
LATTICE DIAGRAMS USING REED�MULLER LOGIC

Marek A� Perkowski� Malgorzata Chrzanowska�Jeske� and Yang Xu�

Department of Electrical Engineering

Portland State University

Portland� OR �����

Abstract

Universal Akers Arrays �UAA� allow to realize arbitrary Boolean function directly in cellular
layout but are very area�ine�cient� This paper presents an extension of UAAs� called �Lattice
Diagrams� in which Shannon� Positive and Negative Davio expansions are used in nodes� An
e�cient method of mappig arbitrary multi�output incompletely speci	ed functions to them is
presented� We prove that with these extensions� our concept of regular layout becomes not only
feasible but also e�cient� Regular layout is a fundamental concept in VLSI design which can
have applications to submicron design and designing new 	ne�grain FPGAs�

� INTRODUCTION�

Akers de�ned Universal Akers Arrays �UAA� to realize arbitrary Boolean functions in a regular
and planar layout ���� UAA is a rectangular array of identical cells� each of them being a
multiplexer� where every cell obtains signals from South and East and gives its output to North
and West� All cells on a diagonal are connected to the same �control� variable �see Fig� �a��
In general� variables have to be repeated to ensure realizability of an arbitrary �single	output�
completely speci�ed� function� Akers showed a universal method of selecting and repeating
variables for such structure so that all functions are realizable in it� His paper did not get due
attention because the technology was at a too early development stage then�

Perkowski� Pierzchala� and Grygiel generalized the Akers approach ��� to binary� multivalued�
fuzzy� and continuous functions and more general regular non	planar layout geometries �
� ����
Arbitrary non	singular expansions were used in the framework of linearly independent logic�
Sasao and Butler concentrated on planar functions for multivalued logic ��
�� Chrzanowska	Jeske
��� 
� introduced the planar Pseudo	Symmetric Binary Decision Diagrams �PSBDDs�� which had
the same cells and basic connection patterns as UAAs� but the array was not necessarily a
rectangle� and was not calculated always for the worst case as in ���� but heuristic decision	
diagram based methods were used to �nd a good order of expansion variables� This produced
di�erent shapes� usually triangular� and in most cases much smaller than the upper bound
solution of Akers� To generate PSBDDs for arbitrary functions a new operation on vertices was
introduced� called joining� For the �rst time it was shown in �
� that for real	life functions it
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Figure �� �a� Array to explain Lattice concepts� �b� � �f� Joining Rules to create Kronecker
Lattice Diagrams and related diagrams� Left side � before joining non�isomorphic nodes� right
side � after joining nodes and possibly� propagating correction to the right predecessor of node s�
Corrections are propagated only in rules �c�� �d�� and �e��

was possible to generate regular symmetric arrays based on variable repetition with a feasible
number of such repetitions�

In this paper we generalize and extend selected ideas from ��� �� 
� 
� ���� Our structure
generalizes the known switch realizations of symmetric binary functions� but it allows for Shannon
�S�� Positive �pD� and Negative Davio �nD� expansions in nodes� as well as for constant data
input functions� Although in this paper the lattice is still planar and based on a rectangular
grid� the solution space is much expanded and better designs are obtained� Kronecker	like�
Pseudo	Kronecker	like and Folded Lattice Diagrams can be realized for every function�

The remaining of this paper is structured as follows� Section � presents background on cellular
logic realizations� Section � introduces our extensions of Universal Akers Arrays� the Lattice
Diagrams� The basic concepts and types of Lattices are de�ned� In section 
 we present how
to create Ordered Shannon Lattice Diagrams� Section � extends these methods for Kronecker
Lattice Diagrams� Section � presents the entire design methodology� New experimental results
for Shannon	like lattices are given in section �� and section � describes our current extensions to
this research� Section 
 concludes the paper�

� FROM AKERS ARRAYS TO KRONECKER LATTICES�

The approach of Akers from �
�� was the only one in the literature that proposed lattices as
a fundament of cellular structures� It can be treated as an attempt to combine the properties of
PLA�like and tree�like cellular structures� Although based on rectangular grid similar to PLAs�
the UAAs used multiplexer cell� allowing to use Shannon expansions� and thus UAAs were similar
to tree expansions� The universal construction of Akers repeated variables consecutively� Thus�
based on laws a � a � a and a � a � �� the UAA basically created trees inside the array



and the cells were often used only as �extenders�� This was� however� a very wasteful method�
leading to large arrays in all cases�

A more fruitful approach is to derive UAAs and Shannon	based lattices from the well	known
planar BDD of a symmetric function� Such BDD leads directly to Universal Akers Array con	
nection structure and layout� but not necessarily to Akers� way of repeating variables and syn	
thesizing functions� Our approach di�ers from Akers in the way how the variables are repeated�
we create only the minimum necessary numbers of repetitions� The created by us algorithms
for variable ordering and repeating are also quite di�erent ��� ���� The shape of our lattices is
approximately triangle or trapezoid of various sizes and shapes� while UAA is always a square
of the largest size for a given number of variables�

The arrays of Akers were universal in a sense that it was proven that every binary function
can be realized with such structure� but an exponential number of levels was necessary �which
means� the control variables in diagonal buses were repeated very many times�� So� they were
unnecessarily large� because they were calculated once for all for the worst case functions� No
e�cient procedures for �nding order of �repeated� variables were given� and it is easy to show
simple functions that have very large UAAs� Nevertheless� the idea of the Akers Array is very
captivating from the point of view of submicron technologies� because� ��� all connections
other than input buses are local and short� ��� delays are equal and predictable� ��� late	arriving
variables can be given closer to the output� and ��� logic synthesis can be combined with layout�
so that no special stage of placement and routing is necessary �similarly as in PLAs��

Because of the progress in hardware and software technologies since �
��� our approach is quite
di�erent from that of Akers� We do not want to design a universal array for all functions� because
they would be very ine�cient for nearly all functions� Instead we create a layout�driven logic
function generator that gives e�cient results formany real	life functions� not only symmetrical
ones� We argue that there is no need to realize the �worst	case� functions� since it was shown in
���� that� in contrast to the randomly generated �worst	case� functions� 
�� of functions from
real	life are Ashenhurst	Curtis decomposable ����� Therefore� the �other� functions are either
decomposable to the easy realizable functions� or they do not exist in practice ���� ���� In
addition� a number of heuristics for variable ordering and lattice	related logic partitioning was
proposed ��� 
� �� �� ���� and it was shown that with a good order a substantial minimization of
the diagrams can be achieved�

Based on the analysis of various realizations of arithmetic� symmetric� unate� �tough�� and
standard benchmark functions and new technologies ��� ��� we have substantially generalized the
concepts from ��� �� 
� �� in the following ways�

�� We start from a tree expansion and� level	by	level� we combine together non�isomorphic
nodes at the same level� thus creating Directed Acyclic Graphs in a similar way as in
�
�� This leads in turn to the requirement of variables repetition� There is no constraint
on repeating variables consecutively �as in UAAs� or not repeating them consecutively as
in �
�� Here� the methods for ordering and repeating variables are totally unconstrained�
which leads to better results� The completed lattice diagram with consecutive repetitions in
blocks� can be next modi�ed to a regular array that has less nodes with repeated variables�
Therefore� in both cases� the concept of repeating variables is a useful starting point of
layout design�

�� Instead of assuming only a Shannon expansion as in UAAs and PSBDDs� we use any



subset of S� pD and nD expansions� We allow to use them as in single polarity diagrams�
Kronecker type diagrams or Pseudo	Kronecker type diagrams� So� many ideas from the
area of �Reed	Muller� logic can be now borrowed and expanded�

�� Our approach is for arbitrary multi	output� incompletely speci�ed functions�

Lattice Diagrams are counterparts of the known trees and Decision Diagrams of respective
names ����� For any type of Decision Diagram known from the literature one can
design an equivalent Lattice� In this paper we have space to demonstrate this property
for only few simpler representations� We demonstrate that for every function an array of the
new type can be created that is never worse �and in most cases� it is much better� than those
formulated in ���
���
��

� De�nitions of Lattice Diagrams�

In this section� we will �rst de�ne precisely �what are� the Lattice Diagrams� and only then
in next sections� we will describe �how to create� them for functions�
Roughly� Lattice Diagrams are data structures that describe both regular geometry of connec	
tions� and a logic of a circuit�

Given is a rectangular array L� see Fig� �� with rows and columns enumerated starting from ��
Fig� � shows the enumeration of entries� Each non�zero entry L�i� j� in array L is called a node
and includes a data structure that describes logic placed in this entry� L��� �� is the root node
of the lattice� In �gures� the arrays will be rotated clockwise 
� degrees to make the diagonals
horizontal�
De	nition 
� A diagonal of the matrix is a set of entries that have the same sum of indices� The
sum in the �rst diagonal is �� in the second diagonal is �� and so on� A diagonal corresponds to
the level of the lattice� Levels are enumerated starting from ��

A symmetric function of n variables that has no vacuous variables� has n levels in its corre	
sponding lattice �matrix��
De	nition �� For every entry �node� L�i� j� the following entries �nodes� are de�ned �if entries
with these indices exist��

	 �geometrical� left predecessor �LP� of L�i� j� is the entry �node� L�i� �� j��
	 �geometrical� right predecessor �RP� of L�i� j� is the entry �node� L�i� j � ���
	 �geometrical� left successor �LS� of L�i� j� is the entry �node� L�i� j � ���
	 �geometrical� right successor �RS� of L�i� j� is the entry �node� L�i� �� j��
	 �geometrical� left neighbor �LN� of L�i� j� is the entry �node� L�i� �� j � ���
	 �geometrical� right neighbor �RN� of L�i� j� is the entry �node� L�i� �� j � ���

If x is a predecessor of y� then y is a succcessor of x� Every non�terminal node in L realizes
a function S� pD or nD of� ��� its two geometric predecessors and the control variable var� or
��� one of its two geometric predecessors and the control variable var �the other data input is
assigned to a constant 	 or ��� The control variable is taken from the bus in the diagonal� The
root L��� �� corresponds to the output of the function f � The terminal node �leaf� is a function of
only the control variable �the value of the control variable is taken from the signal corresponding
to the diagonal� Both its data inputs are constants��
Evaluation of node functions do is done as follows�



do � vardiLP � vardiRP � for S type of node expansion�
do � diLP � vardiRP � for pD type of node expansion�
do � diLP � vardiRP � for nD type of node expansion�
where�

If diLP is not a constant� its value comes from LP�
If diRP is not a constant� its value comes from RP�
If the values are constants� they are used in the evaluation�

Every non	output node gives its value to two geometrical successors� but one of them can have a
constant data input� so logically� every non	output node gives its value to a single or to both of
its logic successors� Whether the geometric left successor becomes a logic successor of the right
predecessor node� depends on the value set for the right data input in this successor� If it is � or
�� then it is disconnected from the predecessor�

De	nition �� A Lattice Diagram for a single	output function is represented by a matrix L in
which�
��� Non	zero entries L�i� j� correspond to logic nodes and are represented by records

�expansion type� var� LEFT�RIGHT ��
where�

�A� expansion type is the expansion type applied in this node� S� pD� nD� LE and RE where
LE is the left extender� and RE is the left extender� The extenders represent wires going
from left and from right� respectively�

�B� var is the control variable in this expansion� Its value is irrelevant for extenders�

�C� LEFT is a constant or a record �pointer to ONLP � pointer to OFFLP ��

�D� RIGHT is a constant or a record �pointer to ONRP � pointer to OFFRP ��

��� Every terminal node has no logic predecessors�
��� Every non	terminal node has one or two logic predecessors�
�
� Every non	terminal node has one or two logic successors�
��� For every leaf node there exists a logic path to the output�
��� All other entries� that do not represent logic nodes in the matrix� have value ��

De	nition 
� A Lattice Diagram realizes function F when the function f obtained by its analysis
forms an �incomplete tautology� with function F �

Graphically� an easy method to analyse the lattice is to �nd EXOR of all product terms of
literals on the paths leading to constants ��

De	nition �� An Ordered Lattice Diagram is a lattice diagram in which there is one variable on
a diagonal�

De	nition �� An Ordered Lattice Diagram with Repeated Variables is one in which the same
variable may appear on various levels� but only one variable in a level�

De	nition �� A Free Lattice Diagram is a lattice diagram in which there are di�erent orders of
variables in the paths leading from leafs to the root�

De	nition �� An Ordered Shannon Lattice Diagram �OSLD� is an ordered lattice diagram in
which all expansions are Shannon� It is a counterpart of the Shannon Trees and the Binary
Decision Diagrams�



A simpli�ed way of drawing OSLDs is shown in Fig� �b�

De	nition �� A Functional Lattice Diagram is an ordered lattice diagram in which all expansions
are Positive Davio� It is a counterpart of the Positive Davio Trees and the Functional Decision
Diagrams�

De	nition 
�� A Negative Functional Lattice Diagram is an ordered lattice diagram in which all
expansions are Negative Davio� It is a counterpart of the Negative Davio Trees and the Negative
Functional Decision Diagrams�

De	nition 

� A Reed�Muller Lattice Diagram is an ordered lattice diagram in which in every
level all expansions are of the same type� either Positive or Negative Davio� It is a counterpart
of the Reed	Muller Trees and the Reed	Muller Decision Diagrams�

For a symmetric function of n variables and given ordering� there are �n di�erent Reed	Muller
Lattice Diagrams� In general� for a symmetrized function with N variables �in N the repeated
variables are counted separately�� there are �N di�erent Reed	Muller Lattice Diagrams �it can
be shown that every function may be symmetrized by repeating its variables��

De	nition 
�� An Ordered Kronecker Lattice Diagram �OKLD� is an ordered lattice diagram in
which in every level all expansions are of the same type� Shannon� Positive or Negative Davio�
It is a counterpart of the Kronecker Trees �called also Kronecker	Reed	Muller� and the Ordered
Kronecker �Functional� Decision Diagrams�

For a symmetric function of n variables and given ordering� there are �n di�erent OKLDs�
Each OKLD is described� before or during its creation� by the list�
f�var�� exp��� �var�� exp��� �var�� exp��� �var�� exp��� �var�� exp��� ���� �varn� expm��g�

which speci�es the order of �repeated� variables and expansion types corresponding to them�
Each element of this list corresponds to a level of the lattice�

De	nition 
�� A Pseudo Reed�Muller Lattice Diagram �PRMLD� is an ordered lattice diagram in
which in every level all expansions are either Positive Davio or Negative Davio� It is a counterpart
of the Pseudo Reed	Muller Trees and the Pseudo Reed	Muller Decision Diagrams�

De	nition 

� A Pseudo S�pD Lattice Diagram is an ordered lattice diagram in which in every
level all expansions are either Shannon or Positive Davio�

De	nition 
�� A Pseudo S�nD Lattice Diagram is an ordered lattice diagram in which in every
level all expansions are either Shannon or Negative Davio�

De	nition 
�� A Pseudo Kronecker Lattice Diagram is an ordered lattice diagram in which in
every level all expansions are either Shannon� Positive Davio� or Negative Davio� In other words�
there are no constraints on expansion types S� pD� nD in levels� It is a counterpart of the Pseudo
Kronecker Trees and the Pseudo Kronecker Decision Diagrams�

De	nition 
�� A Free Kronecker Lattice Diagram is a lattice diagram in which there are no
constraints on orders of variables in branches and on expansion types S� pD� nD in levels� It is
a counterpart of the Free Kronecker Trees and the Free Kronecker Decision Diagrams�

De	nition 
�� A Folded Kronecker Lattice Diagram is a lattice diagram in which there are no
constraints on expansion types S� pD� nD in levels and on the number of variables in a level� but
the order of variables in levels must be the same� with some variables possibly missing� Thus
many variables may appear in a level� which we call a folded level�

Thus� in one branch the order may be a� b� c� d and in another a� c� e� However it is



not possible to have branches with orders a� b� c and b� a� c� This would be possible in Free
Kronecker Lattice Diagrams� Observe that Folded Lattices are a special case of Free Lattices�
Free Lattices will be not discussed here�

� Methods to create Ordered Shannon Lattices�

The Ordered Shannon Lattice for a function is expanded level	by	level� starting from the root
level �a single node corresponding to the function�� and from left to right in every level �see Fig ���
First cofactors of nodes are created using Shannon expansion� and next the joining operations are
executed on some cofactors y� z from the lowest level 	 refer to Fig� �b	f� Non	joined cofactors
are converted to nodes� Joining operation �RULE�S�S�� from Fig� �b is applied to Shannon
nodes� It refers to any two geometric neighbor nodes r and s when both cofactors y and z of
them are non	constant �y is the positive cofactor of r� and z is the negative cofactor of s� in
Figure �� negation of b is denoted by b��� In contrast to standard BDDs� the joining operation
combines also non�isomorphic nodes of trees� If tautological functions �i�e� isomorphic nodes�
happen to be neighbor cofactors y� z for joining� these cofactors are combined using standard
�joining operation�� in this case� bz � bz � by � by � z� and the case of isomorphic cofactors
is not especially distinguished by our methods�

If a function is not symmetric� using joining operations leads� in general� to the necessity of
repeating some variables in lattices� The look	ahead variable selecting heuristics that we use�
serve to avoid too many repetitions� and also to create as few as possible branches of the lattice�
The e�orts of our various heuristics is to complete as soon as possible every branch of the lattice�
thus making a node terminating it a constant� Maximizing the number of logic constants are
then the �goal functions� towards which look	ahead selections of variables and expansions are
executed� Our examples show� that for real	life benchmark functions� and starting from the Curtis
decompositional hierarchy of partitioning variables ����� the overhead of variable repeating is not
excessive in each lattice	realized block obtained from the Curtis decomposition� The variable
ordering�repeating and Curtis decomposition aspects will be not discussed here�
Example 
� Figure �a presents the creation process of the Ordered Shannon Lattice Diagram

obtained using the method for single	output completely speci�ed functions based on rules from
Fig� �� The arrows point from successors to predecessors� to emphasize the order of creating
the lattice from outputs to inputs� in contrast to OSLD data structure in which the direction of
arrows is reversed and corresponds to the direction of information �ow �also in the corresponding
circuit from Fig� �b the �ow is from inputs� at the bottom� to the output�� A function realized
in every node of Fig� �a is written inside the oval corresponding to the node� The arrow to
the left predecessor is for a negated variable and� before joining� leads to the negated cofactor�
Right arrow is for the positive cofactor and leads to the positive cofactor before joining� Thus�
starting from level �� the Shannon expansion for selected variable X� is applied which leads to
two cofactors corresponding to two nodes of the second level�

Now variable X� is selected for the second level� Negative cofactor is calculated for node �X�
X��� It is �� Positive cofactor of node �X� X�� is R� � �X��� Negative cofactor of node �X��
X
� � X� X
 � X� X�� is L� � �X
�� and its positive cofactor is �X
 � X��� Now the joining
operation RULE�S�S� is applied to R� and L� because parent nodes are neighbors and both
cofactors R� and L� are not constants� This creates the second level node �X� X� � X�� X
��
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Figure �� Method for creation of a Single�Output Shannon Lattice for a completely speci	ed
function represented by ON cubes� �b� the circuit corresponding to a� before the propagation of
constants�

which is placed into the lattice� This way� three top levels of the lattice were created� Variable
X� is selected for expansions in the third level �and for joinings in the fourth level�� Negative
cofactor of node �X� X� � X�� X
�� is �X�� X
�� and its positive cofactor is R� � �X� � X��
X
��� Negative cofactor of node �X
 � X�� is L� � �X
�� and positive cofactor is constant ��
After the joining operation for L� and R�� level 
 is completed� Variable X
 is selected for level

