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ABSTRACT
We propose a network of generalized To�oli gates with mul-
tiple EXORs for the realization of reversible functions. If
implemented as a quantum circuit, the cost of such gates is
shown to be only marginally higher than the cost of a To�oli
gate with a single EXOR and the same number of controls.
The main result is a regular synthesis procedure which al-
lows to create asymptotically optimal networks. However,
asymptotic optimality does not necessarily mean absolute
optimality. Thus, when the algorithm terminates, and a
network is created, simpli�cation procedures that may re-
duce the number of gates in the network can be applied.

1. INTRODUCTION
Reversible logic will play a more signi�cant role as technol-
ogy evolves. Landauer's principle [6] states that for every
bit of information lost, an amount of heat equal to kT ln 2
Joule is dissipated. Although current processors dissipate
500 times this amount of heat [11] every time a bit of in-
formation is lost, this amount will become relevant in the
future. Assuming that every transistor out of more than
4 � 107 [5] for Pentium-IV technology dissipates heat at a
rate of the processor frequency, for instance 1 GHz (109

Hz), the �gure becomes 2 � 1019 � kT ln 2 J/sec. The pro-
cessor's working temperature is greater than 300 degrees,
which brings us to 6 � 1021k ln 2. Although this amount of
heat is still small (k � 1:38 � 10�23), i.e. only around 0:05
J/sec, Moore's law predicts exponential growth of the heat
generated due to the information loss, which will be a no-
ticeable amount of heat loss in the next decade. Bennet [2]
showed zero energy dissipation would be possible only if the
network consists of reversible gates. Thus reversible logic
will become an essential component in future circuit design.

To our best knowledge, not much has been done in regular
reversible logic synthesis of a multiple output Boolean func-
tion. Mishchenko and Perkowski [10] introduce a reversible
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structure which is based on an EXOR PLA, thus allowing
strait forward implementation of EXOR synthesis results.
Unfortunately, this synthesis method requires a large num-
ber of garbage bits which are expensive in some technologies,
especially quantum. Authors of [7], [3], [9] suggest regular
synthesis methods, but they usually produce large networks
when applied as formulated.

2. DEFINITIONS
Definition 1. For the set of domain variables fx1; x2; :::; xn

generalized To�oli gate is a gate of a form TOF (C; t),
where C = fxi1 ; xi1 ; :::; xikg; t = fxjg and C \ t = ; which
map a Boolean pattern fx01; x

0
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0
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ng. Further, C will be called control

set (or a set of controls), and bit xj the target.

A multiple EXOR To�oli gate (mEXOR) is de�ned analo-
gously by allowing the target to be a set. Formally,

Definition 2. AnmEXOR gate TOF (C; T ), where C\
T = ; and T = fxj1 ; xj1 ; :::; xjmg is a single gate that
is equivalent to the network TOF (C;xj1) TOF (C; xj2):::
TOF (C; xjm).

Pictorial representation of a gate mEXOR is shown in Figure
1. The notation does not re
ect the actual structure of the
gate, which is discussed in section 3.

x
x
x
x
x

1

2

3

4

5

Figure 1: An example of mEXOR To�oli gate.

3. QUANTUM COSTOFTHENEW MODEL
Quantum transformations are necessarily reversible, this fol-
lows from the only condition used to determine whether a
transformation can be accomplished: it must be a unitary
operator on the set of amplitudes. This condition does not



mention how diÆcult it is to realize a given unitary trans-
form, it only states the theoretical possibility.

In conjunction with reversible logic synthesis, the following
transforms can be realized as one gate with unit cost:

� NOTgate (also known as quantum X gate). For Boolean
entities it acts as the conventional NOT gate.

� CNOT gate (proposed by Feynman [4]), which acts as
TOF (x1; x2). In other words, in the Boolean case it

ips x2 i� x1 = 1.

