
Review of ComputerReview of Computer
Science related toScience related to

Quantum ComputingQuantum Computing

Sources:
Chuang and Nielsen, Vadim Bulitko, Michele Mosca,
Artur Ekert,
Joost N. Kok, Petros Koumoutsakos & Bernt Schiele,

Thomas Werder & Bastian Leibe

• On May 11, 1997, an IBM
computer named Deep Blue
whipped world chess
champion Garry Kasparov
in the deciding game of a
six-game match

What is Artificial Intelligence?What is Artificial Intelligence?
•• Variant 1.Variant 1. The concept that machines can

be improved to assume some capabilities
normally thought to be like human
intelligence such as learning, adapting,
self-correction, etc.

•• Variant 2.Variant 2. The extension of human
intelligence through the use of computers,
as in past times the physical power was
extended through the use of mechanical
tools.

•• Variant 3.Variant 3. Movie Artificial Intelligence
by Steven Spielberg

Artificial IntelligenceArtificial Intelligence

• First Robot World Cup Soccer Games held in
Nagoya, Japan in 1997

• Goal: team of robots beats the FIFA World Cup
champion in 2050

Artificial IntelligenceArtificial Intelligence

• Alan Turing
• Turing Award
• Turing Machine
• Turing Test

Artificial IntelligenceArtificial Intelligence

• Turing Test

Artificial IntelligenceArtificial Intelligence

• Natural language processing: it needs to be able
to communicate in a natural language like
English

• Knowledge representation: it needs to be able to
have knowledge and to store it somewhere

• Automated reasoning: it needs to be able to do
reasoning based on the stored knowledge

• Machine learning: it needs to be able to learn
from its environment

Time ComplexityTime Complexity
• Turing machine gives notion of computability
• Time complexity: how many steps does it take to

find an answer?
• Combinatorial Explosion
• Problems that are computable in polynomial time

(class P)
• Problems that are verifiable in polynomial time

(class NP)
•• P equals NP?P equals NP?

Common senseCommon sense

• In practice an algorithm that solves a
problem with 2 n/1000 operations is probably
more useful than an algorithm that solves
this problem in n 1000 operations.

FACTORING is toughFACTORING is tough

Mathematically solvable
versus physically solvable...

Computer ScienceComputer Science

• Goal: Brush up on CS aspects relevant to QC
• Models of computation:

– Turing machines
– Circuits

• Computation problems
– Description
– Algorithms
– Complexity : asymptotic notation
– Complexity : classes

• Energy & computation : reversibility

Models Of ComputationModels Of Computation
• Why do we need a model of computation?
• When someone says “This function is

incomputable” or “f(x) is computable but
intractable”, etc. what does it really mean?

• What if I say “I can compute this” or “I have
an algorithm for this” ?

• Intuition?
• Well, David Hilbert felt that any true formula

can be proven by a mechanical procedure.
• …Need a formalization

Now we go
back to
mathematics
for a while...

• The German mathematician David Hilbert (1862-1943) was born on Jan. 23,
1862, in Konigsberg, Prussia (now Kaliningrad, Russia). He received his
doctorate from the University of Konigsberg in 1884 and remained there as a
professor from 1886 to 1895. In 1895 he joined the University of Gottingen and
retired in 1930.

• Hilbert reduced Euclidean geometry to a series of axioms.
• A substantial part of Hilbert's fame rests on a list of 23 research

problems he presented in 1900 to the International Mathematical
Congress in Paris.

• He surveyed nearly all the mathematics of his day and set forth the
problems he thought would be significant for mathematicians in the
20th century.

The Hilbert Problems contd.The Hilbert Problems contd.
• Many of the problems have since been solved, and each solution

was a noted event.
• Hilbert second problem asked whether it can be proved that that

the axioms of arithmetic are consistent (that is, that a finite
number of logical steps based on them can never lead to
contradictory results).

• Godel’s solution: you cannot tell, because propositions can be
formulated that are undecidable within the axioms of arithmetic!

• Example: By definition, x2=x.x, x3=x.x.x, and so on.
• Now what does x3/5 mean?
• Can we be certain that the meanings that we have given to

fractional and non-rational exponents are always consistent with
the natural meaning of positive integral exponents?