� and negative and positive cofactors of node �X�� X
�� are calculated� Because the positive
cofactor is a constant� the joining operation for it will be not executed �observe that nodes �X��
X
�� and �X� �X��X��X
�� � X�� X
� are neighbors�� Two cofactors of node �X� �X��X��X
��
� X�� X
� are then calculated and placed� In level � variable X� is now selected� for the second
time� Both cofactors of node �X��� are constants� so joining is not executed for the positive
cofactor Both cofactors of node �X�� are the same� so node �X�� in this level becomes the left
extender �which means that its circuit interpretation is only a wire going to left� see Fig� �b��
Cofactors of node �X� X� � X��� are calculated� No joinings will be executed because the left
neighbor was a left extender� Variable X� is again selected in level �� Now all cofactors of nodes
are constants� which completes the lattice creation process�

The regular layout of the corresponding circuit is shown in Fig� �b� Observe� that this circuit
can be further simpli�ed by the propagation of constants� For instance� the left node in the
second level changes to an AND� the right node in the third level changes to an OR� the left
node in the fourth level changes to an AND� and the node in the �fth level changes to an OR�
But the regular connection pattern in the layout remains unchanged� This example illustrates�
that always� the general layout plan obtained during lattice creation is una�ected� and it is only
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Figure �� The method to create the Multi�Output Ordered Shannon Lattice Diagram for an in�
completely speci	ed function of three outputs� �a� the method to create the expansions and joining
cofactors� �b� the Multi�Output Ordered Shannon Lattice Diagram derived using method from �a��
�c� the Folded Shannon Lattice Diagram obtained after logic�layout simpli	cation of the Ordered
Shannon Lattice Diagram from b��



re�ned in the next stages of the entire �layout driven logic synthesis process� that we hereby
propose�

Theorem 
� The procedure outlined above terminates for arbitrary order of expansion variables�
Sketch of a proof� Fig� �a is helpful� Observe �rst� that to every node corresponds a �path
function� fT speci�ed by all products of literals on all paths leading to this node from the root�
�This path function can be �� for instance in the middle third level node with expansions variables
a in two top levels� a � a � a � a � �� In such a case� this node serves only to make more
space in the lattice by allowing to create trees on its sides� We will call such node a spacer�� In
general� a node brings the contribution fT � fN to function f � where fN is the node sub	function
realized in it from inputs� Thus a contribution of the node to f is the same as output function f

in the Kmap areas included in fT � and is a don�t care outside them� In every level� these �path
functions� fT as well as functions fT � fN are disjoint� It means� both their ON and OFF sets are
disjoint� and they can be represented by disjoint areas in Kmaps for illustration� These disjoint
path functions in subsequent levels have smaller numbers of minterms� If a node subfunction fN
is a constant� the corresponding area in the map is the same constant� This area is no further
a�ected by expansions in next levels� because constant nodes terminate the expansion process�
For instance� �nding a node to which path X��X�� leads from the root� to be a constant � 	 see
Figure� terminates this branch and will exclude further searching and modifying the area X��X��
in the Kmap 	 there is no other path intersecting this area in the lattice� Thus� creating every
new level of the lattice with constants� adds more of these constant areas� which means that sets
ON and OFF in nodes still to be considered for expansions� are shrinking with levels� Thus the
procedure always terminates� It remains only to prove that constant nodes will occur in levels�
Although variables are repeated but the number of the products of their literals is �nite� Observe
that every level with a new variable� makes the products smaller� and every level of a repeated
variable� separates sums of products to smaller sums of products� Thus for every new level added�
the path functions become sums of smaller and smaller amount of minterms Every minterm of
f must be then ultimately reached as a separate constant node �if it has been not found earlier
in a sum of larger products�� This sketch shows basic convergence proving principles for any
lattice	creating procedures�

Observe that the increased e�ciency comes from the fact that on the sides of the lattice and
close to constants� the nodes sooner become minterms because no joinings are executed there�
and the parts of the lattice become trees� The spacer nodes make levels wider� thus allow to
create minterms and smaller sums on their sides� These properties are used to create good search
heuristics�

Of course� the number of repetitions of variables and the number of nodes will depend much
on the variable ordering� but the fact of the convergence itself will not�

