Evolving Quantum Circuits with Genetic Algorithms and
through Exhaustive space search

Outline

- Technology
- Constraints
- Design of new quantum primitives
- Evolutionary and Frame based Generator
- Exhaustive Search
- Results
- Future directions
- Possible projects - Homework

Technology for

Quantum Computing

What size of

 (binary) QuantumComputers can be build in year 2003?

- 7 bits

What size of

 (binary)Quantum
Computers can be build in year 2003?

-dicarbonylcyclopentadienyl (perfluorobutadien-2-yl) iron $\left(\mathrm{C}_{11} \mathrm{H}_{5} \mathrm{~F}_{5} \mathrm{O}_{2} \mathrm{Fe}\right.$)
-Each fluorine and 2 Carbones can be used for computation

5 qubit 215 Hz Q. Processor

(Vandersypen, Steffen, Breyta Yarmoni, Eleve, and Chuang, 2000)

Qbits, \neg bits

- In binary quantum logic, the notation for the superposition is $\alpha|0>+\beta| l>$.
- These intermediate states cannot be distinguished, rather a measurement will yield that the qubit is in one of the basis states, $\mid 0>$, or $\mid 1>$.
- The probability that a measurement of a qudit yields state $\mid 0>$ is $|\alpha|^{2}$, and the probability is $|\beta|^{2}$ for state $\mid 1>$. The sum of these probabilites is one. The absolute values are required, since in general, α and β are complex quantities.

Quantum Circuit Synthesis is

Technology dependent

Constraints based on the properties of physical implementation of quantum circuits(technology constraints, gate costs)

We would like to assume that any two quantum wires can interact, but we are limited by the realization (layout) constraints

Structure of atomic bonds in the molecule determines neighborhoods in the circuit.

This is similar to restricted routing in FPGA layout - link between logic and layout synthesis known from CMOS design now appears in quantum.

Decoherence plays an important role \rightarrow minimization circuit length

Minimization of cascade's width but each bit counts (more critical than in reversible synthesis)

At first, we will be interested only in the so-called "permutation circuits" - their unitary quantum matrices are permutation matrices

One solution to layout constraint problem in quantum NMR computers is to take into account in logic synthesis phase only those gate and their placements that are technology-realizable

- Even if conceptually we use higher complexity gates, ultimately we have to build from 2-qubit gates.
- Another possibility is to assume only primitives for the future algorithms are only 2 -qubit gates then the optimal circuit will be the shortest
- Bottom line is that basic gate in quantum logic is a $2 * 2$ (2-qubit gate).
- 3*3 Toffoli, Fredkin, de Vos, Kerntopf, Margolus are not directly realizable as a primitive

Molecule - Driven Layout and Logic Synthesis

Allowed gate neighborhood for
2 q-bit gates

Quantum wires A and C are not neighbors

A schematics

with two
binary Toffoli gates

This is a result of our ESOP minimizer program, but this is not realizable in NMR for the above molecule, because there is no connection between A and C, for instance, in the molecule.

So we have to modify the schematics as follows

Costs 3
Feynman gates

So we have to modify the schematics as follows

Design

of new (complex)

 quantum gates andtheir costs

Design a Toffoli Gate from 2-qbit quantum primitives

- $\mathrm{V} \& \mathrm{~V}^{+}$are root square of NOT and its hermitian (complex) conjugate such as $\mathrm{V}^{*} \mathrm{~V}=\mathrm{NOT}$
- $\mathrm{V}: \frac{(1+i)}{2}\left[\begin{array}{cc}1 & -i \\ -i & 1\end{array}\right]$

C_V: q-bit 2 unchanged unless q-bit 1 equals to 1

Example: Optimal Solution to Miller Function

$(\mathbf{A C} \oplus \mathbf{B C} \oplus \mathbf{A B}) \oplus(\mathbf{A} \oplus \mathbf{B})=\mathbf{A} \mathbf{C}^{\prime} \oplus \mathbf{A B} \oplus \mathbf{B C} \mathbf{C}^{\prime}$