• That is the nature of Hilbert second problem

Kurt Kurt GodelGodel (1906-1978) (1906-1978)
• In 1931 the Austrian mathematician and logician Kurt Godel

published what has been called Godel's proof in arithmetic.

• This proof states that within any rigidly logical mathematical
system there are propositions (or statements) that cannot be proved
or disproved on the basis of the axioms within that system.

• It is therefore uncertain that the basic axioms of arithmetic will not
give rise to contradictions.

• This proof has become a hallmark of 20th-century mathematics,
and its significance is still debated.

Gödel’sGödel’s incompleteness theorem incompleteness theorem
(1931):(1931):

•• Any system of logic powerful enough to expressAny system of logic powerful enough to express
elementary arithmetic contains true statements thatelementary arithmetic contains true statements that
cannot be proven within that system.cannot be proven within that system.

• The halting problem is the typical example for a
problem that is not decidable (not computable, not
solvable by a TM).

• Many problems can be shown to be undecidable by
reducing them to the halting problem.

Implications of Implications of Goedel’sGoedel’s Theorem Theorem
• “It appears to foredoom the ideal of science -

devising a set of axioms from which all phenomena
of the natural world can be deduced”
– Carl Boyer in A History of Mathematics

Is a quantum computer
fundamentally stronger than
classic one on undecidable
problems - no.

Can a quantum computer solve
these problems more efficiently
than any existing computer -
yes

Thus mathematics proves that no humans nor computers can have any
theoretical advantages to create future mathematics better than the
other and the “universal mathematician’s philosophy stone does not
exist”.

Relevant Sources on math review forRelevant Sources on math review for
those interested…..those interested…..

• 1. Compton’s Interactive Encyclopedia (1995)
• 2. Boyer, C. B. A History of Mathematics, Second

Edition, John Wiley & Sons (1991), p.611
• 3. “Time” special issue on “Scientists & Thinkers of the

20th Century”, March 29, 1999, Vol 153 No. 12, pp. 64-
205

• 4. http://www.clarku.edu/~hmarek/html/godel.html
(This is an instructive place on www)

• 5. http://www.clarku.edu/~hmarek/html/disc.html

• Need a formalization of what it
means to have an algorithm for (or
to be able to compute)

LCMs can do anything that could be described as ‘rule
of thumb’ or ‘purely mechanical’.

Alan Mathison Turing (1948)

• So what is LCM (or as it’s now
known Turing Machine) ?

TuringTuring
MachinesMachines

ProbabilisticProbabilistic
Turing MachineTuring Machine

probability

Quantum TuringQuantum Turing
MachineMachine

It was also discussed in the
lecture how to build a non-
deterministic Turing
Machine and other types of
quantum Turing Machines

Turing machinesTuring machines
• Finite state control: consists of finite set of internal states

q1 ,…, qm and special states qs and qh which are the
starting state and halting state, respectively.

• Tape: one-dimensional object which stretches to infinity
in one direction and consists of the tape squares. The tape
squares each contain one symbol drawn from some
alphabet A.

• Read/Write Head: identifies a square on the tape which
is being accessed by a machine.

• Program: finite ordered list of program lines in the form:
 < q, x, q’0, x’0 , s i >.

Turing machine: How does it work?Turing machine: How does it work?

• The Turing machine looks through the lines of the
program searching for a line <q,x….>, where q is the
current state of the machine and x is the symbol being
read on a tape.

• If it can find such a line it changes the state of the
machine to q’, overwrites the symbol on the tape square
to x’ and moves the read/write head by s tape squares.

• If it can not find such a line the internal state of the
machine is changed to qh, machine halts operation and
whatever is one the tape is an output.

Turing machine: ExampleTuring machine: Example
• Internal states: q1; q2; q3; qh; qs.
• Alphabet: �(marks left hand edge), 0, 1 and blank spaces (designated

in program as b).
• Tape initially contains binary number x followed by all blanks.
• Program:

What does it do?

 It computes f(x) = 1.

Universal computation.Universal computation.

• Turing machines.
• See R. Penrose, The Emperor’s New Mind, page 71.