We will call the producted cofactor the product of a cofactor with its own literals� for instance�
abfab is a producted cofactor of cofactor fab� Let us assume a top of a lattice with variables a
and b in levels and the four cofactors calculated� It can be derived� that out of four producted
cofactors of variables a and b� abf

ab
� abfab� abfab� abfab� in the node created by joining the left

and the right middle cofactors� the producted cofactors abf
ab
� and abfab are don
t cares� For

remaining two producted cofactors� the function is the same as the original function�
Example �� Figure � presents graphically the method to calculate the Ordered Shannon Lattice

Diagram for a multi	output� incomplete function� In Fig� � Kmaps are used to illustrate calcu	
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Figure 
� The method to create Functional Lattive Diagram� Positive Davio expansions are used
and �pD�pD� joinings are applied to the function represented in RM form�

lating the producted cofactors and joining operations for cofactors� The joining operation is just
appending ON and OFF sets� which is illustrated graphically by set	theoretical unions of maps�
In the �rst two levels the maps of cofactors are shown� Level 
 shows how two cofactors from
level � are unioned to a new map in level 
� Let us observe� that this method creates incomplete
functions in lattices� even starting from complete functions� Every order of variables leads to a
solution� A Theorem analogous to Theorem � can be proven� and the search heuristics of the
program serve only to select a good order of variables� Fig� � can be also helpful to understand
the convergence proof� As we see� at every level� more and more don�t cares are introduced�
which increases probability of �nding constants� and improves the quality of results with respect
to the procedure outlined in Example �� Of course� Kmaps are used only for explanation� ON
and OFF sets or BDDs are used to represent ON and OFF functions� Figure �b presents the
created lattice diagram� Observe that by allowing of folding the variables in levels� as well taking
into account the rules a � a � a� a � a � �� the solution from Fig� �b is simpli�ed to the
Folded Shannon Lattice Diagram from Figure �c�

� Creating Ordered Kronecker Lattice Diagrams�

Functional Lattice Diagrams� Example �� An example of creating a Functional Lattice
Diagram for a single	output function is shown in Figure 
� It is like for OSLDDs in Example ��
but Positive Davio expansions are used instead of Shannon� and the �pD�pD� joining rules instead
of the �S�S� joining rules� Symbol � denotes operation � in the Figure� We use Positive Polarity
Reed	Muller forms in nodes to represent the functions for simpli�cation� but any representation
can be used� First� positive Davio expansion is applied to the node in the �rst level� The second
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Figure �� Area comparison of folded and ordered Lattices for the same function� �a� new approach
of Folded Lattice Diagram with every input available at every node �more complex routing�� �b�
PSBDD and Ordered Lattice realization with the same variables in diagonal buses�

level is calculated as follows�
f � � � ad � bd � abd � ac � bc � cd � bcd�
fc � � � ad � bd � abd� which is the left node of the second level�
fc � � � ad � abd � a � b � d�
fc � fc � a � b � d � bd� which is the right node of the second level�
Variable d is selected for the second level� The right cofactor of node �� � ad � bd � abd� is
�a � b � ab��
The left cofactor of node �a � b � d � bd� with respect to variable d is �a � b��
The joining operation on these cofactors is�
d�a � b � ab� � d�a � b� �
da � db � dab � da � db � �a � b � abd��
Similarly� the complete lattice from Fig� 
 is created�

Ordered Kronecker Lattice Diagrams and their special cases�
The methods to create Kronecker Lattice Diagrams are quite similar in principle to the methods

from section 
� but slightly more complex in calculations� Observe that in Ordered Kronecker
Lattice Diagrams in every level the edges are for the same variable and the expansions are of
the same type� For every node of a level� cofactors fa� fa and �logic derivative� fa � fa are
calculated� as in ternary diagrams ������� �from now on� for simpli�cation� the name �cofactors�
will be used for all� fa� fa� and fa�fa�� Next� any two out of these three �cofactors� are selected�
consistently in level for OKLDs� For completely speci�ed functions� the pairs of non	empty
cofactors are joined using �S�S� rule for a Shannon level� using rule �pD�pD� for Positive Davio
level� and using rule �nD�nD� for Negative Davio level� For incompletely speci�ed functions� the
pairs of non	empty cofactors are joined using rules similar to the above� but which use both ON
and OFF functions to represent the functions� They still cause propagation correction only to
the right node� Procedures for OKLDs for incomplete multi	output functions are very similar
to the two methods shown above for OSLDs� �Both methods can be applied to multi	output



functions�� The root nodes of every particular output function can be located in the starting
moment in arbitrary orders and mutual distances �the distances � and order f�� f�� f� were used
in Example � 	 see Fig� �b�� It can be checked on function from Example � with various orders
and distances� that the starting distances and orders have big in�uence on the �nal numbers of
nodes and numbers of levels in the lattice� Similarly as in Theorem �� it can be proved� that
every procedure of the types shown� terminates while creating a corresponding Kronecker	type
lattice �an OKLD� a Functional Lattice Diagram� a Reed	Muller Lattice Diagram� etc��� for an
�in�completely speci�ed single�multiple	output function�

Folded Kronecker Lattice Diagrams� As illustrated in Example �� a big advantage is ob	
tained from using Folded Lattices� This is seen especially when mixed expansions are used in the
nodes of Pseudo	Kronecker	type lattices� Figure � illustrates schematically the principle of this
advantage� By allowing a folded lattice� the rectangular envelope area has been reduced from �
 � � 
� to �  � � 
� thus nearly � times�

Pseudo�Kronecker Lattice Diagrams and their special cases� Unfortunately� creation
of Pseudo	Kronecker Lattices is more di�cult than that of the OKLDs� because the rules like
those given above in Figures ��b�	�f�� that transform always from left to right� cannot be created
for combinations of expansion nodes �pD�nD� and �nD�S�� Therefore� more complex methods to
create lattices have been developed� which will be not presented here� It is an open problem
whether creating of Pseudo	Kronecker Lattice Diagrams for �S�pD�nD� can be solved analogously
to the methods from sections 
 and �� but with some other set of �xed joining rules� However�
for combination of nodes �pD�S� the pseudo	lattice can be created� we call it the Pseudo S�pD
Kronecker Lattice Diagram� It can have only the mixture of S and pD nodes in a level� Besides�
the method is the same as for Kronecker lattices from this section� the process of expanding and
joining goes from left to right�

� The complete design methodology for Ordered Kronecker Lattice

Diagrams�

The design methodology has two phases� In the �rst phase the function is decomposed using
a very powerful Ashenhurst�Curtis decomposer of multi	output relations and functions �����
So� our method can start from a Boolean relation� This way� a function of many variables
is splitted to smaller blocks� and each block is a dense function of few variables� The size of
the blocks can be user	controlled� and we plan to experiment with various sizes of blocks to
evaluate sizes and numbers of levels of the resulting circuits� We proved �
� that every totally
symmetric function of more than 
 inputs is decomposable� and our decomposition method
works in such a way that it decomposes to a predecessor functions that are often symmetric
�our decomposition is not disjoint� which means that input variables can be repeated in bound
and free sets� which increases greatly the number of decomposable functions�� If it is possible�
a symmetric predecessor function is found� This way� already our preprocessing stage decreases
somewhat the �symmetrization coe�cient� of the function blocks� Symmetrization coe�cient
is the minimum number of variables that must be repeated to make a non	symmetric function
symmetric� Symmetrization coe�cient of a totally symmetric function is ��

In the second stage every block is realized separately as a lattice� using the incomplete� multi	



output methods from previous sections� because in Curtis decomposition most blocks are multi	
output incomplete functions� The function of every block can be totally symmetric� partially
symmetric� pseudo	symmetric or not symmetric� The type of the function is found from the
analysis of cofactors and their negations� The selection of a good order of variables and ex	
pansion nodes is based on generalized partial symmetries of cofactors� These are layout
symmetries based on positions of nodes representing subfunctions� Each such symmetry leads to
the possibility of joining together two cofactors� or a cofactor and negation of another cofactor�
Fortunately� the number of such symmetries is very large� For instance� there are as many as ��
�polarized Kronecker� symmetries for S� pD and nD expansions ����

It can be easily shown that inverting the control variables or inverting the data functions�
additionally increases the number of usable symmetries and thus reduces the layout as compared
to those shown here� If the function is symmetric and complete� it is realized with a lattice of
arbitrary order of variables without repetitions� If the function is symmetric and incomplete� or
partially symmetric� the symmetric variables go on top� and additional variable ordering analysis
is performed in the process of mapping to a lattice� in order to decrease the area� In other cases�
the algorithm is applied that performs look	ahead analysis of variables and selects variables that
best separate the true and false minterms� In case of folded and free lattices� if a better variable
ordering is found locally� it can overcome the ordering found in the global analysis ����

	 EVALUATION OF EXPERIMENTAL RESULTS

We have implemented a set of algorithms for generating lattices in the C language which run
in the UNIX environment on SPARC workstations� In Table � the results for a set of functions
from the MCNC benchmarks are presented� As can be seen from the lattice description� the
area occupied by the lattice is proportional to the number of nodes and can be easily estimated
by multiplying the number of nodes by the area of a single cell� The �nal layout created with
lattices is very compact and no unused blocks are left in the middle of the designs�

In Table � we present a comparison between results obtained by di�erent variable	ordering
heuristics� and results presented in �
�� Two parameters� the number of levels and the number
of nodes� were used for our current results� Function names are given in the �rst column� For a
better analysis the results presented here are for single	output functions� therefore� the number
next to the function name indicates which output form the multi	output function was used� The
number of input variables �number of variable for the speci�c output is given in parenthesis if
di�erent� is given in the second column and a number of product in Espresso generated SOP is
given in column three� All heuristics are based on look	ahead approach and di�er only in the
priorities assigned to such indicators as a number of nodes� a number of literals etc� For each of
the heuristics a number of levels �a total number of variables including repetitions� and a total
number of nodes in a generated lattice is given� CPU time is very similar for three presented
heuristics� therefore it is given for heuristic III only� For comparison� in the last section of the
table the results from �
� are given with additional parameter being a number of loop� In �
�
the variable ordering was done in a very structured form� A loop of variables was de�ned as a
set of levels in a lattice which is created by using an ordered set of expansion variables� where
each expansion variable can appear at most once� So a number of loops indicates the maximum
number of time a variable appears in a lattice in a path from a root to a leaf� In �
� the order of



