
Evolving Quantum
Circuits with Genetic

Algorithms
and

through Exhaustive
space search

• Technology
– Constraints

• Design of new quantum primitives
• Evolutionary and Frame based Generator
• Exhaustive Search
• Results
• Future directions
• Possible projects - Homework

Outline

Technology for
Quantum Computing

What size of
(binary)

Quantum
Computers can

be build in
year 2003?

• 7 bits

What size of
(binary)

Quantum
Computers can

be build in
year 2003?

• 7 bits

••dicarbonylcyclopentadienyldicarbonylcyclopentadienyl
(perfluorobutadien-2-yl) iron (C(perfluorobutadien-2-yl) iron (C1111HH55FF55OO22Fe)Fe)

••Each fluorine and 2 Each fluorine and 2 CarbonesCarbones can be used can be used
for computationfor computation

QbitsQbits,, ¬¬ bitsbits
• In binary quantum logic, the notation for the

superposition is α|0> + β|1>.
• These intermediate states cannot be distinguished, rather

a measurement will yield that the qubit is in one of the
basis states, |0>, or |1>.

• The probability that a measurement of a qudit yields state
|0> is |α|2, and the probability is |β|2 for state |1>. The
sum of these probabilites is one. The absolute values are
required, since in general, α and β are complex
quantities.

Quantum Circuit
Synthesis

 is
Technology dependent

Constraints based on the properties of physical
implementation of quantum circuits(technology

constraints, gate costs)

We would like to assume that any two quantum wires can
interact, but we are limited by the realization (layout)

constraints

Structure of atomic bonds in the molecule determines
neighborhoods in the circuit.

This is similar to restricted routing in FPGA layout - link
between logic and layout synthesis known from CMOS design

now appears in quantum.

Decoherence plays an important role → minimization
circuit length

Minimization of cascade’s width but each bit counts (more
critical than in reversible synthesis)

At first, we will be interested only in the so-called
“permutation circuits” - their unitary quantum matrices

are permutation matrices

One solution to layout constraint problem in quantum
NMR computers is to take into account in logic synthesis

phase only those gate and their placements that are
technology-realizable

• Even if conceptually we use higher complexity gates,
ultimately we have to build from 2-qubit gates.

• Another possibility is to assume only primitives for the
future algorithms are only 2-qubit gates then the optimal

circuit will be the shortest

• Bottom line is that basic gate in quantum logic is a
2*2 (2-qubit gate).

• 3*3 Toffoli, Fredkin, de Vos, Kerntopf, Margolus are
not directly realizable as a primitive

Molecule - Driven LayoutMolecule - Driven Layout
and Logic Synthesisand Logic Synthesis

AA

BB CC

DD

AA

BB

CC

DD

Allowed gate neighborhood for
2 q-bit gates

atomsatoms

bondsbonds

A schematicsA schematics
with twowith two

binary Toffolibinary Toffoli
gatesgates

This is a result of our ESOP This is a result of our ESOP minimizerminimizer program, but this is not program, but this is not
realizable in NMR for the above molecule, because there is norealizable in NMR for the above molecule, because there is no
connection between A and C, for instance, in the molecule.connection between A and C, for instance, in the molecule.

Quantum wires A and C are
not neighbors

A

B

C

D

P=A

Q=B

C

D

BB

AA CC

DD

So we have to modify theSo we have to modify the
schematics as followsschematics as follows

a

b

c

d

a

b

c

d

Costs 3
Feynman gates

So we have to modify theSo we have to modify the
schematics as followsschematics as follows

a

b

c

d

a

b

c

d

Design
of new (complex)

quantum gates and
their costs

V V V+

To
a

b

ab⊕ c

a

b

ab⊕ c

a

b

c
=

• V & V+ are root square of NOT and its hermitian
(complex) conjugate such as V*V =NOT

• V : C_V: q-bit 2 unchanged
unless q-bit 1 equals
to 1

()









−
−+
1

1
2

1
i

ii

Design a Toffoli Gate from 2-qbit quantum primitives

AC ⊕ BC ⊕ AC

A

B

C i

A⊕⊕⊕⊕ B

A⊕⊕⊕⊕ C

g

h

Example: Optimal Solution to Miller Function

(AC ⊕⊕⊕⊕ BC ⊕⊕⊕⊕ AB) ⊕⊕⊕⊕ (A ⊕⊕⊕⊕ C) = AC ⊕⊕⊕⊕ AB’ ⊕⊕⊕⊕ B’C

(AC ⊕⊕⊕⊕ BC ⊕⊕⊕⊕ AB) ⊕⊕⊕⊕ (A ⊕⊕⊕⊕ B) = AC’ ⊕⊕⊕⊕ AB ⊕⊕⊕⊕ BC’

