
Transformation-based Synthesis of Networks of To�oli/Fredkin Gates

Gerhard W. Dueck, Dmitri Maslov D. Michael Miller

Faculty of Computer Science Department of Computer Science

University of New Brunswick University of Victoria

Fredericton, N.B. E3B 5A3 Victoria, BC, V8W 3P6

gdueck@unb.ca, dmaslov@unb.ca mmiller@csr.uvic.ca

Abstract

Reversible logic has attracted signi�cant attention

in recent years. It has applications in low power

CMOS, quantum computing, nanotechnology, and op-

tical computing. Traditional gates such as AND, OR,

and EXOR are not reversible. In fact NOT is the

only reversible gate from the traditional set of gates.

Several reversible gates have been proposed. Among

them are the controlled NOT (also known as the Feyn-

man gate), the To�oli gate, and the Fredkin gate. An

n-input To�oli gate has n-1 control lines which pass

through the gate unaltered and a target line on which

the value is inverted if all the control lines have value

'1'. An n-input Fredkin gate has n-2 control lines

which pass through the gate unaltered and two target

lines on which the values are swapped if all the con-

trol lines have value '1'. A NOT gate is the special

case of a To�oli gate with no control inputs. Like-

wise, a SWAP gate is the special case of a Fredkin gate

with no control inputs. In this paper, we will review

a transformation-based synthesis procedure targeted to

To�oli gates and show how it can be extended to allow

Fredkin gates. This extension results in circuits with

fewer gates.

The synthesis of reversible logic di�ers signi�-

cantly from traditional irreversible logic synthesis ap-

proaches. Fan-outs and loops are not permitted due to

the target technology. Outputs from one gate are used

as inputs to the next gate. This results in a high degree

of interdependence among gates. Our algorithm �rst

�nds an initial circuit with no backtracking and mini-

mal look-ahead. We exploit reversibility directly in our

synthesis approach. This method always �nds a solu-

tion. Next we apply a set of template transforms that

reduce the size of the circuit. We synthesize all three

input, three output reversible functions and compare

0CCECE 2003 - CCGEI 2003, Montreal, May/mai 2003 0-

7803-7781-8/03/$17.00 c
2003 IEEE

our results to those obtained previously.

Keywords: Reversible Logic, Synthesis, To�oli

Gates, Fredkin Gates, Templates.

1 De�nitions

We consider cascades of generalized To�oli and gen-

eralized Fredkin gates as de�ned below.

De�nition 1. For the set of domain variables

fx1; x2; :::; xng a generalized To�oli gate has the

form TOF (C;T), where C = fxi1; xi2 ; :::; xikg,
T = fxjg and C \ T = ;. Such a

gate maps the Boolean pattern (x01; x
0
2; :::; x

0
n) to

(x01; x
0
2; :::; x

0
j�1; x

0
j�x

0
i1
x0i2 :::x

0
ik
; x0j+1; :::; x

0
n). The set

C which controls the change of the j-th bit is called

the set of control lines and T is called the target.

I

Several gates of this family are well-known and

widely studied. TOF (;;x1), or simply TOF (x1) is the

special case where there are no control inputs, so x1
is always inverted, i.e. it is a NOT gate. TOF (x1;x2)

has been termed the Feynman [2] or controlled-NOT

gate (CNOT). TOF (x1; x2;x3) is often referred to

simply as a To�oli gate [8].

De�nition 2. For the set of domain vari-

ables fx1; x2; :::; xng the generalized Fred-

kin gate has the form FRE(C;T), where

C = fxi1 ; xi2; :::; xikg; T = fxj; xlg and C \ T = ;
and maps the Boolean pattern (x01; x

0
2; :::; x

0
n) to

fx01; x
0
2; :::; x

0
j�1; x

0
l ; x

0
j+1; :::; x

0
l�1; x

0
j ; x

0
l+1; :::; x

0
n) i�

xi1xi2:::xik = 1 otherwise all bits are left unchanged.