• Church-Turing thesis:
A computable function is one that is

computable by a universal Turing machine.

Church-Turing thesis:Church-Turing thesis:

• The class of functions computable by a Turing machine
corresponds exactly to the class of functions which we would
naturally regard as being computable by an algorithm.

• The thesis asserts equivalence between a rigorous mathematical
concept, i.e. function computable by the Turing machine and the
intuitive concept what it means for a function to be computable by
an algorithm. No evidence to the contrary has been found.

• Quantum computers also obey Turing thesis, the difference is in
efficiency.

• Different versions of the Turing machine: multi-tape machines,
introduction of the randomness in the model.

Demos of TuringDemos of Turing
MachinesMachines

• Classical implementation
http://www.warthman.com/ex-turing.htm

• Conway’s Game of Life implementation
http://www.rendell.uk.co/gol/tmdetails.htm

Universal Turing MachinesUniversal Turing Machines
• A Turing Machine (T M) is a finite state machine

with a tape of unbounded length.
• A function F(x) is Turing computable if a TM

exists which, if fed with x, will eventually halt
and write F(x) on the tape.

• A Universal Turing Machine (UTM) is capable
of imitating (simulating) any other given TM.
– Several ways of constructing such machines were

given, first by Turing. See on WWW.

The halting problemThe halting problem
•• Question:Question: Is it possible to build a machine that will tell

us whether a Turing machine T with tape t will halt?
•• Answer:Answer: No, this is not possible!

– 1. What is a Turing Machine (More precise repetition?)
– 2. Reformulate the halting problem more precisely
– 3. Discuss the Importance of the halting problem

• Literature: R. Feynman, Lectures on Computation,
Penguin Books 1996

The Halting Problem reformulatedThe Halting Problem reformulated

• D=UTM
• T=TM

Description
of T on tapeCan I build a

State
Diagram D
such that...

Proof (Proof (contcont))

We create machine E

Proof (Proof (contcont))

We create machine Z

Proof (Proof (contcont))
• In summary, we have:

– T(d T) halts ==> Z(d T) does not halt
– T(d T) does not halt ==> Z(d T) halts

• Step 3:
– Let us write a description d Z for Z and substitute Z for T in the foregoing

argument:

–– Z(Z(d d ZZ) halts) halts iff iff Z(Z(d d ZZ) does not halt) does not halt
• This is a contradiction and therefore, the assumption that a

machine D exists was wrong!

Question:Question: Is it possible to build a machine that will tell us
whether a Turing machine T with tape t will halt?
Answer:Answer: No, this is not possible!

….in addition, this proof illustrated typical proof
techniques in undecidability theory…..

• Circuit : wires +
gates

• Gates : function
{0,1}k � {0,1}m

• No loops
• Elementary circuits

– AND, OR, NOT,
NAND, NOR, XOR

– Fanout
– Crossover
– Work (ancilla) bits

Putting Circuits TogetherPutting Circuits Together
• Here is a half-adder (half because doesn’t take

carry as in an input):

• Here is a full-adder then:

• Any function {0,1}k ���� {0,1}m can be computed with:
– Wires
– Work bits (ancilla bits) prepared in some fixed state
– Fanout operation
– Crossover
– AND, XOR gates (or just NAND)

• How is crossover different from crossed wires?
• Why cannot we do crossover with XOR?

Families Of CircuitsFamilies Of Circuits

• A single function {0,1}k � {0,1}m is merely a 2k

row look-up table.
• Obviously, any such function is computable.
• Furthermore, it doesn’t correspond to our notion

of algorithm which can be defined for arbitrarily
large numbers (e.g., f(n)= n2)

• What do we do?
• We will introduce families of circuits…

Families Of CircuitsFamilies Of Circuits
• Thus, define a uniform circuit family as:

– a set {Cn} of circuits
– Cn handles inputs of size up to n

– For all m>n for all x Cm(x)=Cn(x)
– There is a Turing machine TC such that TC(n) produces description of circuit Cn

• Then {Cn} computes function C() iff for all x C(x)=C|x|(x)
• this means : complex gates = subroutines
• Uniform circuit families are equivalent to Turing machines
• Therefore they can compute anything computable

– For any circuit we can create TM
– For any TM we can create a circuit

• It is also obvious from Shannon or Davio expansions that every function of any number
of inputs can be build from Cn see page 133 in the textbook.

