thus the total error is
an even number. �
Note, that we actually proved a stronger state-

ment, namely: the error is an even number in ev-
ery output column. The other consequence one
can derive, is that the distance between a function
and its partial implementation is always an even
number. It is also not hard to see that the num-
ber of ones that are out of place is the same as the
number of zeros that are not at their place.
Consider the following simple idea for a synthe-

sis method: start with identity function, �nd a
gate from the set Q such that when added to the

partial realization f 0 will decrease the distance to
f . Sometimes there is no gate that decreases the
distance to f . But at any time, it is possible to
choose a gate that at least does not increase the
distance to f . For an illustration see Example 3

Example 3. A reversible function with speci�ca-
tion (x; y) ! (�y; �x) and the identity function, have
this property: no gate will improve the distance
function.

We use the word \step" to denote the addition
of a gate to a cascade network. Therefore, the
number of steps made is the number of gates in
the network. A step is called positive (negative) if
the distance increases (decreases).

Lemma 2. (existence of non-positive step) If
the distance between f and f 0 is greater than zero
(partial realization is not the function itself yet),
there exists a gate in Q that transforms f 0 to f 00

such that the distance between f and f 00 is less
than or equal to the distance between f and f 0.

Proof. Let (a1; a2; :::; an�1; X) be a string in the
output part of the truth table of some partial re-
alization with an error in bit X (which is assumed
to be on the n-th place without loss of gener-
ality). Interchange it with the distance-1 string
(a1; a2; :::; an�1; an), where an = �X . To do so use
the gate made of lines types 3� a1; 3� a2; :::; 3�
an�1; 1 correspondingly, where the Boolean num-
bers a1; a2; :::; an�1 are treated as natural num-
bers. It is easy to see that the gate with such spec-
i�cation exchanges the named strings and does
nothing to all others. Errors in the �rst (n-1) bits
stay the same, but for the last bit the following ta-
ble shows all the possible ways could happen when
we make this interchange (Table 3). So, we get a

zero step or a negative step. �
Here, the question arises: is it possible to realize

the function without positive steps? The answer
is yes, and the design method is given in Theorem
3 of [6]:

Theorem 1. (upper bound) Every reversible

function can be realized with no more than n2n

gates.

The proof for this theorem is constructive and
suggests a design procedure. The only thing that
is left to prove, is that the steps \Increase order"
and \Decrease order" are non-positive. Indeed,
the essence of each of these steps is to put a correct
bit (0 for \Increase order" and 1 for \Decrease
order" steps) in its place. The Lemmaabove states

X value an value an was correct? error was error becomes step is

0 1 Y 1 1 0

1 0 Y 1 1 0

0 1 N 2 0 -2

1 0 N 2 0 -2

Table 3: E�ect of changing one bit

that each of these steps are non-positive only. This
fact allows us to formulate the following result and
use it as core to create a synthesis algorithm.

Theorem 2. There exists a synthesis method that

adds a gate only if it performs a non-positive

change to the distance function. Such a method

converges for any reversible input function.

2.3 The Algorithm

Actual implementation of the algorithm works as
follows:

1. De�ne the numberMaxMoves (which, in ac-
tual implementations was taken in the range
of 50-500).

2. While the distance is greater than zero, from
among allQ gates �nd bestMaxMoves steps.
For each of them, �nd the best second step.
After this step there are MaxMoves pairs of
gates in the list. Search for the sequence of
2 gates that maximally improve (minimizes)
the distance between existing partial realiza-
tion and the function itself. If such a pair is
unique, attach �rst gate to the cascade and
go back to 2.

3. If the two or more pairs of gates produce the
same improvement to the distance, activate
TieBraker: the function that �nds the third
best gate and if one of the pair has a bet-
ter third gate (maximizes the decrease of the
distance function), choose this pair. Then,
attach �rst gate of the chosen pair to the cas-
cade and go to 2.

4. If TieBraker was not able to �nd a pair where
the third step gives better improvement, take
the pair that gives the best improvement for
the �rst gate. Go to 2.

5. If nothing of above worked, take the �rst pair
of the gates among those that give the best
improvement. Go to 2.

Theorem 2 states that the distance will not be
increased, because there's always a zero step avail-
able. In general, such a method is not guaranteed
to converge, although it does converge for every
benchmark function we tried. We use this algo-
rithm instead of the theoretical that is guaranteed
to converge, since the latter is likely to give a larger
number of steps. Since the distance can only de-
crease by at most two.
An (n; n) reversible function (f1; f2; :::; fn) in

general can be realized by one of the n! possible
designs. This happens if we assume that the or-
der of the output functions does not matter. We
can enumerate the outputs in any order, there-
fore realize di�erent functions. In our case, for
the relatively large functions (starting from (9,9)
functions and larger) we used a heuristics for the
output permutation: we took the output permuta-
tion that gave the smallest error for the function or
its complement. For the functions of smaller num-
ber of variables we are able to run all the possible
permutations and choose the best result.