Cost = 1 Toffoli + 4 Feynman gates

Cost in Gates:

 4*1+5 = 9

*

Toffoli

V V V+

V V V+

V V V+

Cost in Gates: 9*1 = 9

Cost in Gates: 7*1 = 7

Cost in Gates: 7*1 = 7

2-qubit quantum realization of Miller Gate

Fredkin Gate build from Toffoli and Feynman gates

b⊕ c ⊕ ab ⊕ a’c=ac ⊕ ba’

c⊕ a(b ⊕ c)=c ⊕ ab ⊕ ac=ca’ ⊕ ac

=To

Cost in Gates: 2+5 = 7

V V V+

V V V+

a

b

c

a

b

c

Cost in Gates: 7*1 = 7

Cost in Gates: 5*1 = 5

Transforms

 Evolutionary
and

Frame-based
gate generators

Genetic Algorithm
• A set of elements being modified according to evolutionary rules:

– Selection (based on the fitness function)
– Crossing Over
– Mutation
– Replication

• These operators are made in generation steps
• Process stops when the solution is found
• Important in GA

• Encoding of the elements/individuals
• Complex with a lot of parameters

• Simple, task specific no parameters

• Fitness function
• Simple

• Including layout specific constraints

• Cost of gates

Circuit Encoding

Toffoli

Feynman

Walsh
Walsh

Feynman

Feynman

4 /PWCCNOT/P /PFHH/P /PFF/P

Wire

⊕ - Kronecker product

⊗ - Matrix product

⊗ ⊗
Toffoli

Wire

⊕
Feynman

Walsh

Walsh

⊕

⊕

Feynman

Feynman

⊕ Circuit matrix
representation

GA for quantum circuit synthesis

• Set of elements: randomly generated q-
circuits encoded in string representation

HHH WW

W

W

W

W

W

5PWSWWPPHWCPPWSWWP

Hadamard

gate

XOR or

CNOT

2/)10(1

2/)10(0

−→

+→

kjjkj ⊕→










−11
11

2
1



















0100
1000
0010
0001

H W

XW










01
10










10
01

WirePauli X
gate

Example



















−

−

1100
1100
0011
0011

2
1










10
01










−11
11

2
1

W

H


















0100
1000
0010
0001



















−

−

1100
1100
0011
0011

2
1



















0010
0001
1000
0100



















−

−

0011
0011
1100

1100

2
1

X

W

Evaluation

Calculation



















−
−

=







⊕









−
1010

0101
1010
0101

2
1

10
01

11
11

2
1



















−
−

=





































−
−

1100
0011
1100
0011

2
1

1000
0010
0100
0001

*

1010
0101
1010
0101

2
1

H

W

OperationsOperations

2 Cn X /P H /P/P Y W 2/P /P /P

2 X /P Y /P YX /P/P /P

2 Cn X /P H /P/P Y W 2/P /P /P

2 X Y /P/P XH /P/P Y W 2 /P /P

2 X X /P H /P/P/P /PW Y W 2 /P

Mutation

Crossing
over

Overview

Best gates
Best Circuits

CircuitsReproduction

Experimental
(unitary matrices)

SegmentsCross-Over*

Position
(block/circuit)

Gates
Blocks

Mutation

* - for circuits having only same number of I/O

GA’s settingsGA’s settings

• SUS, Roulette wheel
• Fitness:



















−

−

0011
0011
1100

1100

2
1

Goal:


















−

−

0011
0011
1100

1100

2
1

H W

XW
Fitness:

88.021
1

0

≈
+

=

=Λ

Ni
Fi

i

• Peres gate - the
cheapest 3-qubit gate

Adding Feynman gates on all
possible pairs of wires on which
Feynman is realizable

a⊕ b ⊕ ab ⊕ c=(a+b) ⊕ c

C=0⇒(A+b)

C=1 ⇒(a+b)’=a’b’

V V V+

a

a⊕⊕⊕⊕ b

ab ⊕⊕⊕⊕ c

a

b

c

V V V+

a

a⊕⊕⊕⊕ b

ab ⊕⊕⊕⊕ c

a

b

c

Frame-based search starting from Peres gate

a)

b)

A = a ⊕ c

B = a ⊕ b

C = ab ⊕ ac ⊕ bc

C = ab ⊕ ac ⊕ bc

A = a ⊕ c

B = a’b ⊕ a’c ⊕ bc

Other frame search examples

a

b

c V V V+

a

b

c V V V+

Cost in Gates: 5*1 = 5

Cost in Gates: 5*1 = 5

Exhaustive Search

• Searching all gates in a very limited
space of permutation 1015-1018

• Up to 7 segments circuits
• 3 I/O circuits
• Comparing to gates such as Toffoli,

Fredkin, de Vos, Kerntopf, etc.

