Optimization Techniques

Slides of Gang Quan used

Problems

- Decision problems
- Yes/No
- Optimization problems
- Some value need to be minimized or maximized

System level design is essentially an optimization problem!

Optimization Techniques

- Mathematical Programming
- Network Analysis
- Branch \& Bond
- Genetic Algorithm
- Simulated Annealing Algorithm
- etc.

Mathematical Programming

- Linear Programming
- What
- A linear multivariable function is to be optimized (maximized or minimized) subject to a number of linear constraints.

Linear Programming

Maximize: $f(\mathbf{x})=f\left(x_{1}, x_{2}, \cdots, x_{n}\right)$
\} Objective function subject to:

$$
\begin{aligned}
& h_{1}(\mathbf{X}) \leq 0 \\
& h_{2}(\mathbf{X}) \leq 0 \\
& \ldots \\
& h_{m}(\mathbf{X}) \leq 0
\end{aligned}
$$

\}
Constraints
$f(\mathbf{x}), h_{1}(\mathbf{X}), h_{2}(\mathbf{X}) \leq 0 \cdots h_{m}(\mathbf{X}) \leq 0$, are linear functions.
$x_{1}, x_{2}, \cdots, x_{n}$, are real numbers.

Example

Maximize: $f(\mathbf{x})=4 x_{1}+3 x_{2}-x_{4}$ subject to:

$$
\begin{aligned}
& 3 x_{1}+4 x_{2}+x_{3} \leq 12 \\
& 3 x_{1}-2 x_{2}+x_{4} \leq 10 \\
& 4 x_{1}+x_{2}-x_{3} \leq 8 \\
& x_{i} \geq 0, \quad i=1,2,3,4
\end{aligned}
$$

A Practical Example

A supply system comprising three factories which must supply the needs for a single commodity of three warehouses.
Given:

1. The unit cost from one factory to any warehouse
2. The maximum product capacity by each factory
3. The minimum product demand by each warehouse

How much of the product from each factory should be shipped to each warehouse to make the cost minimum?

A Practical Example (cont'd)

Capacity Factory
Warehouse Demand

15

5

20

20

The unit cost from one factory to any warehouse

A Practical Example (cont'd)

Let X_{ij} be the units sent from factory i to warehouse j . Objectives?
Minimize: $0.9 \mathrm{x}_{11}+1.0 \mathrm{x}_{12}+1.0 \mathrm{x}_{13}+1.0 \mathrm{x}_{21}+1.4 \mathrm{x}_{22}+0.8 \mathrm{x}_{23}$

$$
+1.3 x_{31}+1.0 x_{32}+0.8 x_{33}
$$

Subject to ?
for each factory

$$
\begin{aligned}
& \mathrm{x}_{11}+\mathrm{x}_{12}+\mathrm{x}_{13}<=20 \\
& \mathrm{x}_{21}+\mathrm{x}_{22}+\mathrm{x}_{23}<=15 \\
& \mathrm{x}_{31}+\mathrm{x}_{32}+\mathrm{x}_{33}<=30
\end{aligned}
$$

And?

$$
\mathrm{x}_{\mathrm{ij}}>=0, \mathrm{i}=1,2,3 \quad \mathrm{j}=1,2,3
$$

Linear Programming Solvers

- Matlab, Maple, Execl
- http://elib.zib.de/pub/Packages/mathprog/lin prog/lp-solve/

Infeasible Solution

- There is no such vector \mathbf{X} that satisfies all the constraints simultaneously.

$$
\begin{aligned}
& \mathrm{x}_{11}+\mathrm{x}_{12}>=20 \\
& \mathrm{x}_{11}+2 \mathrm{x}_{12}<=20 \\
& 2 \mathrm{x}_{11}+\mathrm{x}_{12}<=20
\end{aligned}
$$

Unboundedness

- The maximized (minimized) objection function can grow infinitely large (small)

Max: $3 \mathrm{x}_{11}+4 \mathrm{x}_{12}$ s.t.:

$$
\begin{aligned}
& \mathrm{x}_{11}+\mathrm{x}_{12}>=20 \\
& \mathrm{x}_{11}+2 \mathrm{x}_{12}>=20 \\
& 2 \mathrm{x}_{11}+\mathrm{x}_{12}>=20
\end{aligned}
$$

Integer Linear Programming

- The variables can only be integers

Maximize $\quad: f(\mathbf{x})=f\left(x_{1}, x_{2}, \cdots, x_{n}\right)$
subject to :

$$
\begin{aligned}
& h_{1}(\mathbf{X}) \leq 0 \\
& h_{2}(\mathbf{X}) \leq 0 \\
& \cdots \\
& h_{m}(\mathbf{X}) \leq 0 \\
& x_{1}, x_{2}, \ldots, \quad x_{n} \text { are integers }
\end{aligned}
$$

- NP-complete

Example

- Knapsack problem
- Given a knapsack of capacity c, into which we may put k types of objects. Each object of type i has a profit , \boldsymbol{p}_{i}, and a weight w_{i}, (we have an unbounded number of items of each object type), determine the number of each type of the objects to be chosen to put in the knapsack so as to maximize the total profit.

Example (cont'd)

Let n_{i} be the number of items should be chosen for type i.
Objectives?

$$
\text { Maximize }: f(\mathbf{x})=\sum_{i} n_{i} p_{i}
$$

Subject to ?
profit

$$
\sum_{i} n_{i} w_{i} \leq c
$$

And ?
$n_{i} \geq 0, n_{i}$ is an integer, $i=1,2, \ldots, k$

Other Mathematical Programming

- Mixed integer linear programming
- Quadratic programming
- Geometric Programming

Other Mathematical

 Programming (Cont'd)- Quadratic programming

$$
\begin{aligned}
& \text { Maximize }: f(\mathbf{x})=\mathbf{C}^{T} \mathbf{x}+\mathbf{x D x} \\
& \text { S.t.: } \mathbf{A x} \leq \mathbf{B} \\
& \qquad \mathbf{x} \geq \mathbf{0}
\end{aligned}
$$

Maximize : $f(\mathbf{x})=3 x_{1}+2 x_{2}-x_{1}^{2}-x_{1} x_{2}-x_{2}^{2}$
S.t.: $4 x_{1}+5 x_{2} \leq 20$

$$
x_{1}, x_{2} \geq 0
$$

Other Mathematical

Programming (Cont'd)

- Geometric Programming

$$
\begin{aligned}
& \text { Minimize }: f(\mathbf{x})=\sum_{j=1}^{m}\left(C_{j} \prod_{i=1}^{n} x_{i}^{a_{j i}}\right) \\
& \text { S.t.: } x_{i}>0, \\
& \quad c_{j}>0 \\
& \quad a_{i j} \text { are arbitrary real numbers. } \\
& \quad i=1,2, \ldots, n \\
& \quad j=1,2, \ldots, m
\end{aligned}
$$

Other Mathematical

Programming (Cont'd)

- Geometric Programming Example

Minimize $: ~ f(\mathbf{x})=2 x_{1} x_{2}^{-1}+3 x_{2} x_{3}^{-2}+2 x_{1}^{-2} x_{2} x_{3}+x_{1} x_{2}$
S.t.: $x_{1}, x_{2}, x_{3}>0$