Turing Machine Turing Machine CountabilityCountability
• All Turing machines and/or circuits can be

algorithmically enumerated

• It means that:
– 1. Every possible Turing machine/circuit can be

assigned a unique integer ID number
– 2. There is a Turing machine/circuit that given index j

produces the full description of Turing
machine/circuit #j

Turing-Church ThesisTuring-Church Thesis
• Anything that can be computed

mechanically/algorithmically can be computed
on a Turing machine

• Corollary: anything that can be computed
mechanically/algorithmically can be computed
with a uniform family of circuits

• Proof?
• “computed mechanically/algorithmically” is too

fuzzy to use in a proof…

Strong Turing-ChurchStrong Turing-Church
ThesisThesis

• Any model of computation can be simulated on
a probabilistic Turing machine with at most
polynomial increase in the number of elementary
operations required.

This thesis implies that attention may be restricted
to the probabilistic Turing Machines.

Quantum Computers cast in doubt Strong Turing-Church thesis, by
enabling the efficient solution of a problem which is believed to be
intractable on all classical computers, including probabilistic Turing
Machines.

Computational ComplexityComputational Complexity
ClassesClasses

● (Computational) Complexity refers to some
measure of the resources required to solve a
problem. We will restrict attention to
decision problems.

● Decision problems = Yes or no Answers.
● Decision problems can be treated as the

problem of recognizing elements of a
language.

Review: What is a language?Review: What is a language?

● Fix an alphabet, say . The
set denotes all finite length
strings over that alphabet.

● A language L is a subset
● An algorithm solves the language

recognition problem for L if it
accepts any string and
rejects any string

}1,0{=Σ
*Σ

*L Σ⊆

L∈σ
L∉σ

What is a language?What is a language?

● E.g. }111,101,011, 010,11,{10,PRIME …=

}colourable3properlyisx|x{COLOURABLE3 −=−

0,...}0,0110,10000,110,0101{COMPOSITE =

● If we let strings x represent a graph, then
we can define

•Decision problems: problems with yes or no answer.
•Example: Is a given number a prime? (Primality decision
problem)

What is a language?What is a language?

1

2

3

4

● The string 101111 represents this graph by telling us
which pairs of vertices {1,2},{1,3},{1,4},{2,3},{2,4},{3,4} are
connected. This graph is 3-colourable so

COLOURABLE3101111 −∈

Computability / Computability / DecidabilityDecidability
versus Languagesversus Languages

• Decidability problems are often described by languages:
– the input are members of a larger set
– the output is Yes/No on whether the input belongs to a given language (set) L

• Examples:
– L={n|n is a prime number}
– L={n|n is an index of Turing machine that halts on input 0}

decidabledecidabledecidable

undecidableundecidableundecidable

Why A Formalization isWhy A Formalization is
Necessary?Necessary?

• Allows us to answer several questions:

– What is a computational problem?

– Is there an algorithm to solve it?

– What are the minimal resources to solve a problem?
• Resources: time, space, and energy.
• Can we classify the problems according to the resource requirements needed to solve

them?

…. Now we will be trying to explain the
concept of decidability/undecidability…….

Single Instance ProblemsSingle Instance Problems
• It is not interesting to pose a single instance problem
• For example: is the problem of answering “Can

machines think?” computationally decidable?
• Sure – there exists a program that prints out “Yes” and

there exists a program that prints out “No”

• By our definition on the previous slide the problem is
decidable

…but this is not what…but this is not what
we mean…….we mean…….

Computable functionsComputable functions
• What does it mean if a function is computable?
• What device is to be used?
• Does it matter?

• Turing machines can compute anything
computable – thereby formalizing the definition
of computability

• Decidability == computability of the
corresponding decision mass problem

– What is a computational problem?
• Here : a mass problem with ‘yes’/’no’ answer

– Is there an algorithm to solve it?
• Not always

Mass ProblemsMass Problems

• Consider this problem:
“Is X entailed by a set of axioms?”