The set of gates NOT, CNOT is not complete since they
only realize linear functions. Thus, in order to make the set
complete (as a set of Boolean functions), the To�oli gate
[12], TOF (x1 + x2; x3) was added. Unfortunately, this gate
cannot be realized as one elementary quantum operation.
Even worse, the more controls a generalized To�oli gate has,
the larger its cost in terms of the number of elementary
quantum transformations required.

The problem of building quantum blocks to realize To�oli
gates was investigated by many authors. For the comparison
of quantum cost of To�oli and mEXOR To�oli gates we will
use results of [1]. For other implementations the costs can
easily be recalculated.

Definition 3. The quantum cost of a gate G, jGj is the
number of basic operations required to realize function given
by G.

No particular realization of a gate (for most of the gates)
was proven to be optimal, so the numeric value of the quan-
tum cost may change as soon as better gate realizations are
proposed.

Theorem 1. For a mEXOR To�oli gate TOF (C; T ), T =
fxj1 ; xj1 ; :::; xjmg its quantum cost is jTOF (C; t)j+2(m�1),
where TOF (C; t) is a To�oli gate with a single target.

Proof. The picture in Figure 2 illustrates the construc-
tion of a circuit for TOF (C; T ) given a circuit for generalized
To�oli gate, shown as a box. Sometimes, a To�oli gate real-
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Figure 2: Construction of a single mEXOR gate.

ization requires additional garbage bits to produce a smaller
network. These bits are used in the box, but the initial states

of the bits do not have to be set to 0 �rst, and the output
on these bits is reset to the initial input values (as it is done
in [1]). For example, the generalized To�oli gate with 8 con-
trols can be realized with cost 509 if no garbage bits are
used, or with cost of 172 elementary quantum operations if
4 garbage bits are allowed as shown in Table 3.

The procedure of building an mEXOR gate TOF (C; T ) does
not require any additional garbage bits and uses 2(m � 1)
CNOT gates. The procedure also does not require the pre-
setting of garbage bits and returns them unchanged (accord-
ing to computations done in [1]).

Table 3 shows the cost comparison for To�oli and mEXOR
gates using the above theorem as a basis for the calculations.
The quantum cost of To�oli gates is taken from [1]. The
absolute quantum complexities of To�oli and 2-target, 4-
target and 8-target mEXOR gates with the same number
of controls are given in columns To�oli, 2, 4 and 8. The
relative values of mEXOR gate complexities with respect
to the cost of the corresponding To�oli gate are shown in
columns Rel 2,Rel 4 and Rel 8. The cost of mEXOR gates
with zero or one control is m, since it can be implemented
with m NOT or CNOT gates (each has a cost of one).

The following examples illustrate how Theorem 1 can be
used to calculate the quantum complexities of mEXOR gates.

Example 1. The mEXOR gate shown in Figure 1 has 3
controls and 2 targets. Thus, its quantum cost is 15, which
is approximately 1.154 of the cost of To�oli gate with the
same number of controls. The strait-forward realization of
this mEXOR gate as a set of two To�oli gates would have
cost 2 � 13 = 26, which is approximately 1:733 times higher
than the cost in suggested approach.

Example 2. The higher the number of controls, the more
optimistic the results of the comparison. For an mEXOR
gate with 10 controls and 10 targets its cost would be 286,
which is approximately 1.067 of the cost of correspondent
To�oli gate, and almost 10 (9.37) times better than the strait
forward realization.

4. ASYMPTOTICALLY OPTIMAL SYNTHE-
SIS METHOD

The organization of this section is as follows: describe the
synthesis method, then de�ne the Shannon function and
prove that its lower boundary has the same cost order as
the upper boundary for the cost of the algorithm. This al-
lows us to say that the synthesis algorithm is asymptotically
optimal.