In other words, the generalized Fredkin gate inter-

changes bits xj and xl i� corresponding product

equals 1. I

The SWAP gate FRE(;;x1; x2) is the case of a

Fredkin family gate with no controls. Although in

1

some technologies SWAPs are done at no cost, we as-

sume that there is a cost associated with such a gate.

Another example of a gate from the Fredkin family, is

the original Fredkin gate FRE(x1;x2; x3) [3]. It has

a single control.

2 Optimal Synthesis

Given a reversible function, we want to �nd a

network realization composed of To�oli and Fredkin

gates. Synthesis methods for To�oli gate networks

have been proposed in [1], [4], [6], [7]. Markov et

al. [7] found all optimal networks for three input re-

versible functions by matching all the minimal To�oli

gate networks (networks made of gates NOT, CNOT,

To�oli) with all reversible functions of three variables.

They also considered minimal networks for three in-

put reversible functions with NOT, CNOT, To�oli and

SWAP gates. The SWAP is part of a di�erent family,

so it is interesting to expand the results of optimal

synthesis to include Fredkin gates.

Size NCT NCTS NCTSF

0 1 1 1

1 12 15 18

2 102 134 184

3 625 844 1318

4 2780 3752 6474

5 8921 11194 17695

6 17049 17531 14134

7 10253 6817 496

8 577 32 0

WA 5.867 5.629 5.134

Table 1: Number of reversible functions using a spec-

i�ed number of gates for n = 3.

Table 1 shows the number of three input reversible

functions requiring the speci�ed number of gates for

di�erent gate type sets. The values in NCT (networks

with NOT, CNOT, and To�oli gates) and NCTS

(NTC plus SWAP gates) are taken fromMarkov et al..

Column CNTSF adds Fredkin gates and gives the re-

sults produced by a program we wrote. The weighted

average (shown in the bottom row labeled WA) gives

the average cost of a three input function. Clearly, it is

bene�cial to include Fredkin gates, since the weighted

average drops signi�cantly, and no function requires

more than 7 gates.

3 Regular Synthesis

In earlier work [6], we proposed a synthesis method

that produces networks of generalized To�oli gates for

any given reversible speci�cation. Generalized Fredkin

gates can easily be incorporated into the algorithm.

For the algorithm in [6], it was easy to construct

the worst case scenario function. In particular, for

n = 3 such a function was constructed (it is unique)

and called 3 17:pla. The cost of realizing this function

with the naive algorithm from [6] is 17 gates.

Example 1. Applying the basic method for the

3 17:pla function shown in Table 2.

� Step 0. The output pattern corresponding to the

input pattern (0; 0; 0) is (1; 1; 1). In order to bring

it to the form (0; 0; 0) apply 3 NOT's: TOF (; a),

TOF (; b) and TOF (; c). Update the table (Table

2, S1) to show the new output pattern.

� Step 1. For input pattern (0; 0; 1) we have the

output pattern (1; 1; 0). In order to match the

last two bits to the input, swap bits b and c by

FRE(; b; c) and then use TOF (c; a) to bring the

\swapped" pattern (1; 0; 1) to the form (0; 0; 1).

Neither of the gates used changes anything of the

order less than (0; 0; 1). Also note, that this is

not a unique way of changing the output pattern

to match the input pattern even for the smallest

set of controls. FRE(; a; c), TOF (c; b) would do

the same job.

� Step 2. The next input pattern, (0; 1; 0) does

not match the correspondent output pattern,

(1; 1; 1) (Table 2, S2). Apply the gates TOF (b; c),

TOF (b; a) to make the match.

� Step 3. Apply TOF (a; c) and FRE(c; a; b) to

match the output pattern (1; 0; 0) of Table 2, S2

to the desired input pattern (0; 1; 1).

� Step 4. Use TOF (a; c) and TOF (a; b) to bring

(1; 1; 1) (Table 2, S4) to the form (1; 0; 0).

� Step 5. Finally, use FRE(a; b; c) to transform

(1; 1; 0) from Table 2, S5 to (1; 0; 1).

� Steps 6,7 are empty since the output completely

matches the input (Table 2, S6).