$(\mathbf{A C} \oplus \mathbf{B C} \oplus \mathbf{A B}) \oplus(\mathbf{A} \oplus \mathbf{C})=\mathbf{A C} \oplus \mathbf{A B} \mathbf{B}^{\prime} \oplus \mathbf{B}^{\prime} \mathbf{C}$
Cost in Gates:

Cost $=1$ Toffoli +4 Feynman gates
$4 * 1+5=9$

2-qubit quantum realization of Miller Gate

Cost in Gates: $7 * 1=7$

Fredkin Gate build from Toffoli and Feynman gates

$\mathrm{b} \oplus \mathrm{c} \oplus \mathrm{ab} \oplus \mathrm{a}^{\prime} \mathrm{c}=\mathrm{ac} \oplus \mathrm{ba}{ }^{\prime}$

$\mathrm{c} \oplus \mathrm{a}(\mathrm{b} \oplus \mathrm{c})=\mathrm{c} \oplus \mathrm{ab} \oplus \mathrm{ac}=\mathrm{ca}^{\prime} \oplus \mathrm{ac}$

Transforms

Cost in Gates: $7 * 1=7$

Cost in Gates: $5^{*} 1=5$

Evolutionary and
Frame-based

gate generators

Genetic Algorithm

- A set of elements being modified according to evolutionary rules:
- Selection (based on the fitness function)
- Crossing Over
- Mutation
- Replication
- These operators are made in generation steps
- Process stops when the solution is found
- Important in GA
- Encoding of the elements/individuals
- Complex with a lot of parameters
- Simple, task specific no parameters
- Fitness function
- Simple
- Including layout specific constraints
- Cost of gates

Circuit Encoding

GA for quantum circuit synthesis

- Set of elements: randomly generated qcircuits encoded in string representation

5PWSWWPPHWCPPWSWWP

Example

Pauli X
gate $\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right] \quad$ Wire $\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$

Hadamard
gate

1 \& -1\end{array}\right]\)

$$
\begin{aligned}
& |0\rangle \rightarrow(|0\rangle+|1\rangle) / \sqrt{2} \\
& |1\rangle \rightarrow(|0\rangle-|1\rangle) / \sqrt{2}
\end{aligned}
$$

XOR or
CNOT $\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0\end{array}\right]$

$$
|j\rangle|k\rangle \rightarrow|j\rangle|j \oplus k\rangle
$$

$$
\square 1 / \sqrt{2}\left[\begin{array}{cccc}
0 & 0 & 1 & 1 \\
0 & 0 & 1 & -1 \\
1 & 1 & 0 & 0 \\
-1 & 1 & 0 & 0
\end{array}\right]
$$

Evaluation

$$
\begin{aligned}
& \left.\begin{array}{ll}
{\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]} \\
\otimes \\
\hline 1
\end{array}\right] \stackrel{W}{1} 1 \\
& 1 / \sqrt{2}\left[\begin{array}{cccc}
1 & 1 & 0 & 0 \\
1 & -1 & 0 & 0 \\
0 & 0 & 1 & 1 \\
0 & 0 & -1 & 1
\end{array}\right] \oplus\left[\begin{array}{llll}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
\mathrm{X} \\
\\
\hline
\end{array}\right.
\end{aligned}
$$

Calculation

$$
\left[\frac{1}{\sqrt{2}}\left[\begin{array}{cccc}
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 \\
1 & 0 & -1 & 0 \\
0 & 1 & 0 & -1
\end{array}\right] *\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]=\frac{1}{\sqrt{2}}\left[\begin{array}{cccc}
1 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 \\
1 & -1 & 0 & 0 \\
0 & 0 & 1 & -1
\end{array}\right]\right.
$$

$$
\rightarrow \frac{1}{\sqrt{2}}\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right] \oplus\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]=\frac{1}{\sqrt{2}}\left[\begin{array}{cccc}
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 \\
1 & 0 & -1 & 0 \\
0 & 1 & 0 & -1
\end{array}\right]
$$

Operations

Overview

Mutation	Gates Blocks	Position (block/circuit)
Cross-Over*	Segments	Experimental (unitary matrices)
Reproduction	Circuits	Best gates Best Circuits