Building a cascade is considered to be a standard proce-
dure for creating reversible networks. Initially there are no
gates in network. At each step of the algorithm new gates
are added to the end of cascade. Note, that if there exists
a cascade that realizes the inverse of a reversible function
f�1, the reverse order the cascade realizes the function it-
self. We will need this observation since the way a cascade
is constructed produces a network for the inverse function.



#of controls garbage To�oli 2 4 8 Rel 2 Rel 4 Rel 8

2 0 7 9 13 21 1.286 1.857 3
3 0 13 15 19 27 1.154 1.462 2.077
4 0 29 31 35 43 1.069 1.207 1.483

5 0 61 63 67 75 1.033 1.098 1.23

6 0 125 127 131 139 1.016 1.048 1.112
6 4 112 114 118 126 1.018 1.054 1.125
7 0 253 255 259 267 1.008 1.024 1.055

7 3 124 126 130 138 1.016 1.048 1.113

8 0 509 511 515 523 1.004 1.012 1.028
8 4 172 174 178 186 1.012 1.035 1.081

Table 1: Cost comparison.

We assume that the function to be realized is given as the
truth table where the left part consists of the inputs and
the right part consists of the output patterns. The input
patterns are sorted in lexicographical order. The synthesis
algorithm proceeds as follows. Build a network for the re-
verse of f and then read it in reverse order to get a network
for f . Do this in a series of steps. At each step a few gates
are added to the end of cascade. Each step brings one entity
of the output part of the truth table so that it corresponds
to the input. This has to be accomplished without changing
the entities that were processed during the previous steps.
The procedure terminates when each input pattern is equal
to the corresponding output pattern. The network built
during the process realizes f�1. This algorithm is similar to
the one proposed in [9].

Step 0. The top part of the left side of the truth table con-
sists of the input pattern with the lowest order, (0; 0; :::;0)
which represents integer 0 as a binary expression. The cor-
responding pattern in the output side, (b1; b2; :::; bn) does
not necessarily consist of all zero's, therefore it should be
brought to the form when it will be equal to the input part.
To do so use one mEXOR gate, TOF (; bi1 + bi2 + :::+ bi

k
),

where fbi1 ; bi2 ; :::; bikg = fbj jbj = 1; 1 � j � ng.

Step k. The input part of the truth table has pattern
(a1; a2; :::; an), which represents binary expansion of the in-
teger number k. The output part has the pattern (b1; b2; :::; bn)
which, in general, di�ers from (a1; a2; :::; an). For any Boolean
pattern (x1; x2; :::; xn) de�ne the set X1 = fxjjxj = 1; 1 �
j � ng - all one bits of pattern (x1; x2; :::; xn). In order to
bring (b1; b2; :::; bn) to the form (a1; a2; :::; an) we need at
most two mEXOR gates only:

1. Increase order. Apply mEXOR gate TOF (B1;B1 n

A1) to bring (b1; b2; :::; bn) to the form (c1; c2; :::; cn) =
(a1 _ b1; a2 _ b2; :::; an _ bn): change the output part of
the truth table as dictated by the gate.

2. Decrease order. Apply mEXOR gate TOF (A1; C1 n

A1) to bring (c1; c2; :::; cn) to the form (a1; a2; :::; an):
change the output part of the truth table as dictated
by the gate.

Note, that during this step all the patterns previously put
at their places were not altered:

� (b1; b2; :::; bn) � (a1; a2; :::; an) since all the patterns
with the order less than (a1; a2; :::; an) are already at
their correct places in the upper part of the truth table.

� It follows from the de�nition of (c1; c2; :::; cn), (c1; c2;
:::; cn) � (b1; b2; :::; bn) � (a1; a2; :::; an)) (c1; c2; :::; cn)
� (a1; a2; :::; an).

Step 2n � 1. Actually, there are no operations at the last
step, since if all of the 2n�1 patterns with lower order are on
their places, there is automatically only one spot available
for the last pattern, (1; 1; :::;1).