Function Heuristic I Heuristic II Heuristic III from ���
Name � of � of � of � of � of � of � of � of CPU Best � � of � of

Inputs SOP Products Levels Nodes Levels Nodes Levels Nodes Time of Nodes Levels Loops
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��� � � � � � � � ��� � � �

Table �� Results for the version of the program with� �
� One Polarity� ��� Look Ahead� X means
the process cannot stop� Heuristics I� II and III will be described in detail in a forthcoming paper�
Last three columns has the results from �
� for comparison�

variables in all loops was the same� A the results in �
� were given for di�erent random orders we
have chosen the best results for each function� In the last sections �na� means that the results
for the function was not available� and we believe that there was a typo in reporting the results
for z
��esp�

It can be easily seen that for the real life functions we have generated OSLDs� which are
probably the most restrictive representation from the family of the Lattice Diagrams we intro	
duced in this paper� with the reasonable number of nodes and levels� Comparing a number of
function variables and a number of levels it can be seen that for the worst case function in this
set of benchmarks the average number of times a variable is repeated is three� It is even more
important that for the majority of tested function the average repetition is close to two� We
have demonstrated that the regular two	dimensional representation of the function can lead to
a practical solutions and that the size of that representation could be very attractive especially
for technologies limited by the interconnections delay�


 CURRENT WORK

Our current work goes in the following directions�

�� Improving the look	ahead variable	selecting search heurstics for the existing lattice	creating
algorithms�

�� Finding algoritms for concurrent variable ordering�repetition and expansion type selection
����

�� Finding methods for symmetrizing general functions by repeating variables� As prepro	
cessing� they will transform a non	symmetrical function to a completely speci�ed symmetric
one� In this approach� with repeated variables renamed� an arbitrary existing BDD�KFDD
package can be used in the next stage to create the actual lattice�


� Because we combine our approach with the Ashenhurst�Curtis decomposition� there is
a problem for every decomposed block 	 �when to keep decomposing and when to sym	
metrize!� Sometimes� small symmetric blocks of few variables resulting from decomposi	



tion� such as two	input EXORs� should be again recombined to larger symmetrical blocks�
The general heuristics is� �use lattices for symmetric and close to symmetric functions��

�� Functional decomposition of logic as a preprocessing to realization of decomposed blocks in
lattices ����� Improvement to the decomposer so that the subfunctions generated by it will
be either always symmetrical or as close to symmetrical as possible �we want to minimize
the total symmetrization coe�cient for all blocks��

�� Design using partitioned multi	level structures of lattices and other blocks ����� This leads
to several levels of layout planes� such as in TANT networks �����

�� Development of methods for selection of the best type of lattice or other structure for a
given function�

�� Generalizations of the lattice model�

Several generalizations to the proposed lattice model have been investigated� For instance�
in ��
� ��� ��� ��� ��� �� these methods have been extended for more then two inputs and more
than two outputs to a cell� more general expansions in nodes �also� non	canonical�� pseudo and
free diagrams� The lattices can be generalized by using the concepts of Linearly Independent
�LI� logic �
� ��� ��� �
� ��� ���� We allow all Linearly	Independent expansions ��� 
� ���� and
the Boolean Ternary expansions from ����� as well as all Zhegalkin expansions from ��
�� Logic
corrections can be now propagated to both right and left� which further extends the search space
and can improve the results� Note� that some of these extensions lead also to non	planar and
not binary structures�

� CONCLUSIONS�

We de�ned the hierarchy of Kronecker Lattices and their special cases as a counterpart of the
hierarchy of Kronecker Decision Diagrams�

Our experimental results demonstrate that even for Shannon expansions only� but with the
order and repetition principles di�erent than those in UAAs� very good results can be obtained
for practical benchmark functions� Next� we showed that by adding more expansion types and
introducing Pseudo and Folded Lattice Diagrams much more power is gained when compared to
the early approaches from ��� �� 
�� In addition� we showed that the new methods are good for
completely as well as incompletely speci�ed functions� and most importantly� they handle well
multi	output functions�

We believe that lattice diagrams are a fundamentally new approach to construct arbitrary
functions as planar regular layouts in a two	dimensional space� and that new methodologies that
will combine intimately functional decomposition� symmetrization� lattice diagrams� and layout
generators based on them� should be extensively investigated for sub	micron technologies and
new generations of FPGAs�
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