• The answer is ‘yes’ or ‘no’ as X is just a single constant
expression

• Therefore, there exists a program which takes X and
outputs ‘yes’ or ‘no’ (it will just contain one print
statement (e.g., print(‘yes’)))

• We might not know how to write that program but it
trivially exists

Mass ProblemsMass Problems

• To make computability/decidability definitions
meaningful we can use mass problems

• A mass problem consists of inputs and desired outputs
(e.g., n�n2)

• Mass Yes/No problems � mass decision problems
• We say that a mass problem is computable/decidable

iff there exists an algorithm for finding the desired
answer for any valid input

Another ExampleAnother Example

• Mass problem :

“Given a Turing machine number m, can we
algorithmically determine if Tm will halt on the empty

input?”

• another formulation of the Halting Problem
• It is UndecidableUndecidable

Two Examples of Mass ProblemsTwo Examples of Mass Problems
• In class we show two examples of mass systems:

– First Order Predicate Calculus
– Markov algorithms (variant of Post correspondence problem).

• In the second problemsecond problem you have an alphabet of characters and two strings over
this alphabet, S1 and S2.

• You have also a set R or rewriting rules which are pairs of sequences of
characters.

• The question is, can S2 be obtained from S1 by applying the rules from R.
• Because the rules create both longer and shorter strings, you cannot create a

program that would in finite time derive S2 from S1 or tell that it is not possible.
• This is an example of an undecidable problem.
• Note that we are not asking for a solution to any particular problem of this type,

but for the existence of a procedure to decide for any set of rules R and any two
strings S1 and S2 - thus a mass problem.

•• See more on these two examples on the WWW page of theSee more on these two examples on the WWW page of the
class.!!class.!!

Computable Function for a MassComputable Function for a Mass
Problem?Problem?

• Remember: The problem of proving a given FOPC (First
Order Predicate Calculus) statement is undecidable

• Thus, need a mass problem:

“Is there a computable function f(X) such that:
1) f(X)=‘yes’ iff X is a FOPC statement entailed by a given set of

axioms
and

2) f(x)=‘no’ iff X isn’t.” ??

• Undecidable – no such computable function exists

Decision ProblemsDecision Problems

• The answers are:

– What is a computational problem?
• Here : a mass problem with ‘yes’/’no’ answer
• Example: “Function f(n) such that f(n)=yes iff n is prime

and f(n)=no iff n is not prime”

Computational complexityComputational complexity
• Computational complexity is the study of the time and space

resources required to solve computational problems.
• Task: prove lower bounds on the resources required by the best

possible algorithm for solving a problem.
• Suppose that the problem is specified by giving n bits as an input.

– Chief distinction: problems which can be solved using the resources which
grow polynomial in n and problems which grow faster than any polynomial
in n.

• The problem is regarded as easy, tractable or feasible if an
algorithm for solving the problem using polynomial resources
exists, and as hard, intractable or infeasible if the best possible
algorithm requires exponential resources.

ComputabilityComputability versus versus DecidabilityDecidability

• A problem is computationally solvable (or
computable) if there exists a program that
computes the answer

• If the answer is of the Yes/No type then the
problem is called a decision problem

• If such a problem is computable we say it is
decidable

Examples of doable tasksExamples of doable tasks

• Fortunately, some tasks are more doable
• Examples:
1. “For any given 3 numbers a,b,c return ‘yes’ if

a=bc and ‘no’ otherwise”
2. “For any given number n return its prime factors”
• Both are computable
• But the complexity is different
• So need finer distinctions

• Now we are more detailed with answers:

– What is a computational problem?
• Here : a mass problem with ‘yes’/’no’ answer

– Is there an algorithm to solve it?
• Not always

– What are the resources to solve a problem?
• Coarse division : tractable / intractable
• Finer division : asymptotic notation

Asymptotic NotationAsymptotic Notation
• Big O : f=O(g) iff iff there exists a constant c that

starting from some x0 holds f(x)< cg(x) (i.e., g
upper-bounds f)

• Example: sumi=1..n i = O(n2)
• Good for worst-case performance analysis
• Example: linear search is O(n)