* - for circuits having only same number of I/O

GA's settings

- SUS, Roulette wheel
- Fitness:

$$
F_{i}=\frac{1}{1+\text { error }_{i}}-\Lambda_{i}
$$

$$
\text { error }=\sum_{i=1}^{n} \sum_{j=1}^{2^{n}}\left|U_{i j}-S_{i j}\right| \quad S, U \in U\left(2^{n}\right)
$$

$$
1 / \sqrt{2}\left[\begin{array}{cccc}
0 & 0 & 1 & 1 \\
0 & 0 & 1 & -1 \\
1 & 1 & 0 & 0 \\
-1 & 1 & 0 & 0
\end{array}\right]
$$

Goal:

Fitness:

$$
1 / \sqrt{2}\left[\begin{array}{cccc}
0 & 0 & 1 & 1 \\
0 & 0 & 1 & -1 \\
1 & 1 & 0 & 0 \\
1 & -1 & 0 & 0
\end{array}\right]
$$

$$
\Lambda_{i}=0
$$

$$
F_{i}=\frac{1}{1+2 / N i} \approx 0.88
$$

Frame-based search starting from Peres gate

- Peres gate - the cheapest 3-qubit gate

Adding Feynman gates on all possible pairs of wires on which Feynman is realizable

$\mathrm{a} \oplus \mathrm{b} \oplus \mathrm{ab} \oplus \mathrm{c}=(\mathrm{a}+\mathrm{b}) \oplus \mathrm{c}$

$$
\begin{aligned}
& \mathrm{C}=0 \Rightarrow(\mathrm{~A}+\mathrm{b}) \\
& \mathrm{C}=1 \Rightarrow(\mathrm{a}+\mathrm{b})^{\prime}=\mathrm{a}^{\prime} \mathrm{b}^{\prime}
\end{aligned}
$$

Other frame search examples

b)

$\mathrm{A}=\mathrm{a} \oplus \mathrm{c}$
$\mathrm{B}=\mathrm{a}^{\prime} \mathrm{b} \oplus \mathrm{a}^{\prime} \mathrm{c} \oplus \mathrm{bc}$
$\mathrm{C}=\mathrm{ab} \oplus \mathrm{ac} \oplus \mathrm{bc}$

Cost in Gates: $5 * \mathbf{1}=\mathbf{5}$

Exhaustive Search

Exhaustive gate search

- Searching all gates in a very limited space of permutation $10^{15-1} 10^{18}$
- Up to 7 segments circuits
- 3 I/O circuits
- Comparing to gates such as Toffoli, Fredkin, de Vos, Kerntopf, etc.

Exhaustive gate search

- Idea: to look for all possible equivalent gates in a certain category
- Using specified gates in different technologies
- Find the minimal possible cost of the gate

Results

Unitary gate search examples

No starting set restriction

Generations: 10
Mutation rate: 0.3

Generations: 20
Mutation rate: 0.3

Other gates search

Random circuit search

EPR producing circuit
Generations: 450
Mutation: 0.3
4 /PWWHW/P /PWWF/P /PWSW/P /PWFW/P /PSWW/P /PFWW/P /PSWW/P /PWSW/P

Random circuit search

"Send" circuit
Generations: 150
Mutation: 0.3
$3 / P W W H / P / P W F / P / P F W / P / P H W W / P$

Examples for Toffoli

Experimental results

Number of inputs per q- gate	Number of generations	$\mathbf{p M}$	$\mathbf{p C}$	Real time (average 20 runs)	$\mathbf{p M}<\mathbf{0 . 2}$ Number of generations	Real time (average 20 runs)	Populatio n size
1 - input	<50	0.4	0.6	<30 seconds	<100	<1 minute	50
$2-$ inputs	<50	0.6	0.4	<30 seconds	<100	<1 minute	50
$3-$ inputs	$50-200$	0.6	0.6	<1 minute	<200	<3 minutes	60

Experimental results (cont.)

| Problem searched | Solution found
 F1/F6 | Time of search in
 number of
 generations
 F1/F6 |
| :--- | :--- | :--- | :--- |
| Toffoli | YES/YES | $<2000 /<50000$ |
| Fredkin | YES/YES | $<1000 /<75000$ |
| Margolus | YES/NO | $<1000 /<100000$ |