Exhaustive gate
search

• Idea: to look for all possible equivalent
gates in a certain category

• Using specified gates in different
technologies

• Find the minimal possible cost of the
gate

Exhaustive gate
search

Results

Unitary gate search examplesUnitary gate search examples

H
1 1 1

2 1 -1
Generations: 10

Mutation rate: 0.3

Generations: 20

Mutation rate: 0.3

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

No starting set restriction

Other gates search

































01000000
10000000
00100000
00010000
00001000
00000100
00000010
00000001

Generations: 100

Mutation rate: 0.4

Random circuit search

H

EPR producing circuit

Generations: 450

Mutation: 0.3
4 /PWWHW/P /PWWF/P /PWSW/P /PWFW/P /PSWW/P /PFWW/P
/PSWW/P /PWSW/P

H

W

W

WW

W

W W W W

W

W

W

W

W

W W

W

Random circuit search

H

H

“Send” circuit

Generations: 150

Mutation: 0.3

3 /PWWH/P /PWF/P /PFW/P /PHWW/P

H

H

W

W

W

W

W

W

Examples for Toffoli

V

V+

V

V+ V

V VV+

V V

¬ ¬

V V+V

Experimental results

< 3 minutes

< 1 minute

< 1 minute

Real time
(average 20
runs)

60<200<1 minute0.60.650 - 2003 -
inputs

50<100< 30 seconds0.40.6<502 -
inputs

50<100< 30 seconds0.60.4<501 - input

Populatio
n size

pM<0.2
Number of
generations

Real time
(average 20
runs)

pCpMNumber of
generations

Number
of inputs
per q-
gate

Experimental results (cont.)

Problem searched Solution found
F1/F6

Time of search in
number of
generations
F1/F6

Toffoli YES/YES <2000 / <50000

Fredkin YES/YES <1000 / <75000

Margolus YES/NO <1000 / <100000

f1

⊕

A

B

P

Q

GeneralizedGeneralized
Feynman GateFeynman Gate

A

B

P

f2

⊕⊕⊕⊕
C

Q

R

Generalized Ternary 3*3Generalized Ternary 3*3
Toffoli GateToffoli Gate

Q

P

f2

A

C R

B

S

0
1

D 0
1

GeneralizedGeneralized
4*4 4*4 FredkinFredkin

GateGate

f 2

A

C

Q

R

B

P

SD ** ⊕⊕⊕⊕⊕⊕⊕⊕

00
11

GeneralizedGeneralized
4*44*4

KerntopfKerntopf
GateGate

A n⊕ f n-1 (A1, …, An-1)

A1

A n-1

fn-1

⊕
An

. . . GeneralizedGeneralized
n*n Toffolin*n Toffoli

GateGate

A n-1 f ‘n-1 (A1, …., A n-1)

+ A n f n-1 (A1, …., A n-1)

A n-1 f n-1 (A1, …., A n-1)

+ A n f ‘n-1 (A1, …., A n-1)

.A1

A n-2

fn-1

A n

A n-1

.

0
1

0
1

Generalized n*n Generalized n*n FredkinFredkin Gate Gate

Future Perspectives

Population

Population

Crossover

Mutation
Evaluation

Replication
New Generation

Genotype

Population

Population

Crossover

Mutation

Evaluation

Replication

New Generation

Phenotype:

Logic expression

Genotype: I.e Polarity of GRM

Circuit

Darwinian evolution

Standard GA

Population

Population

Crossover

Mutation

Evaluation

Replication

New Generation Genotype: I.e Polarity of GRM

Circuit

Phenotype:

Logic expression

Logic Minimizer

Modification of the chromosome

Lamarckian optimization

•An alternative approach to this problem can be the use of Lamarckian approach to
the GA.

•When a solution is found, the genotype is modified in order to be more
precise for a given term-wise polarity set and the given function.

•Consequently the search for this individual will induce smallest search space

Genotype

(polarity1, fitness1)
.
.
.
.
.
.
.

(polarityr, fitnessr)

HeuristicsGA

Phenotype

GRMr,1
.
.

GRMr,n

GRM1,1
.
.