Asymptotic NotationAsymptotic Notation

• Lower bound
• Big Omega : f=Ω(g) iffiff there exists a constant

c≠0 that starting from some x0 holds f(x) > c g(x)
(i.e., g lower-bounds f)

• Sometimes used for the best case analysis

• Example: any binary-comparison based sorting is
Ω(n logn)

Coarse Division : Tractable/IntractableCoarse Division : Tractable/Intractable

• Often we want to make a statement if an algorithm is
tractable/feasible or intractable/infeasible

• The crude formalization is this:

If the worst case running time is polynomial (i.e., O(nk)
where k is a constant) then the algorithm is tractable

in running time

• Here n is the input size in a reasonable (e.g., binary)
representation

• The running time measured on a deterministic Turing machine

Slightly finer divisionSlightly finer division
• Class P – time to solve: O(poly(|input|))

• Class NP – time to verifyverify : O(poly(|input|))
• Class NP-complete -- any other NP problem is reduciblereducible

to itto it
• Class NPI – NP but not NP-complete

• Class PSPACE -- space to solve: O(poly(|input|))
• Class EXP – space to solve : O(2poly(|input|))

• Thus can define:
P (polynomial time) is the class of languages that

can be decided by a deterministic Turing
Machine running in time O(O(nnkk).).

● The class P consists of all languages L for which
there exists a classical algorithm A running in
worst-case polynomial time such that for any
input the algorithm A on input x,
A(x), accepts if and only if

*x Σ∈
Lx ∈

… more precisely….

Class Class PP

• Examples:
– Search: n < n1

– Sorting: n logn < n2

– Etc.

• Counter examples:
– Sure, take a number n, idle for 2n time ticks, output

‘yes’. This algorithm is exponential but the function
it represents is O(1)

The complexity class P in terms ofThe complexity class P in terms of
languageslanguages

• A problem is to be said to be solvable in polynomial time if
it is in TIME(n k) for some finite k.

• The collection of all languages which are in
 TIME(n k), for some k, is denoted P.
• A complexity class is defined to be a collection of

languages.
• Unfortunately, proving that any given problem can't be

solved in polynomial time seems to be very difficult!
• Example: the factoring decision problem is believed not to

be in P.
– (Given a composite integer m and l <m, does m have a non-trivial

factor less than l?)

• Some problems appear harder
• Example: “Is a given number composite (i.e., not prime)?”. No polynomial

algorithm is known.

• NP = Non-Deterministic Polynomial Time is the class of languages
that can be verified by a deterministic TM running O(nk) time.

• Example: L = {l ∈ N| l is not prime} ∈ NP.
• Problems in NP: yes answer can be easily verified with the aid of an

appropriate witness.

Number
factorization
is tough

Factoring Decision Problem

Given a composite integer m and l<m, does m have a non-trivial
factor less than l?

The complexity class NPThe complexity class NP
• A language L is in NP if the is a Turing machine M with the

following properties:
– (1) If x ∈ L then there exists a witness string w such as that M

halts in the state qY after a time polynomial in |x| when that
machine started in the state x-blank-w.

– (2) If x ∉ L then for all strings w which attempt to play
the role of a witness, the machine halts in state qN after a
time polynomial in |x| when M is started in the state x-blank-
w.

• There is an apparent asymmetry in the NP definition: it is
easy to decide whether a possible witness to x ∈ L is truly a
witness.

How are NP and P related?How are NP and P related?
• P is a subset of NP.
• It is not known whether or not there are problems in NP

which are not in P.

or
P

NP
NP = P

Discuss CSAT, versus SAT, versus 3SAT,
versus 2SAT - 2SAT is in P!, all other in NP.

Finding is
exponential

Verifying is
polynomial

A Corollary about witnessesA Corollary about witnesses

• Given an input x of size |x|=n and an appropriate
witness w there must be a polynomial time
algorithm to check if x belongs to L

• This means that |w|=O(poly(|x))

• Why?
• Otherwise, the Turing Machine won’t be even

able to read in w

Class Class Co-NPCo-NP
• What about “Is n prime?”
• Can easily check if n is not a prime if given a

witness (e.g., a factor of n)

• Define:

… witness for every negative instance…..… witness for every negative instance…..