Example 4. Take function with speci�cation
(x; y) ! (�y; �x) from the previous example.
Without the output permutation it will take us
at least three gates to build a network for it:
�rst step is a zero step, as it was shown in the
previous example. Then, we have 2 errors in each
of two output bits. This will require at least 2
more gates, since each of them in the best case
scenario can take care of at most one output bit
at a time. So, the theoretical minimum is 3 gates
(in fact, our program does it in 3 steps). When
a function (x; y) ! (�x; �y) with permuted outputs
can be easily realized with two steps - subsequent
negation of �rst and second input bits.

2.4 Multiple Output Functions

Using the results of [9] we are able to add the
minimal number of garbage bits in order to make
a multiple output function reversible. The bene�t
in realization of a multiple output function, is that
we do not care about some of the outputs: the

values of the garbage is of no interest. This allows
to:

1. Have a smaller error - therefore, in general,
have less steps to make in order to create a
network.

2. Have more freedom in changing \don't care"
outputs. There is no risk in adding an error
to a \don't care" output. We minimize the
distance to the \care" outputs only.

3 Benchmarks

In this section we compare our algorithm to the
previous algorithms. Unfortunately, some authors
do not give enough information to allow us to do
so. For example, authors of [4] suggest an ap-
proach for reversible cascade synthesis of one out-
put functions. They do not provide the exper-
imental results, nor the algorithm, therefore we
can not compare those results to ours. Shende et

al. [11] provide the optimal synthesis method for
the (3; 3) reversible functions only. Work [10] is
concentrated on reversible synthesis of symmetric
functions, which is less general than our approach.
Iwama et al. [3] base their method on circuit trans-
forms, but they to not provide any experimental
data.

We compare our results with the results of the
two systematic methods one by Miller [7] and the
other by Mishchenko and Perkowski [9].

Miller [7] suggests a reversible function synthesis
that starts with a reversible speci�cation only. He
uses a spectral technique to �nd the best gate to
be added in terms of gates (NOT, CNOT, To�oli3,
and To�oli4) and adds the gate in a cascade-like
manner. This method has been modi�ed in [8] to
handle generalized To�oli gates. In his method the
output function is required to appear as a set of
actual outputs or their negations. Miller also used
a post processing process to simplify the network
(the results of simpli�cation are given in brackets
for the cases the process was done). The results
of comparison of all examples from [7] to ours are
summarized in Table 3, where name is a name
of the benchmark function, in/out - number of
its inputs/outputs, Miller - number of gates for
Miller's method, We - number of gates for the
proposed method.

Example 5. Since our method gives a bet-
ter result for ex4:pla, we'd like to show our
network for this function. ex4:pla is a (4; 4)

name in/out Miller We

ex1 3 3 3

ex2 3 5 5

ex3 4 7 7

ex4 3 4 3

ex5 4 5 4

ex6 4 12(10) 7

ex7 4 9(7) 7

Table 4: Comparison with Miller's results

reversible function, given as the truth vector
[3; 11; 2; 10; 0;7;1;6; 15; 8; 14; 9;13;5;12;4] whose
binary representation gives the actual Boolean
values. Using the output permutation (2; 1; 3; 4),
the scheme consists of the following seven
gates: TOF1(b) TOF3(�c; d; a) TOF3(a; d; c)
TOF3(a; �c; d) TOF3(�c; �d; a) TOF3(�a; �d; c)
TOF3(�a; �c; b) for the names of variables a; b; c and
d. In comparison, Miller's synthesized network
is: TOF1(d) TOF1(b) TOF3(b; c; d) TOF1(b)
TOF3(a; c; d) TOF1(c) TOF3(a; b; d) TOF2(a; c)
TOF3(b; c; a) TOF2(b; c) TOF2(a; c) TOF(a; b).
This networks was transformed to the follow-
ing: TOF1(d) TOF1(b) TOF3(b; c; d) TOF1(b)
TOF3(a; c; d) TOF1(c) TOF3(a; b; d) FRE(b; c; a)
TOF2(b; c) TOF(a; b), where FRE(b; c; a) is the
Fredkin gate [2] built on variables b; c and a

correspondingly.

Mishchenko and Perkowski [9] suggest a re-
versible wave cascade method and evaluate the
complexity of some benchmark functions in terms
of the number of these cascades. They don't pro-
vide the actual design for the described method,
instead they give upper bounds, we compare their
results to ours and summarized the comparison in
Table 3. Although our results in terms of the to-
tal complexity aren't always better than those of
Mishchenko and Perkowski, the important factor
- number of garbage bits is de�nitely bene�cial
in our approach. We were not able to compare
the results for functions of larger number of in-
puts/outputs due to the huge amount of work our
program needs to �nd a network representing such
a function. In this table �rst three columns are
name, number of input and output bits of a bench-
mark function. Columns NRC and RCG list
the number of cascades and garbage (calculation
of garbage is taken from [6]) of Mishchenko and
Perkowski's method; the remaining two columns
are number of gates and number of garbage out-
puts in our method and proposed design corre-

name in out NRC RCG C G

5xp1 7 10 31 38 49 0

9sym 9 1 51(52?) 60 56 9

rd53 5 3 14 19 13 4

rd73 7 3 36 43 37 6

Table 5: Comparison with Perkowski's results

spondingly. Our method does not alway �nd the
realization with the minimum number of gates,
but if we consider the complexity of a benchmark
function to be sum of number of gates and the
garbage, then our method gives a better result.
For example, \rd53.pla" can be realized in terms of
an ESOP with 14 terms as the result of Perkowski
and Mishchenko states. For our method this num-
ber is 13, which shows that the proposed method
can do better than EXOR minimization. The fol-
lowing example contains one more function for
which our method is more bene�cial, compared
to the standard non-reversible EXOR PLA.