In Out S1 S2 S3 S4 S5 S6

000 111 000 000 000 000 000 000

001 001 110 001 001 001 001 001

010 100 011 111 010 010 010 010

011 011 100 100 100 011 011 011

100 000 111 011 110 111 100 100

101 010 101 110 011 101 110 101

110 110 001 010 111 110 101 110

111 101 010 101 101 100 111 111

Table 2: Basic approach synthesis.

2

a
b
c

a
b
c

(a)

(b)

Figure 1: Circuits.

The resulting circuit has 12 gates as opposed to 17

for the naive approach with To�oli gates only. The

circuit is illustrated in Fig. 1(a).

Example 2. Use the bidirectional algorithm to build a

circuit for 3 17:pla.

� Step 0. We can match the output pattern

(1; 1; 1) with the input pattern (0; 0; 0) by as-

signing TOF (; a) to the beginning of the cas-

cade. This transformation interchanges the out-

put patterns in front of input patterns (0; �; �)

and (1; �; �) resulting in the output shown in Ta-

ble 3, S1.

� Step 1. To change (0; 1; 0) to the form (0; 0; 1)

swap the last two bits (use FRE(; b; c)) at the

end of the cascade.

� Step 2. To change (1; 0; 1) in Table 3, S2 to

the form (0; 1; 0) one gate is not enough. A few

choices are possible at this step. Apply gates

FRE(; a; b) and TOF (b; c), both at the end of

the cascade.

� Step 3. The two gates FRE(b; a; c) assigned at

the beginning of the network and TOF (b; c; a)

at the end are doing absolutely the same change

and both bring target pattern (1; 1; 1) of Table

3, S3 to the desired form (0; 1; 1). We choose

FRE(b; a; c).

� Step 4. Pattern (1; 1; 0) can be brought to the

form (1; 0; 0) by using the gate TOF (a; b) at the

end of the cascade.

� Step 5. Gate FRE(a; b; c) assigned to the end of

the cascade or to the beginning of cascade makes

the same change - it brings (1; 1; 0) to the desired

form (1; 0; 1). Since this is the last step (column

S6 matches the input column exactly), the gate

chosen can be viewed as either arising from the

In Out S1 S2 S3 S4 S5 S6

000 111 000 000 000 000 000 000

001 001 010 001 001 001 001 001

010 100 110 101 010 010 010 010

011 011 101 110 111 011 011 011

100 000 111 111 110 110 100 100

101 010 001 010 100 100 110 101

110 110 100 100 011 111 101 110

111 101 011 011 101 101 111 111

Table 3: Bidirectional synthesis.

input or the output side since for any circuit the

last element of the part built from its beginning is

the �rst element of the cascade part built from its

end. In other words, the two parts of the cascade

meet at gate FRE(a; b; c).

� Steps 6,7 are empty.

The cascade consists of 7 gates, and the circuit is

shown in Figure 1(b).

A template simpli�cation tool was introduced in [6],

since the network created by the algorithm is usually

not optimal. The idea of a template is to replace a

sequence of gates with an equivalent shorter sequence.

Further, we extend the template simpli�cation tool to

include Fredkin gates.

The template de�nition is taken from [5]. Let

a size m template be a sequence of m gates

(G0 G1::: Gm�1) which realizes the identity function.

Any template of size m must be independent of tem-

plates of smaller size, i.e. for a given template size

m no application of any set of templates of smaller

size can decrease the number of its elements. Appli-

cation of the template G0 G1::: Gm�1 is one of the

following two operations:

1. Forward application. A piece of network

that matches the sequence of gates Gi

G(i+1) mod m::: G(i+k�1)mod m of the template

G0 G1::: Gm�1 exactly, is replaced with the se-

quence G(i�1)mod m G(i�2) mod m::: G(i+k) mod m

without changing the network's output, where

k 2 N; k � m
2
.

2. Backward application. A piece of net-

work that matches the sequence of gates

Gi G(i�1)mod m::: G(i�k+1)mod m ex-

actly, is replaced with the sequence

G(i+1) mod m G(i+2) mod m ::: G(i�k)mod m

without changing the network output, where

k 2 N; k � m
2
.