Class Class NP-CompleteNP-Complete
• Some NP-problem are especially hardespecially hard insomuch as

any other NP problem can be reduced to any of them

•• Reduction :Reduction : if I have a NP decision problem L (i.e., I
am asking a question “Is x in L?”) and an NP-complete
problem M then for any x it takes polynomial time to
produce y such that y is in M iffiff x is in L

• In other words, the time complexity of L is O(poly(t))
where t is the time complexity of M

Class Class NP-CompleteNP-Complete

• Formally:

• Examples:
– CSAT : given a Boolean circuit of AND and NOT

gates, is there an assignment of its inputs such that
the entire circuit produces 1 (true)?

Problem Example:Problem Example: HamiltonianHamiltonian
Cycle or HCCycle or HC

• Hamiltonian cycle is an ordering of
all graph vertices such that no
vertices are repeated except the
starting vertex.

• The cycle has to have the edges
present in the graph.

• Decision-problem : does a given
graph have a Hamiltonian cycle?

…graph of green nodes has Euler cycle, with yellow
node - not…..

• Euler cycle is an ordering of all
edges of a graph such that:
– every edge is visited exactly once
– any two consecutive edges in the

sequence share a vertex
– the sequence forms a cycle

• Decision-problem : does a given
graph have an Euler cycle?

Problem Example:Problem Example: EulerEuler Cycle orCycle or
ECEC

…graph of green nodes
has Euler cycle, with
yellow node - not…..

Which of these problems is easy, which not?

HC vs. ECHC vs. EC

• Hamiltonian cycle is NP-complete

• Euler Cycle is in P (can be solved in O(|input|3))

SurprizeSurprize!!!!!!

Euler Euler is easy!is easy!

• Euler Theorem:
– A connected graph contains an Euler cycle if and

only if every vertex has an even number of edges
incident upon it.

4 edges

4 edges

4 edges

2 edges

Class Class NPINPI
• How about problems that are in NP but not NP-

complete?
• They would belong to NPI (NP Intermediate)
•• Do they exist?Do they exist?
• Unknown but suspected that:

– Factoring is in NPI
– Graph isomorphism is in NPI

May be this class is empty?

Classes Classes PSPACEPSPACE & & EXPEXP

• PSPACE: Problems that can be decided in space
O(poly(|input|))

• EXP: Problems that can be decided in space
O(2poly(|input|))

• What do we know?
– P ⊆ NP ⊆ PSPACE ⊆ EXP
– NP-complete ⊆ NP
– NPI ⊆ NP
– P ⊂ EXP

• What don’t we know but really believe that it is
true?
– P ⊂ NP ?
– NPI ≠ ∅ ?
– P ⊂ SPACE ?

NP

NPI

EXP

A complexity class: BPPA complexity class: BPP
● The class BPP (bounded-error probabilistic

polynomial time) consists of all languages L
for which there exists a randomized
classical algorithm A running with worst-
case expected polynomial time such that
for any input *x Σ∈

3
2]accepts)x(APr[LxIf ≥⇒∈

3
1]accepts)x(APr[LxIf ≤⇒∉

● nota bene we are not averaging over x

ChernoffChernoff bound and BPP bound and BPP

● Is special? No. suffices.
● We can repeat the algorithm A n times and

take the majority answer. We now get the
correct answer with probability at least

for some (see
Box 3.4 in the text)

3
2

n1 ε− 10, <ε<ε

0,
2
1 >+ δδ

BPP Efficient??BPP Efficient??≈

● We view decision problems
corresponding to recognizing
languages in BPP as tractable

● We view problems without such
worst-case polynomial time solutions
as intractable.

Polynomial time Efficient??Polynomial time Efficient??≈

● “It should not come as a surprise that our
choice of polynomial algorithms as the
mathematical concept that is supposed to
capture the informal notion of ‘practically
efficient computation’ is open to criticism
from all sides. […]

Polynomial time Efficient??Polynomial time Efficient??

 Ultimately, our argument for our choice must
be this: Adopting polynomial worst-case
performance as our criterion of efficiency
results in an elegant and useful theory that
says something meaningful about practical
computation, and would be impossible
without this simplification” – Christos
Papadimitriou

≈

So how it relates to quantum?So how it relates to quantum?