Example 6. The (5; 1)-function 2of5:pla whose
output is one i� exactly two of the input vari-
ables are one in terms of EXOR PLAs can be re-
alized with 8 terms, when our synthesis method
is capable of creating a network (for the pro-
posed structure) with 7 gates only. The function
2of5:pla is not balanced, therefore the minimal
garbage for it is 5. Thus, the (5; 1)-function be-
comes a (6; 6) reversible function. We used the
last output to realize the function, and named
the inputs as a; b; c; d; e; and f , where the last
input is a constant 0. The network structure
is as follows: TOF5(a; �d; e; �f; c) TOF4(�b; c; �d; f)
TOF4(�a; c; �e; f) TOF5(�a; b; d;�e; f) TOF3(�a; �f ; e)
TOF5(�b; �c; d; �e; f) TOF5(b; �c; �d; �e; f).

4 Future Work

The algorithm has its shortcomings. There are
not enough theoretical results to build a good syn-
thesis algorithm, and there is a lack of heuristics.
A better understanding of the theory is required,
coupled with heuristics to reduce the search space.
Here are some approaches that warrant further in-
vestigation:

� Apply spectral techniques to measure the
complexity of a function. This may be a bet-
ter metric than than the distance we use here.
However, the results in this direction [8] are
not better than ours.

� Good moves may be detected from a decision
diagram representation of the function.

� The problem of the output permutation has
not been solved. In Miller's method [8] this
is determined automatically|each input con-
verges to one output (or its complement).
Can spectral techniques help us here?

� For each step we investigate n3n�1 possible
gates. This is only feasible for small values
of n. We need some heuristics to reduce this
number.

5 Conclusion

The synthesis method presented in this paper can
realize multiple output functions with minimal
garbage outputs. The results are similar to other
methods which must start with a reversible spec-
i�cation [8] or require a much larger number of
garbage outputs [9]. It can also handle incom-
pletely speci�ed functions. If the function is not
speci�ed for a given input assignment, then the
output does not a�ect the distance functions. This
is surprising, because incompletely speci�ed func-
tions are not easily handled with EXOR minimiza-
tions and the To�oli gate is closely related to the
EXOR gate.

References

[1] R. Feynman. Quantum mechanical comput-
ers. Optic News, pages 11{20, 1985.

[2] E. Fredkin and T. To�oli. Conservative logic.
International Journal of Theoretical Physics,
pages 219{253, 1982.

[3] K. Iwama, Y. Kambayashi, and S. Yamashita.
Transformation rules for designing cnot-based
quantum circuits. In Proceedings of the De-

sign Automation Conference, New Orleans,
Louisiana, USA, June 10-14 2002.

[4] A. Khlopotine, M. Perkowski, and P. Kern-
topf. Reversible logic synthesis by iterative
compositions. International Workshop on

Logic Sysnthesis, 2002.

[5] R. Landauer. Irreversibility and heat genera-
tion in the computing process. IBM J. Res.,
5:183{191, 1961.

[6] D. Maslov and G. W. Dueck. Garbage in re-
versible design of multiple output functions.
In 6th International Symposium on Represen-

tations and Methodology of Future Computing

Technologies, March 2003.

[7] D. M. Miller. Spectral and two-place de-
composition techniques in reversible logic. In
Midwest Symposium on Circuits and Systems,
Aug. 2002.

[8] D. M. Miller and G. W. Dueck. Spectral tech-
niques for reversible logic synthesis. In 6th

International Symposium on Representations

and Methodology of Future Computing Tech-

nologies, March 2003.

[9] A. Mishchenko and M. Perkowski. Logic syn-
thesis of reversible wave cascades. In Inter-

national Workshop on Logic Sysnthesis, June
2002.

[10] M. Perkowski, P. Kerntopf, A. Buller,
M. Chrzanowska-Jeske, A. Mishchenko,
X. Song, A. Al-Rabadi, L. Joswiak, A. Cop-
pola, and B. Massey. Regularity and
symmetry as a base for eÆcient realization
of reversible logic circuits. In International

Workshop on Logic Sysnthesis, 2001.

[11] V. V. Shende, A. K. Prasad, I. L. Markov, and
J. P. Hayes. Reversible logic circuit synthesis.
In ICCAD, San Jose, California, USA, Nov
10-14 2002.

[12] T. To�oli. Reversible computing. Tech memo

MIT/LCS/TM-151, MIT Lab for Comp. Sci,
1980.

