COS 495 - Lecture 17
Autonomous Robot Navigation

Instructor: Chris Clark
Semester: Fall 2011

Figures courtesy of Siegwart & Nourbakhsh
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Extended Kalman Filter
Localization

= Robot State Representation
= State vector to be estimated, x

e.g. X

X=|y

0

= Associated Covariéncé, P

Oxx O-xy 06

P = Oy Oy Oy

Oox Oy Ogo



Extended Kalman Filter
Localization

1. Robot State Representation
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Extended Kalman Filter
Localization

= |terative algorithm

1. Prediction — Use a motion model and
odometry to predict the state of the robot
and its covariance

x’, P,
2. Correction - Use a sensor model and

measurement to predict the state of the
robot and its covariance

Xy Pt
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EKFL Prediction Step

= Motion Model

= Lets use a general form of a motion model
as a discrete time equation that predicts the
current state of the robot given the previous
state x, , and the odemetry u,

X’ =[x p uy;)



EKFL Prediction Step

= Motion model
= For our differential drive robot...

X1

Xe1 T\ Vel

5




EKFL Prediction Step

= Motion model

= And the model we derived...

X, = (X, u,)=

As,

A0,
10

x| [ d4s,cos(,,+40/2) ]
Yo, | Tt 4s,sin(0,.; +46/2)

A0,

(ASM‘FAS iy )/2
(Asm - s, )/b



EKFL Prediction Step

= Covariance
» Recall, the propagation of error equation...

X - *V(/Ja Z)

= Y ~N(Au+B,A3A")
Y = AX +B
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EKFL Prediction Step

= Covariance

= QOur equation f() is not linear, so to use the
property we will linearize with first order
approximation

X =f(x.,u)

= x,txt-l + Fu,t ut

where

F., = Derivative of f with respect to state x, ;

Xy

12 F, ;= Derivative of f with respect to control

u



EKFL Prediction Step

= Covariance
= Here, we linearize the motion model f'to obtain

P,=F P F., +F, OF,T

where
0, = Motion Error Covariance Matrix

F ., = Derivative of f with respect to state x,

F, ;= Derivative of f with respect to control u,
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EKFL Prediction Step

= Covariance

14

klds,,| 0
0 k |ds,,|

df/dx, dfidy, ddo,

df/dds,, df/dds,,



EKFL Prediction Step

1. Motion Model
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EKFL Correction Step

= |nnovation

= We correct by comparing current measurements z,
with what we expect to observe z,_, given our
predicted location in the map M.

exp,

» The amount we correct our state is proportional to
the innovation v,

vt - zt - zexp,t
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EKFL Correction Step

= The Measurement

= Assume our robot measures
the relative location of a wall

| extracted as line

zlt :|: alt th —
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EKFL Correction Step

= The Measurement

= Assume our robot measures the relative
location of a wall i extracted as line

7, { a’}} =81 P2 P B Poees B

i
rl‘

[ Swisin2 - 25w, p,c08 sin
o = =—atan 5 " ’
D WPy cos2h— =3 B wwp,p,cos(f+ )

D WP, cos| p.—a)
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EKFL Correction Step

= The Measurement
Rit —

I I
O-aa,t 9 or,t

1 !
o ro,t o rr,t

=G, 2 G, T

phit =zt - ppit

where
)

%t
G,;, = Derivative of g() wrt measurements p, B,

= Sensor Error Covariance Matrix
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EKFL Correction Step

ziexp,t - hi(x,t) M — { aiM_ e,t }

21 r—x’ cos(ol,) —y’ . sin(al,,)



EKFL Correction Step
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EKFL Correction Step

= The covariance associate with the
Innovation Is

- e .
ZIN,t_I{lx,tP tHx,t +th

where

R', = Line Measurement Error Covariance Matrix

H'_, = Derivative of h with respect to state X,

X,
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EKFL Correction Step

* Final updates
» Update the state estimate

— b
xt_xt+Ktvt

» Update the associated covariance matrix
P, =P’ - K, ZIN,thT

= Both use the Kalman gain Matrix
K, =P’ Hx’,tT(ZIN,t)_I
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EKFL Correction Step

= Compare with single var. KF
» Update the state estimate

/\ N\ \
X, =x.; tK, (Zt - xt-])

» Update the associated covariance matrix

2_ 2 2
o/= 0, -K, 0.

Both use the Kalman gain Matrix

— 2
K, Oy

2 2
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EKFL Correction Step

* Final updates

» By fusing the
prediction of robot \
position (magenta)
with the innovation /\
gained by the v\
measurements (green) “

we get the updated
estimate of the robot
position (red)
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EKFL Summary

Prediction

1. x°,=f(x.,,u,)
2. P Fo P, Fo T+ F,0F,]

Correction
3. Ty = WX M)
4 V=T Doy
5. 2y, =H . PH."+R,
6. x,=x’,+K,v,
7. P,=P,—-K X, K'
28 8. K,=P’ H./ (X,)"