• Well, we know that:
– Polynomial quantum algorithms are in PSPACE

• It’s believed:
– Polynomial quantum algorithms can do MORE than

polynomial classical algorithms
– Specifically: they can do NPI but NOT all NP (i.e.,

not NP-complete)

Feynman’sFeynman’s questionquestion
• The second track to quantum computation.

– R.P. Feynman, 1982
Simulating physics with computers,
Int. J. Theor. Phys. 21, 467 (1982).

• Can a quantum system be simulated
exactly by a universal computer ?

NO !

Classical simulation: transport Classical simulation: transport problemproblem

• R particles on a 1-dim lattice of N sites.
• note, for fields R=O (N)

• How does the calculation scale with N,R ?

size of input ≈ N 2 R

✟ Simulate Boltzmann equation.

Classical probabilisticClassical probabilistic
simulation.simulation.

• Use random numbers to simulate coarse
grained dynamics.

• The statistics of random numbers is
classical.

• Cannot simulate a large quantum process.

TheThe Feynman Feynman processorprocessor
• A physical computer operating by quantum rules.

– could it compute more efficiently than a classical
computer ?

Quantum Quantum Turing Turing MachinesMachines

• Church-Turing Thesis:
– Every “function which would naturally be regarded

as computable” can be computed by the universal
Turing machine.

• Quantum Turing Machine
– can compute partial recursive functions
– can simulate any quantum computer with arbitrary

precision

DeutschDeutsch and quantum and quantum parallelismparallelism
• D. Deutsch, 1985

Quantum theory, the Church-Turing principle and the
universal quantum computer.

Proc. Roy. Soc. A400, 97, (1985).

• Feynman-Deutsch principle:
(Church-Turing principle)
‘Every finitely realisable physical system can be

perfectly simulated by a universal model
computing machine operating by finite means”

DeutschDeutsch processorprocessor
• Computational basis:

– Direct product Hilbert space of N two-level
systems:

• Quantum Turing machines:
– remain in computational basis state at end of

each step.
• Quantum computer

– arbitrary superpositions of computational
basis...explore all 2N dimensions !

8

| SN 〉⊗ | SN−1 〉 ⊗ � | S1〉; Si ∈ {1,0}

Computational ComplexityComputational Complexity
Classes - role of quantumClasses - role of quantum

● Finding non-trivial lower bounds on the
worst-case complexity of computational
problems has proved very difficult

● We hope that this more general
framework of quantum computation will
help us find non-trivial lower bounds and
some new relationships between
complexity classes
● (like complex numbers help us

understand real numbers)

PSPACEPSPACE

NPNP

PP

BQPBQP

BQP is a class
of problems
which can
solved
efficiently on a
quantum
computer
where a
bounded
probability of
error is
allowed -
analogous to
BPP.

We even do
not know if
PSPACE is
bigger than P!

We do not
know!

Exam Problems.Exam Problems.
• The material in this lecture is advanced. Do not worry if you have some troubles.

You have however understand the following topics:
• Definition of P problems. Definition of NP problems.
• Formulation of P=NP controversy and its practical and philosophical meaning.
• Classes of complexity and what problems belong to it.
• Physical versus mathematical unsolvability/undecidability.
• Meaning of Goedel and Turing results. Explain in your own words and illustrate.
• The concept of mass problems. Why different from single instance problems?

Examples.
• Examples of problems and their complexity classes.
• Relations between class NP and undecidable problems. How can the quantum

computer help, can it?
• Give examples of halting problem, also other examples than those from lecture or

book.
• Explain why predicate calculus and Markov algorithm (Post equivalence Problem)

are undecidable?
• Why are problems of Artificial Intelligence and undecidability related?

Exam Problems.Exam Problems.
• Discuss complexity of Factoring and other similar problems.
• Examples of simple Turing Machines.
• Idea of Universal Turing Machine
• Circuits versus Turing Machines - why equivalent?
• Formulate a Turing Machine that has a subroutine NAND that calculates function

OR of two arguments. NAND is a NAND of two inputs.
• Link the language concept to undecidability and complexity
• Class BPP
• Discuss quantum complexity issues.