Generalized Feynman Gate

Generalized Ternary 3*3 Toffoli Gate

Generalized

 4*4 Fredkin Gate

A_{1}

Generalized n*n Fredkin Gate

Future Perspectives

Standard GA

Darwinian evolution

Lamarckian optimization

-An alternative approach to this problem can be the use of Lamarckian approach to the GA.
-When a solution is found, the genotype is modified in order to be more precise for a given term-wise polarity set and the given function.
-Consequently the search for this individual will induce smallest search space

Baldwinian learning

GA

Heuristics

Projects and Homework

General directions

- All results from a GA should be averaged over 20 runs
- All details, files, precisions can be either asked directly or by email on lukac242@netscape.net
- Exceptionally good or bad results should be denoted apart
- All steps during exploration and experimentation should be precisely written down in a log book

Statistical analysis of non linearity in

 synthesized circuits- During synthesis fitness of circuits is highly non linear and non proportional to the distance from the final gate
- Goal: analyze a set of known gates (provided) and make a statistical analysis on the changes of the fitness function of the gates
- Finally establishing a table of results where the known gates will be represented as curves of fitness function

Statistical analysis of non linearity in synthesized circuits

Example

Evolving Fitness function for QC synthesis

- Inversely to the classical approach the goal is to synthesize a set of parameters fitting on the non linearity present in the fitness function evaluating quantum circuits
- Parameters evolved can be either taken from already existing fitness function or a completely new fitness function can be evolved

Evolving Fitness function for QC synthesis

- Example

- Circuit
- Fitness
- Encode parameters α, β, Π into chromosome Π is arbitrary function such as $+,-, *, /$, etc.
- Evolve them according to your own selected strategy
- You can choose any fitness function you want but minimum 2 parameters

Pareto optimality GA and QC synthesis

- We want to test how will a GA with Pareto optimal evaluation evolve new quantum circuits.
- Minimal parameters are the size of the circuit and the error as a measure of the distance from the goal. More parameters can be used as cost, complexity, etc.
- Use ranking method to select the best individuals to the next generation

Pareto optimality GA and QC synthesis

- Evolving circuit according to more than one parameter.
- Ranking is a method allowing to evaluate circuits on the numbers of won tournament

- All individuals are compared to all other in the population
-Mutation, Crossover as in standard GA

Comparing all
parameters one to one
if $\sum_{i}\left(\mathrm{X}_{0}-\mathrm{X}_{j}\right) \geq i \quad \operatorname{Rank}_{0}++, \forall \mathrm{X}=\left[x_{0}, \ldots x_{i}\right]$ else Rank ${ }_{0}$

Fitness assigning on the number of won fights

6	2	4	12	0	3

Exploring GA for QC by modifying

 parameters and settings- By modifying parameters of the GA for QC synthesis it is possible to modify the behavior of the algorithm
- Here the goal is to explore in a methodic way combinations of parameters in the GA and observe the different behavior (deception, premature convergence)
- Parameters to be modified can be all such as mutation or crossover probability, population size, selection criteria, etc.

Exploring GA for QC by modifying parameters and settings

- Parameters to modify
- Probabilities
- Mutation
- Crossover

Best n for replication

- Selection threshold
- Selection pressure
- Elitism
- Roulette wheel
- Universal Stochastic Sampling
- Tournament
- Threshold
- Mixed generations

Population using SSU

- Comparing children with parents
- Genetic operators
- Mutation
- Normal, bitwise, inversion,
- Crossover

- Normal, Double, Multi-point, Multi-parent

Exhaustive search of Q-circuits

- Works by enumerating all possibilities of gates
- Permutations
- Wire allocations
- Def: number of wires, number of blocks
- Goal: Make an extensive research for specified gates using this software.
- Classification according to different criteria:
- Distance from the goal
- Complexity
- Cost

Using GAq

- A console interface
- Input: file
- Output: file
- All commands through the input file
- Available Monday on the class Web Page
- Download the zipped package
- Contents: exe file, source file, documentation and user's manual

!!!!GOOD LUCK!!!!