Complexity analysis. An upper bound on the complexity of
presented algorithm output is given by the formula 2n+1�4.
Since there are 2n steps to do, and each requires at most 2
gates to be added to the network, it sums up to 2 � 2n. A
more accurate analysis shows that the �rst step adds at most
one gate, the last step never adds a gate, and the step before
last uses at most one gate (symmetrically to the �rst step),
therefore the complexity decreases to 2n+1 � 4. This bound
is reachable, so it cannot be any smaller.

Example 3. Take a reversible function given as a truth
table (columns Input and Output of the Table 3) with the
variables named x1; x2; x3, and x4. Its output is the input
with permuted pattern 0011 and 1100.

The algorithm proceeds as follows:

� Steps 0-2. Since the patterns match, do nothing.

� Step 3. Input pattern 0011 does not match output
pattern 1100.

{ Increase order. Apply mEXOR gate TOF (x1 +
x2; x3 + x4) to bring pattern 1100 to the form
1111. The result is shown in column 3I.

{ Decrease order. Apply mEXOR gate TOF (x3 +
x4; x1 + x2) to bring pattern 1111 to the desired
form of 0011. The result is shown in column 3D.

� Steps 4-6. Nothing to do there, everything matches.

� Step 7. Pattern 1011 does not match the desired 0111.

{ Increase order. Apply mEXOR gate TOF (x1 +
x3 + x4; x2). The result is shown in 7I.



Input Output 3I 3D 7I 7D 11D 12D

0000 0000 0000 0000 0000 0000 0000 0000
0001 0001 0001 0001 0001 0001 0001 0001
0010 0010 0010 0010 0010 0010 0010 0010

0011 1100 1111 0011 0011 0011 0011 0011

0100 0100 0100 0100 0100 0100 0100 0100
0101 0101 0101 0101 0101 0101 0101 0101
0110 0110 0110 0110 0110 0110 0110 0110

0111 0111 0111 1011 1111 0111 0111 0111

1000 1000 1000 1000 1000 1000 1000 1000
1001 1001 1001 1001 1001 1001 1001 1001
1010 1010 1010 1010 1010 1010 1010 1010

1011 1011 1011 0111 0111 1111 1011 1011

1100 0011 0011 1111 1011 1011 1111 1100
1101 1101 1110 1110 1110 1110 1110 1101
1110 1110 1101 1101 1101 1101 1101 1110

1111 1111 1100 1100 1100 1100 1100 1111

Table 2: Circuit building process for a four variable function.

{ Decrease order. Apply mEXOR gate TOF (x2 +
x3 + x4; x1) see column 7D.

� Step 11. 1111 does not match desired 1011. Decrease
the order by applying TOF (x1+x3+x4; x2). The result
of operation is shwon in 11D.

� Step 12. Finally, match the last pattern by applying
mEXOR gate TOF (x1 + x2; x3 + x4).

The 6 gates obtained above are shown as a network in Figure
3. Note, the gates are in reverse order.

x
x
x
x

1

2

3

4

Figure 3: mEXOR gate network.

In quantum technology the cost of To�oli and mEXOR gates
grows quadratically as the number of controls increases and
no garbage is allowed and linearly as 48n � 212(n � 7) if
certain amount of garbage is permitted [1]. It is clearly
bene�cial to have few controls. In the following we provide
a modi�cation of the algorithm which favors smaller gates.

Quantum modi�cation. Update the \increase order" step as
follows. Apply mEXOR gate TOF (D1;B1 n A1) to bring
(b1; b2; :::; bn) to the form (c1; c2; :::; cn) = (a1 _ b1; a2 _

b2; :::; an _ bn). Where the set D1 is de�ned as follows:
D = minfD = (d1; d2; :::; dn)jD

1 � B1; (d1; d2; :::; dn) �
(a1; a2; :::; an)g.