GRM1,n

Learning Polarity Learning Product
 terms

Min
Cost

Min
Cost

Baldwinian learning

Projects and
Homework

• All results from a GA should be averaged over
20 runs

• All details, files, precisions can be either
asked directly or by email on
lukac242@netscape.net

• Exceptionally good or bad results should be
denoted apart

• All steps during exploration and
experimentation should be precisely written
down in a log book

General directionsGeneral directions

• During synthesis fitness of circuits is
highly non linear and non proportional to
the distance from the final gate

• Goal: analyze a set of known gates
(provided) and make a statistical analysis
on the changes of the fitness function of
the gates

• Finally establishing a table of results
where the known gates will be
represented as curves of fitness function

Statistical analysis of non linearity inStatistical analysis of non linearity in
synthesized circuitssynthesized circuits

Project 1

Example

Statistical analysis of non linearity
in synthesized circuits

V V+V

• Fitness

• Error

• Cost5

0.3

0.18

64321

00.80.40.40.7

10.760.330.390.7

Project 1

• Inversely to the classical approach the
goal is to synthesize a set of parameters
fitting on the non linearity present in the
fitness function evaluating quantum
circuits

• Parameters evolved can be either taken
from already existing fitness function or a
completely new fitness function can be
evolved

Evolving Fitness function for QC synthesisEvolving Fitness function for QC synthesis

Project 2

• Example

Evolving Fitness function for QC synthesisEvolving Fitness function for QC synthesis

V V+V

• Circuit

• Fitness() ()Costerrorf βα ∏= 1

• Encode parameters α,β,Π into chromosome Π is
arbitrary function such as +, -, *, /, etc.

• Evolve them according to your own selected
strategy

• You can choose any fitness function you want
but minimum 2 parameters

Project 2

• We want to test how will a GA with
Pareto optimal evaluation evolve new
quantum circuits.

• Minimal parameters are the size of the
circuit and the error as a measure of the
distance from the goal. More parameters
can be used as cost, complexity, etc.

• Use ranking method to select the best
individuals to the next generation

Pareto optimality GA and QC synthesis

Project 3

• Evolving circuit according to
more than one parameter.

• Ranking is a method allowing to
evaluate circuits on the numbers
of won tournament

Pareto optimality GA and QC synthesisPareto optimality GA and QC synthesis

qCirc(0)

Parameters
(x0x1x2x3)

Parameters
(x0x1x2x3)

qCirc(0)

qCirc(0)

qCirc(0)
Parameters
(x0x1x2x3)

Parameters
(x0x1x2x3)

Comparing all
parameters one to one

() []

0

000 ,...,

Rankelse

xxRankiif i
i

j =Χ∀++≥Χ−Χ∑

Fitness assigning on the
number of won fights 6 2 4 12 0 3

••All individuals areAll individuals are
compared to all other incompared to all other in
the populationthe population

••Mutation, CrossoverMutation, Crossover
as in standard GAas in standard GA

Project 3

• By modifying parameters of the GA for QC
synthesis it is possible to modify the behavior of
the algorithm

• Here the goal is to explore in a methodic way
combinations of parameters in the GA and
observe the different behavior (deception,
premature convergence)

• Parameters to be modified can be all such as
mutation or crossover probability, population
size, selection criteria, etc.

Exploring GA for QC by modifyingExploring GA for QC by modifying
parameters and settingsparameters and settings

Project 4

• Parameters to modify
– Probabilities

• Mutation
• Crossover
• Selection threshold

– Selection pressure
• Elitism
• Roulette wheel
• Universal Stochastic Sampling
• Tournament
• Threshold

– Mixed generations
• Comparing children with parents

– Genetic operators
• Mutation

– Normal, bitwise, inversion,
• Crossover

– Normal, Double, Multi-point,
Multi-parent

Exploring GA for QC by modifying parameters andExploring GA for QC by modifying parameters and
settingssettings

Project 4

Population using SSU

Population using Elitism

Best n for replication

Population using Tournament

Individuals with Fitness > λ

Population using Threshold

• Works by enumerating all possibilities of gates
– Permutations
– Wire allocations
– Def: number of wires, number of blocks

• Goal: Make an extensive research for specified
gates using this software.

• Classification according to different criteria:
– Distance from the goal
– Complexity
– Cost

Exhaustive search of Q-circuitsExhaustive search of Q-circuits

Project 5

• A console interface
– Input: file
– Output: file

• All commands through the input file
• Available Monday on the class Web Page

– Download the zipped package
• Contents: exe file, source file, documentation and user’s

manual

!!!!GOOD LUCK!!!!

Using Using GAqGAq