3

Figure 2: New templates for 3 input functions.

The introduction of Fredkin gates adds several new

templates to those considered in [5] and [6]. The new

templates are shown in Figure 2. In addition to these

templates we use the following two rules. Duplica-

tion deletion rule: if at any time two adjacent gates

are equal, they can be deleted. Moving rule: two

gates can be interchanged if controls of one do not in-

tersect with the target of the other or, if one of the

gates is a Fredkin gate, when both of the Fredkin gate

targets are in the controls of the other gate.

In order to check whether we have all the templates

for n = 3 of size 5 and less, we created a program that

�nds all the circuits that realize identity function of

size 5 and less and try to apply the templates that

are listed. The program �nds occurrence of one of the

templates we show for each case, so we conclude that

we have found all templates of size 5 and less.

4 Experimental Results

We developed a program that runs a version of the

algorithm (bidirectional with input reduction and per-

mutations) and uses the template tool. At this point,

our program uses the 8 four gate templates shown in

Figure 2. The size 5 template is not used by our pro-

gram and we believe that when we incorporate it, there

will be a further reduction in the network size. An-

other reduction that can be easily done is based on

the fact that if the two functions, f and f�1 have net-

works of a di�erent size, one can create a network for

f by applying the gates for f�1 in reverse order.

Even though several simpli�cation operations have

not been realized yet, the results from our program

are surprisingly close to the optimal (for n = 3).

To summarize the results, we created a Table 4.

Compare our results (column NCTSF�) to the opti-

mal (column NCTSF) and our previous results for the

model gates NOT, CNOT, To�oli and SWAP (column

NCTS�) [6].

Using Fredkin gates in conjunction with our syn-

Size NCT NCTS NCTS� NCTSF NCTSF�

0 1 1 1 1 1

1 12 15 15 18 18

2 102 134 130 184 175

3 625 844 767 1318 1105

4 2780 3752 2981 6474 4437

5 8921 11194 7518 17695 10595

6 17049 17531 12076 14134 13606

7 10253 6817 11199 496 8419

8 577 32 4726 0 1877

9 0 0 792 0 86

10 0 0 110 0 1

11 0 0 5 0 0

WA: 5.867 5.629 6.176 5.134 5.724

Table 4: Results

thesis method is bene�cial, since the corresponding

weighted average for the regular synthesis with NOT,

CNOT, To�oli, SWAP, and Fredkin is better than

the weighted average of optimal synthesis for NOT,

CNOT, and To�oli (column NCT).

Acknowledgement

This work was supported in part by research grants

from the Natural Sciences and Engineering Research

Council of Canada. This work was completed while

the last author was on sabbatical at the University of

New Brunswick.

References

[1] G. W. Dueck and D. Maslov. Reversible function synthesis

with minimum garbage outputs. In International Sympo-

sium on Representations and Methodology of Future Com-

puting Technologies, March 2003.

[2] R. Feynman. Quantummechanical computers. Optic News,

pages 11{20, 1985.

[3] E. Fredkin and T. To�oli. Conservative logic. International

Journal of Theoretical Physics, pages 219{253, 1982.

[4] D. Maslov and G. W. Dueck. Garbage in reversible design of

multiple output functions. In 6th International Symposium

on Representations and Methodology of Future Computing

Technologies, March 2003.

[5] D. Maslov, G. W. Dueck, and D. M. Miller. Templates

for to�oli network synthesis. Submitted to International

Workshop on Logic Sysnthesis, May 2003.

[6] D. M. Miller, D. Maslov, and G. W. Dueck. A transfor-

mation based algorithm for reversible logic synthesis. In

Proceedings of the Design Automation Conference, 2003.

[7] V. V. Shende, A. K. Prasad, I. L. Markov, and J. P. Hayes.

Reversible logic circuit synthesis. In ICCAD, San Jose, Cal-

ifornia, USA, Nov 10-14 2002.

[8] T. To�oli. Reversible computing. Tech memo

MIT/LCS/TM-151, MIT Lab for Comp. Sci, 1980.

4