The above simpli�cation procedure allows us to choose a
smaller gate for the \increase order" step. Although it does

not necessarily mean that the cost of the network will de-
crease, but it may decrease if the operation is used wisely.
Some other modi�cations of the algorithm, when not neces-
sarily minimal subsets D are chosen may lead to a simpler
networks, but it is hard to specify which set D to choose.
Exhaustive search is almost impossible, since the branching
factor will be too high, so we propose a heuristics approach
for further modi�cations.

We illustrate the algorithm and its quantum modi�cation
with an example where usage of quantum modi�cation is
bene�cial. Examples where it will not be bene�cial also
exist. Take function with truth table speci�ed in Input-

Output columns, with the names of variables a; b; c written
left-to-right (see Table 4).

For the basic approach �nd the �rst pattern of the out-
put part of truth table which di�ers from the corresponding
input pattern. It is 101. Increase the order by applying
TOF (a + c; b) (result is shown in column BI). The pattern
becomes 111. Decrease the order by applying TOF (b+c; a).
Update the information (column BD1). Finally, decrease
the order of 111 to the desired input pattern 011 by apply-
ing TOF (a + c; b).

For the quantum modi�cation select the smaller gate (�rst
step), TOF (a; b) to increase the order of 101 (column QI).
At the second step we decrease the order of 111 by applying
TOF (b + c;a) (result is shown in QD1 column). Finally,
use TOF (a; b) to decrease the order of 110 to match input
pattern 100.

Quantum cost analysis: the basic approach uses 3 To�oli
gates, which results in the total cost of 21, whereas the quan-
tum modi�cation has cost 9.

Note, the function given in the above example can be real-
ized with one gate, namely the Fredkin gate.

Definition 4. Shannon function, L(n) is maximal num-



Input Output BI BD1 BD2 Input Output QI QD1 QD2

000 000 000 000 000 000 000 000 000 000
001 001 001 001 001 001 001 001 001 001
010 010 010 010 010 010 010 010 010 010

011 101 111 011 011 011 101 111 011 011

100 100 100 100 100 100 100 110 110 100
101 011 011 111 101 101 011 011 111 101
110 110 110 110 110 110 110 100 100 110

111 111 101 101 111 111 111 101 101 111

Table 3: Circuit for the basic approach.

ber of gates requires to realize a reversible function of n vari-
ables with an optimal network.

We just proved an upper bound L(n) � 2n+1 � 4, which is
L(n) � 2n. Prove a lower bound L(n) � C �2n for a positive
constant C.

Lemma 1. The number of distinct mEXOR gates with n

variables is (3n � 2n).

Proof. Each of the variables may participate in a gate
as control, target or do not be a part of a gate. This gives
possibility of 3n gates. But, among those 3n some will not
contain any target bits, therefore will not be a mEXOR gate.
Number of the last will be 2n (each bit is allowed to be either
in control or does not present). Thus, the answer is given
by formula 3n � 2n.

It is interesting to note that an mEXOR gate with zero
controls is used at most once in the algorithm (Step 0), but
the number of them is exponential, namely 2n. It happens
that considering these gates as a set of NOTs does not lead
to a change of asymptotic behavior, which is the focus of
this section.

Theorem 2. L(n) � 2n

ln 3
+ o(2n).

Proof. The number of all reversible functions of n vari-
ables is 2n! (as the number of permutations of 2n elements).
The total number of mEXOR gates is 3n � 2n. Suppose
that by taking all the possible cascades of from mEXOR
we get di�erent functions (which is, of course, not true),
what will be the complexity of the hardest to realize func-
tion. The answer can be given by formula log(3n�2n)(2

n!),
which can be simpli�ed (using Stirling formula) to the form
2n

ln 3
+ o(2n).

5. FUTURE WORK
In the future we want to incorporate the bidirectional ap-
proach [9] as well as design a template simpli�cation tool
analogous to the one proposed in [9] and [8] in order to
be able to produce reasonable networks for the benchmark
functions.
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